### SCHEME FOR CHOICE BASED CREDIT SYSTEM FOR B.Sc. HONOURS MICROBIOLOGY

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Ability Enhancement Compulsory Course (AECC)</th>
<th>Skill Enhancement Course (SEC)</th>
<th>Discipline Specific Elective (DSE)</th>
<th>Generic Elective (GE)</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>MICRO1C01TH</td>
<td>Introduction to Microbiology and Microbial Diversity</td>
<td>4</td>
<td>ENGL103/Hindi/MIL Communication</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MICRO1C01PR</td>
<td>Introduction to Microbiology and Microbial Diversity</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO1C02TH</td>
<td>Bacteriology</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO1C02PR</td>
<td>Bacteriology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>MICRO2C03TH</td>
<td>Biochemistry</td>
<td>4</td>
<td>ENV2AECC02</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MICRO2C03PR</td>
<td>Biochemistry</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO2C04TH</td>
<td>Virology</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO2C04PR</td>
<td>Virology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>MICRO3C05TH</td>
<td>Microbial Physiology and Metabolism</td>
<td>4</td>
<td>Any 1 SEC Subject in semester 3</td>
<td>4</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MICRO3C05PR</td>
<td>Microbial Physiology and Metabolism</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO3C06TH</td>
<td>Cell Biology</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO3C06PR</td>
<td>Cell Biology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO3C07TH</td>
<td>Molecular Biology</td>
<td>4</td>
<td>Any 1 SEC Subject in semester 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO3C07PR</td>
<td>Molecular Biology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>MICRO4C08TH</td>
<td>Microbial Genetics</td>
<td>4</td>
<td>Any 1 SEC Subject in semester 4</td>
<td>4</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MICRO4C08PR</td>
<td>Microbial Genetics</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO4C09TH</td>
<td>Immunology</td>
<td>4</td>
<td>Any 2 DSE Subjects in semester 5 with Theory &amp; Practical (Theory=4+4 &amp; Practical=2+2)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO4C09PR</td>
<td>Immunology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO4C10TH</td>
<td>Food and Dairy Microbiology</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO4C10PR</td>
<td>Food and Dairy Microbiology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>MICRO5C11TH</td>
<td>Environmental Microbiology</td>
<td>4</td>
<td>Any 2 DSE Subjects in semester 6 with Theory &amp; Practical (Theory=4+4 &amp; Practical=2+2)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO5C11PR</td>
<td>Environmental Microbiology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO5C12TH</td>
<td>Recombinant DNA Technology</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO5C12PR</td>
<td>Recombinant DNA Technology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>MICRO6C13TH</td>
<td>Medical Microbiology</td>
<td>4</td>
<td>Any 2 DSE Subjects in semester 5 with Theory &amp; Practical (Theory=4+4 &amp; Practical=2+2)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO6C13PR</td>
<td>Medical Microbiology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO6C14TH</td>
<td>Industrial Microbiology</td>
<td>4</td>
<td>Any 2 DSE Subjects in semester 6 with Theory &amp; Practical (Theory=4+4 &amp; Practical=2+2)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICRO6C14PR</td>
<td>Industrial Microbiology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Core Course Total Credits** = 84  
**AECC T. Credits** = 8  
**SE T. Credits** = 8  
**Discipline Specific Elective Total Credits** = 24  
**Generic Elective T. Credits** = 24

**Total Credits**: 84+8+8+24+24 = 148

**TH**: Theory; **PR**: Practical; **C**: Core Courses; **GE**: Generic Elective; **AECC**: Ability Enhancement Compulsory Course; **SEC**: Skill Enhancement Courses; **DSE**: Discipline Specific Elective
Structure of B. Sc. Honours Microbiology under CBCS

Core Course

MICRO1C01: Introduction to Microbiology and Microbial Diversity
MICRO1C02: Bacteriology
MICRO2C03: Biochemistry
MICRO2C04: Virology
MICRO3C05: Microbial Physiology and Metabolism
MICRO3C06: Cell Biology
MICRO3C07: Molecular Biology

MICRO4C08: Microbial Genetics
MICRO4C09: Immunology
MICRO4C10: Food and Dairy Microbiology
MICRO5C11: Environmental Microbiology
MICRO5C12: Recombinant DNA Technology
MICRO6C13: Medical Microbiology
MICRO6C14: Industrial Microbiology

Discipline Specific Elective
(Any 2 DSE Subjects in semester 5 & any 2 DSE Subjects in semester 6 from the list)

Semester-V
MICRO5DSE01: Bioinformatics
MICRO5DSE02: Microbial Biotechnology
MICRO5DSE03: Advances in Microbiology
MICRO5DSE04: Plant Pathology
MICRO5DSE05: Biomathematics and Biostatistics

Semester-VI
MICRO6DSE06: Inheritance Biology
MICRO6DSE07: Microbes in Sustainable Agriculture and Development
MICRO6DSE08: Biosafety and Intellectual Property Rights
MICRO6DSE09: Instrumentation and Biotechniques
MICRO6DSE10: Basics of Forensic Science

Generic Electives
(1 GE Subject in semester 1-3 and any 1 from semester 4)

Semester-1
MICRO1GE01: Bioprocess Technology

Semester-2
MICRO2GE02: Parasitology

Semester-3
MICRO3GE03: Mycology and Phycology

Semester-4
MICRO4GE04: Molecular Diagnostics
MICRO4GE05: Agricultural Microbiology

Ability Enhancement Compulsory Course

ENGL103: English/ Hindi/ MIL Communication
ENVS2AECC02: Environment Sciences

Skill Enhancement Elective Courses
(Any 1 SEC Subject in semester 3 & any 1 SEC Subject in semester 4 from the list)

Semester-3
MICRO3SEC01: Microbial Quality Control in Food and Pharmaceutical Industries
MICRO3SEC02: Microbial Diagnosis in Health Clinics
MICRO3SEC03: Biofertilizers and Biopesticides

Semester-4
MICRO4SEC04: Food Fermentation Techniques
MICRO4SEC05: Management of Human Microbial Diseases
MICRO4SEC06: Microbiological Analysis of Air and Water
## CHOICE BASED CREDIT SYSTEM

**B.Sc. (Hons.) Microbiology**

<table>
<thead>
<tr>
<th>SEMESTER I</th>
<th>SEMESTER II</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO1C01</td>
<td>Introduction to Microbiology and Microbial Diversity</td>
</tr>
<tr>
<td>MICRO1C02</td>
<td>Bacteriology</td>
</tr>
<tr>
<td>ENGL103</td>
<td>English/Hindi/MIL Communication</td>
</tr>
<tr>
<td>MICRO1GE01</td>
<td>Bioprocess Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER III</th>
<th>SEMESTER IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO3C05</td>
<td>Microbial Physiology and Metabolism</td>
</tr>
<tr>
<td>MICRO3C06</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>MICRO3C07</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>MICRO3SEC01-03</td>
<td>Any 1 SEC Subject in semester 3</td>
</tr>
<tr>
<td>MICRO3GE03</td>
<td>Mycology and Phycology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER V</th>
<th>SEMESTER VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO5C11</td>
<td>Industrial Microbiology</td>
</tr>
<tr>
<td>MICRO5C12</td>
<td>Immunology</td>
</tr>
<tr>
<td>MICRO5DSE01-05</td>
<td>Any 2 DSE Subjects in semester 5</td>
</tr>
</tbody>
</table>

**C:** Core Courses  
**GE:** Generic Elective  
**AECC:** Ability Enhancement Compulsory Course  
**SEC:** Skill Enhancement Courses  
**DSE:** Discipline Specific Elective
I. The B.Sc. (Honours) Microbiology will be of three years duration semester-based Choice Based Credit System [CBCS] course.

II. There will be broadly three types of courses for B.Sc. (Honours) Microbiology degree program.

1. The **Core Courses** (14 courses for honours; and 4 discipline specific papers) will be of 6-credits each including 2 credits assigned to the practical component. Thus a candidate will have to pass 14 courses for earning 14 X 6 = 84 credits during six semesters. Each of the 6-credits courses will carry 100 marks. These 100 marks will be split into marks assigned for Theory [TH]: 50 marks; Practical [PR]: 30 marks and Internal Assessment [IA]: 20. The Internal Assessment [20 marks] will include one Multi Choice Questions (MCQ)-based examination of 15 marks [15 or 30 questions of 1.0 or 0.5 mark each as the case may be]; and Classroom Attendance Incentive marks (5 marks). The Lab-based practical will be of 2-hours [One credit]. A total of 14 X 6 = 84 credits could be accumulated under these courses during the Honours degree program.

2. The **Elective Courses** will be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/ subject of study or which provides an extended scope or which enables an exposure to some other discipline/ subject/ domain or nurtures the candidate’s proficiency / skill. The Elective Courses will include;

   - **Discipline Specific Elective [DSE]** Courses: A total of 4 courses offered under the main discipline/ subject of study is referred to as Discipline Specific Elective. These courses are discipline related and/ or interdisciplinary in nature. A total of 4 X 6 = 24 credits could be accumulated under DSE courses during the Honours degree program.

   - **Generic Elective [GE]** Courses: A total of 4 courses of 6-credits each including 2 credits assigned for the practical component of each of these courses *i.e.* one course per 1st to 4th semester will be studied by the candidates. An elective course chosen from an unrelated discipline/ subject, with an intention to seek exposure beyond discipline(s) of choice is called Generic Elective Course. The purpose of this category of papers is to offer the students the option to explore disciplines of interest beyond the choices they make in Core and Discipline Specific Elective papers. Further, a course offered in a discipline/ subject may be treated as an elective by other discipline/ subject and vice versa and such electives may also be referred to as Generic Elective Course. A total of 4 X 6 = 24 credits could be accumulated under GE courses during the Honours degree program.

3. **Ability Enhancement Compulsory Courses [AECC]**: Ability Enhancement Courses are of two types; Ability Enhancement Compulsory Courses [AECC] and Skill Enhancement Courses [SEC]. A total of 4 X 4 = 16 credits could be accumulated under these courses
during the Honours degree program i.e. $4 \times 2 = 8$ credits for AECC, and $4 \times 2 = 8$ credits for SEC courses.

The AECC courses are the mandatory courses based upon the content that leads to knowledge enhancement; i. Environment Science and ii. English/ Hindi/ MIL Communication. All these are mandatory courses for obtaining a B.Sc. (Honours) degree in the concerned subject. These courses are mandatory for all disciplines. SEC courses are value-based and/or skill-based and are aimed at providing hands-on-training, competencies, skills etc. A minimum of two such courses for obtaining an Honours degree are selected amongst the courses designed to provide value-based and/or skill-based knowledge and may contain both theory and lab/ hands-on training. The main purpose of these courses is to provide students life-skills in hands-on mode so as to increase their employability.

III. Practical [PR] component has been included in every core and discipline/ generic specific elective paper. The list of practicals to be conducted by the candidates has been provided alongside each of such courses. The marks (30 marks) for the practical examination will be split as follows;

- Write up of Practical I: 5 marks
- Write up of Practical II: 5 marks
- Performance of any one of above practicals: 7 marks
- Practical record/ notebook: 5 marks
- Viva voce: 8 marks

IV. Classroom Attendance Incentive: Those candidates who have greater than 75% attendance (for those participating in Co-curricular activities, 25% will be added to percent attendance) will be awarded CAI marks as follows:

- $\geq 75\%$ but $< 80\%$ 1 marks
- $\geq 80\%$ but $< 85\%$ 2 marks
- $\geq 85$ but $< 90\%$ 3 marks
- $\geq 90\%$ but $< 95\%$ 4 marks
- $\geq 95\%$ to 100% 5 marks

V. The candidate has to secure minimum pass marks individually in Theory paper, Practical as well as Internal Assessment to earn full credits in the concerned course. A candidate thus failing in any of these components shall be considered failed in that course.

VI. The admission to B.Sc. (Honours) Biotechnology programme of Himachal Pradesh University will be as per guidelines of Himachal Pradesh University, Shimla from time to time.

i. The candidate should have passed 10+2 (class XII) Examination or its equivalent from a recognized Board/ University with any of the three subjects out of Physics, Chemistry and Biology or any other science subject with 50% or equivalent grade (for SC/ ST candidates marks of eligibility will be 45% or equivalent grade).

ii. In case of candidates who are studying in University/Board/College/Schools in any of the foreign countries the eligibility/Qualifying marks will be the same as recognized/equivalent to 10+2 by the University or the association of the Indian
University with 50% marks of equivalent grade (for SC/ ST candidates, eligibility will be 45% marks or equivalent grade).

iii. The candidate who has appeared in the qualifying examination but whose result has so far not been declared can also apply but his/her eligibility for the entrance test will be purely provisional subject to the condition that he/she has to produced a passing certificate scoring at least the minimum percentage of marks as prescribed for the qualifying examination on the day and the specified time of counseling.

The candidate shall not be more than 22 years of age as on 01st July of the year of admission. Date of birth as recorded in the Secondary Education Board/ University Certificate Only will be considered as authentic.
B.Sc. (HONOURS) MICROBIOLOGY
(CBCS STRUCTURE)
CORE COURSES
COURSE: MICRO1C01TH
INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 History of Development of Microbiology  
(15 Periods)

A. Development of microbiology as a discipline, Spontaneous generation vs. biogenesis. Contributions of Anton von Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Alexander Fleming
Role of microorganisms in fermentation, Germ theory of disease, Development of various microbiological techniques and golden era of microbiology, Development of the field of soil microbiology: Contributions of Martinus W. Beijerinck, Sergei N. Winogradsky, Selman A.Waksman Establishment of fields of medical microbiology and immunology through the work of Paul Ehrlich, Elie Metchnikoff, Edward Jenner

B. An overview of Scope of Microbiology

Unit 2 Diversity of Microbial World  
(15 Periods)

Systems of classification
Binomial Nomenclature, Whittaker’s five kingdom and Carl Woese’s three kingdom classification systems and their utility. Difference between prokaryotic and eukaryotic microorganisms

A. General characteristics of different groups: Acellular microorganisms (Viruses, Viroids, Prions) and Cellular microorganisms (Bacteria, Protozoa Algae and Fungi ) with emphasis on distribution and occurrence, morphology, mode of reproduction and economic importance.

B. Protozoa
General characteristics with special reference to Amoeba, Paramecium, Plasmodium, Leishmania and Giardia

Unit 3  
(15 Periods)

Algae
History of phycology with emphasis on contributions of Indian scientists; General characteristics of algae including occurrence, thallus organization, algae cell ultra structure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Different types of life cycles in algae with suitable examples: Haplobiontic, Haplontic, Diplontic, Diplobiontic and Diplohaplontic life cycles. Applications of algae in agriculture, industry, environment and food.

Unit 4  
(15 Periods)

Fungi
Historical developments in the field of Mycology including significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parsexual mechanism. Economic importance of fungi with examples in agriculture, environment, Industry, medicine, food, biodeterioration and mycotoxins.
COURSE: MICRO1C01PR
INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY (PRACTICAL)

Practical

1. Microbiology Good Laboratory Practices and Biosafety.
2. To study the principle and applications of important instruments (biological safety cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscope, pH meter) used in the microbiology laboratory.
3. Preparation of culture media for bacterial cultivation.
4. Sterilization of medium using Autoclave and assessment for sterility
5. Sterilization of glassware using Hot Air Oven and assessment for sterility
6. Sterilization of heat sensitive material by membrane filtration and assessment for sterility
7. Demonstration of the presence of microflora in the environment by exposing nutrient agar plates to air.
8. Study of *Rhizopus*, *Penicillium*, *Aspergillus* using temporary mounts
9. Study of *Spirogyra* and *Chlamydomonas*, *Volvox* using temporary Mounts
10. Study of the following protozoans using permanent mounts/photographs: *Amoeba*, *Entamoeba*, *Paramecium* and *Plasmodium*

Suggested Readings

COURSE: MICRO1C02TH
BACTERIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Cell organization (14 Periods)
Cell size, shape and arrangement, glycocalyx, capsule, flagella, endoflagella, fimbriae and pili. Cell-wall: Composition and detailed structure of Gram-positive and Gram-negative cell walls, Archaeabacterial cell wall, Gram and acid fast staining mechanisms, lipopolysaccharide (LPS), sphaeroplasts, protoplasts, and L-forms. Effect of antibiotics and enzymes on the cell wall.
Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cell membranes.
Cytoplasm: Ribosomes, mesosomes, inclusion bodies, nucleoid, chromosome and plasmids Endospore: Structure, formation, stages of sporulation.

Unit 2 Bacteriological techniques and Microscopy (13 Periods)
Pure culture isolation: Streaking, serial dilution and plating methods; cultivation, maintenance and preservation/stocking of pure cultures; cultivation of anaerobic bacteria, and accessing non-culturable bacteria.
Bright Field Microscope, Dark Field Microscope, Phase Contrast Microscope, Fluorescence Microscope, Confocal microscopy, Scanning and Transmission Electron Microscope

Unit 3 Growth, nutrition and reproduction in Bacteria (13 Periods)
Nutritional requirements in bacteria and nutritional categories;
Culture media: components of media, natural and synthetic media, chemically defined media, complex media, selective, differential, indicator, enriched and enrichment media Physical methods of microbial control: heat, low temperature, high pressure, filtration, desiccation, osmotic pressure, radiation
Asexual methods of reproduction, logarithmic representation of bacterial populations, phases of growth, calculation of generation time and specific growth rate
Chemical methods of microbial control: disinfectants, types and mode of action

Unit 4 Bacterial Systematics and archael and eubacterial groups (20 Periods)
Aim and principles of classification, systematics and taxonomy, concept of species, taxa, strain; conventional, molecular and recent approaches to polyphasic bacterial taxonomy, evolutionary chronometers, tRNA oligonucleotide sequencing, signature sequences, and protein sequences. Differences between eubacteria and archaeabacteria
Archaeabacteria: General characteristics, phylogenetic overview, genera belonging to Nanoarchaeota (Nanoarchaeum), Crenarchaeota (Sulfolobus, Thermoproteus) and Euryarchaeota [Methanogens (Methanobacterium, Methanocaldococcus), thermophiles (Thermococcus, Pyrococcus, Thermoplasm), and Halophiles (Halobacterium, Halococcus)]
Eubacteria: Morphology, metabolism, ecological significance and economic importance of following groups:
Gram Negative:
Non proteobacteria: General characteristics with suitable examples
Alpha proteobacteria: General characteristics with suitable examples
Beta proteobacteria: General characteristics with suitable examples
Gamma proteobacteria: General characteristics with suitable examples
Delta proteobacteria: General characteristics with suitable examples
Epsilon proteobacteria: General characteristics with suitable examples
Zeta proteobacteria: General characteristics with suitable examples

Gram Positive: Low G+ C (Firmicutes): General characteristics with suitable examples
High G+C (Actinobacteria): General characteristics with suitable examples

Cyanobacteria: An Introduction
COURSE: MICRO1C02PR
BACTERIOLOGY (PRACTICAL)

Practical

1. Preparation of different media: synthetic media BG-11, Complex media-Nutrient agar, McConkey agar, EMB agar.
2. Simple staining
3. Negative staining
4. Gram’s staining
5. Acid fast staining—permanent slide only.
6. Capsule staining
7. Endospore staining.
8. Isolation of pure cultures of bacteria by streaking method.
9. Preservation of bacterial cultures by various techniques.
11. Motility by hanging drop method.

Suggested Readings

COURSE: MICRO2C03TH
BIOCHEMISTRY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Bioenergetics and Carbohydrates (20 Periods)

First and second laws of Thermodynamics. Definitions of Gibb’s Free Energy, enthalpy, and Entropy and mathematical relationship among them, Standard free energy change and equilibrium constant Coupled reactions and additive nature of standard free energy change, Energy rich compounds: Phosphoenolpyruvate, 1,3-Bisphosphoglycerate, Thioesters, ATP.


Unit 2 Lipids and vitamins (16 Periods)


Unit 3 Proteins (12 Periods)


Unit 4. Enzymes (12 Periods)

COURSE: MICRO2C03PR
BIOCHEMISTRY (PRACTICAL)

Practical

1. Properties of water, Concept of pH and buffers, preparation of buffers and Numerical problems to explain the concepts
2. Numerical problems on calculations of Standard Free Energy Change and Equilibrium constant
3. Standard Free Energy Change of coupled reactions
4. Qualitative/Quantitative tests for carbohydrates, reducing sugars, non reducing sugars
5. Qualitative/Quantitative tests for lipids and proteins
6. Study of protein secondary and tertiary structures with the help of models
7. Study of enzyme kinetics – calculation of $V_{\text{max}}$, $K_m$, $K_{\text{cat}}$ values
8. Study effect of temperature, pH and Heavy metals on enzyme activity
9. Estimation of any one vitamin

Suggested Readings

COURSE: MICRO2C04TH
VIROLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Nature and Properties of Viruses (12 Periods)
Introduction: Discovery of viruses, nature and definition of viruses, general properties, concept of viroids, virusoids, satellite viruses and Prions. Theories of viral origin
Structure of Viruses: Capsid symmetry, enveloped and non-enveloped viruses
Isolation, purification and cultivation of viruses
Viral taxonomy: Classification and nomenclature of different groups of viruses

Unit 2 Viral Transmission, Salient features of viral nucleic acids and Replication (20 Periods)
Modes of viral transmission: Persistent, non-persistent, vertical and horizontal
Salient features of viral Nucleic acid: Unusual bases (TMV,T4 phage), overlapping genes (φX174, Hepatitis B virus), alternate splicing (HIV), terminal redundancy (T4 phage), terminal cohesive ends (lambda phage), partial double stranded genomes (Hepatitis B), long terminal repeats (retrovirus), segmented (Influenza virus), and non-segmented genomes (picornavirus), capping and tailing (TMV) Viral multiplication and replication strategies: Interaction of viruses with cellular receptors and entry of viruses. Replication strategies of viruses as per Baltimore classification (φ174, Retroviridae, Vaccinia, Picorna), Assembly, maturation and release of virions

Unit 3 Prevention & control of viral diseases (14 Periods)
Antiviral compounds and their mode of action Interferon and their mode of action General principles of viral vaccination
Viruses and Cancer: Introduction to oncogenic viruses
Types of oncogenic DNA and RNA viruses: Concepts of oncogenes and proto-oncogenes

Unit 4 Bacteriophages and Applications of Virology (14 Periods)
Diversity, classification, one step multiplication curve, lytic and lysogenic phages (lambda phage) concept of early and late proteins, regulation of transcription in lambda phage
Use of viral vectors in cloning and expression, Gene therapy and Phage display
COURSE: MICRO2C04PR
VIROLOGY (PRACTICAL)

Practical

1. Study of the structure of important animal viruses (rhabdo, influenza, paramyxo hepatitis B and retroviruses) using electron micrographs
2. Study of the structure of important plant viruses (caulimo, Gemini, tobacco ring spot, cucumber mosaic and alpha-alpha mosaic viruses) using electron micrographs
4. Isolation and enumeration of bacteriophages (PFU) from water/sewage sample using double agar layer technique
5. Studying isolation and propagation of animal viruses by chick embryo technique
6. Study of cytopathic effects of viruses using photographs
7. Perform local lesion technique for assaying plant viruses.

Suggested Readings

COURSE: MICRO3C05TH
MICROBIAL PHYSIOLOGY AND METABOLISM (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Microbial Growth and Effect of Environment on Microbial Growth (14 Periods)
Definitions of growth, measurement of microbial growth, Batch culture, Continuous culture, generation time and specific growth rate, synchronous growth, diauxic growth curve
Microbial growth in response to environment - Temperature (psychrophiles, mesophiles, thermophiles, extremophiles, thermodurics, psychrotrophs), pH (acidophiles, alkaliphiles), solute and water activity (halophiles, xerophiles, osmophilic), Oxygen (aerobic, anaerobic, microaerophilic, facultative aerobe, facultative anaerobe), barophilic.
Microbial growth in response to nutrition and energy - Autotroph/Phototroph, heterotrophy, Chemolithoautotroph, Chemolithoheterotroph, Chemoheterotroph, Chemolithotroph, photolithoautotroph, Photoorganoheterotroph.

Unit 2 Nutrient uptake, transport and Nitrogen Metabolism (16 Periods)
Passive and facilitated diffusion
Primary and secondary active transport, concept of uniport, symport and antiport Group translocation, Iron uptake
Introduction to biological nitrogen fixation Ammonia assimilation
Assimilatory nitrate reduction, dissimilatory nitrate reduction, denitrification

Unit 3 Chemoheterotrophic Metabolism (20 Periods)
Aerobic Respiration: Concept of aerobic respiration, anaerobic respiration and fermentation
Sugar degradation pathways i.e. EMP, ED, Pentose phosphate pathway
TCA cycle
Electron transport chain; components of respiratory chain, comparison of mitochondrial and bacterial ETC, electron transport phosphorylation, uncouplers and inhibitors
Anaerobic respiration and fermentation: with special reference to dissimilatory nitrate reduction (Denitrification; nitrate/nitrite and nitrate/ammonia respiration; fermentative nitrate reduction)
Fermentation - Alcohol fermentation and Pasteur effect; Lactate fermentation (homofermentative and heterofermentative pathways), concept of linear and branched fermentation pathways

Unit 4 Chemolithotrophic and Phototrophic Metabolism (10 Periods)
Introduction to aerobic and anaerobic chemolithotrophy with an example each. Hydrogen oxidation (definition and reaction) and methanogenesis (definition and reaction)
Introduction to phototrophic metabolism - groups of phototrophic microorganisms, anoxygenic vs. oxygenic photosynthesis with reference to photosynthesis in green bacteria, purple bacteria and cyanobacteria
COURSE: MICRO3C05PR
MICROBIAL PHYSIOLOGY AND METABOLISM (PRACTICAL)

Practical

1. Study and plot the growth curve of *E. coli* by turbidometric and standard plate count methods.
2. Calculations of generation time and specific growth rate of bacteria from the graph plotted with the given data.
3. Effect of temperature on growth of *E. coli*.
4. Effect of pH on growth of *E. coli*.
5. Effect of carbon and nitrogen sources on growth of *E. coli*.
6. Effect of salt on growth of *E. coli*.
7. Demonstration of alcoholic fermentation.
8. Demonstration of the thermal death time and decimal reduction time of *E. coli*.

Suggested Readings

COURSE: MICRO3C06TH
CELL BIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Structure and organization of Cell
(20 Periods)

Cell Organization – Eukaryotic (Plant and animal cells) and prokaryotic Plasma membrane: Structure and transport of small molecules
Cell Wall: Eukaryotic cell wall, Extra cellular matrix and cell matrix interactions, Cell-Cell Interactions - adhesion junctions, tight junctions, gap junctions, and plasmodesmata (only structural aspects)
Mitochondria, chloroplasts and peroxisomes
Cytoskeleton: Structure and organization of actin filaments, association of actin filaments with plasma membrane, cell surface protrusions, intermediate filaments, microtubules
Nucleus : Nuclear envelope, nuclear pore complex and nuclear lamina Chromatin – Molecular organization Nucleolus

Unit 2 Protein Sorting and Transport
(15 Periods)

Ribosomes, Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing and quality control in ER, smooth ER and lipid synthesis, export of proteins and lipids
Golgi Apparatus – Organization, protein glycosylation, protein sorting and export from Golgi Apparatus
Lysosomes

Unit 3 Cell Signalling
(10 Periods)

Signalling molecules and their receptors Function of cell surface receptors
Pathways of intra-cellular receptors – Cyclic AMP pathway, cyclic GMP and MAP kinase pathway

Unit 4 Cell Cycle, Cell Death and Cell Renewal
(15 Periods)

Eukaryotic cell cycle and its regulation, Mitosis and Meiosis
Development of cancer, causes and types
Programmed cell death
Stem cells
Embryonic stem cell, induced pluripotent stem cells
COURSE: MICRO3C06PR  
CELL BIOLOGY (PRACTICAL)  

Practical  

1. Study a representative plant and animal cell by microscopy.  
2. Study of the structure of cell organelles through electron micrographs  
3. Cytochemical staining of DNA – Feulgen  
4. Demonstration of the presence of mitochondria in striated muscle cells/ cheek epithelial cell using vital stain Janus Green B  
5. Study of polyploidy in Onion root tip by colchicine treatment.  
6. Identification and study of cancer cells by photomicrographs.  
7. Study of different stages of Mitosis.  
8. Study of different stages of Meiosis.  

Suggested Readings  

COURSE: MICRO3C07TH
MOLECULAR BIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT 1: DNA structure and replication (15 Periods)

DNA as genetic material, Structure of DNA, Types of DNA, Replication of DNA in prokaryotes and eukaryotes: Semiconservative nature of DNA replication, Bi-directional replication, DNA polymerases, The replication complex: Pre-priming proteins, primosome, replisome, Rolling circle replication, Unique aspects of eukaryotic chromosome replication, Fidelity of replication.

UNIT 2: DNA damage, repair and homologous recombination (10 Periods)


UNIT 3: Transcription and RNA processing (17 Periods)

RNA structure and types of RNA, Transcription in prokaryotes: Prokaryotic RNA polymerase, role of sigma factor, promoter, Initiation, elongation and termination of RNA chains

Transcription in eukaryotes: Eukaryotic RNA polymerases, transcription factors, promoters, enhancers, mechanism of transcription initiation, promoter clearance and elongation RNA splicing and processing: processing of pre-mRNA: 5’ cap formation, polyadenylation, splicing, rRNA and tRNA splicing.

UNIT 4: Regulation of gene expression and translation (18 Periods)

Regulation of gene expression in prokaryotes: Operon concept (inducible and repressible system), Genetic code and its characteristics, Prokaryotic and eukaryotic translation: ribosome structure and assembly, Charging of tRNA, aminoacyl tRNA synthetases, Mechanism of initiation, elongation and termination of polypeptides, Fidelity of translation, Inhibitors of translation, Posttranslational modifications of proteins.
COURSE: MICRO3C07PR
MOLECULAR BIOLOGY (PRACTICAL)

Practical

1. Study of different types of DNA and RNA using micrographs and model / schematic representations
2. Study of semi-conservative replication of DNA through micrographs / schematic representations
3. Isolation of genomic DNA from *E. coli*
4. Estimation of salmon sperm / calf thymus DNA using colorimeter (diphenylamine reagent) or UV spectrophotometer ($A_{260}$ measurement)
5. Estimation of RNA using colorimeter (orcinol reagent) or UV spectrophotometer ($A_{260}$ measurement)
6. Resolution and visualization of DNA by Agarose Gel Electrophoresis.
7. Resolution and visualization of proteins by Polyacrylamide Gel Electrophoresis (SDS-PAGE).

Suggested Readings

COURSE: MICRO4C08TH
MICROBIAL GENETICS (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Genome Organization and Mutations (18 Periods)

Genome organization: E. coli, Saccharomyces, Tetrahymena
Mutations and mutagenesis: Definition and types of Mutations; Physical and chemical mutagens; Molecular basis of mutations; Functional mutants (loss and gain of function mutants); Uses of mutations
Reversion and suppression: True revertants; Intra- and inter-genic suppression; Ames test; Mutator genes

Unit 2 Plasmids and Phage Genetics (18 Periods)

Types of plasmids – F plasmid, R Plasmids, colicinogenic plasmids, Ti plasmids, linear plasmids, yeast- 2 μ plasmid, Plasmid replication and partitioning, Host range, plasmid-incompatibility, plasmid amplification, Regulation of copy number, curing of plasmids
Features of T4 genetics, Genetic basis of lytic versus lysogenic switch of phage lambda

Unit 3 Mechanisms of Genetic Exchange (12 Periods)

Transformation - Discovery, mechanism of natural competence
Conjugation - Discovery, mechanism, Hfr and F’ strains, Interrupted mating technique and time of entry mapping
Transduction - Generalized transduction, specialized transduction, LFT & HFT lysates, Mapping by recombination and co-transduction of markers

Unit 4 Transposable elements (12 Periods)

Prokaryotic transposable elements – Insertion Sequences, composite and non-composite transposons, Replicative and Non replicative transposition, Mu transposon
Eukaryotic transposable elements - Yeast (Ty retrotransposon), Drosophila (P elements), Maize (Ac/Ds)
Uses of transposons and transposition
COURSE: MICRO4C08PR
MICROBIAL GENETICS (PRACTICAL)

Practical

1. Preparation of Master and Replica Plates
2. Study the effect of chemical (HNO\textsubscript{2}) and physical (UV) mutagens on bacterial cells
3. Study survival curve of bacteria after exposure to ultraviolet (UV) light
4. Isolation of Plasmid DNA from \textit{E.coli}
5. Study different conformations of plasmid DNA through Agaraose gel electrophoresis.
6. Demonstration of Bacterial Conjugation
7. Demonstration of bacterial transformation and transduction
8. Demonstration of AMES test

Suggested Readings

6. Russell PJ. (2009). \textit{i} Genetics- A Molecular Approach. 3\textsuperscript{rd} Ed, Benjamin Cummings
COURSE: MICRO4C09TH
IMMUNOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Introduction and cells and organs of immune system (10 Periods)

Concept of Innate and Adaptive immunity; Contributions of following scientists to the development of field of immunology - Edward Jenner, Karl Landsteiner, Robert Koch, Paul Ehrlich, Elie Metchnikoff, Peter Medawar, MacFarlane Burnet, Neils K Jerne, Rodney Porter and Susumu Tonegawa
Structure, Functions and Properties of: Immune Cells – Stem cell, T cell, B cell, NK cell, Macrophage, Neutrophil, Eosinophil, Basophil, Mast cell, Dendritic cell; and Immune Organs – Bone Marrow, Thymus, Lymph Node, Spleen, GALT, MALT, CALT

Unit 2 Antigens and antibodies (10 Periods)

Characteristics of an antigen (Foreignness, Molecular size and Heterogeneity); Haptens; Epitopes (T & B cell epitopes); T-dependent and T-independent antigens; Adjuvants
Structure, Types, Functions and Properties of antibodies; Antigenic determinants on antibodies (Isotypic, allotypic, idiotypic); VDJ rearrangements; Monoclonal and Chimeric antibodies

Unit 3 Generation of Immune Response, Complement System and MHC (20 Periods)

Primary and Secondary Immune Response; Generation of Humoral Immune Response (Plasma and Memory cells); Generation of Cell Mediated Immune Response (Self MHC restriction, T cell activation, Co- stimulatory signals); Killing Mechanisms by CTL and NK cells, Introduction to tolerance
Components of the Complement system; Activation pathways (Classical, Alternative and Lectin pathways); Biological consequences of complement Activation
Organization of MHC locus (Mice & Human); Structure and Functions of MHC I & II molecules; Antigen processing and presentation (Cytosolic and Endocytic pathways)

Unit 4 Immunological Techniques, disorders and tumour immunity (20 Periods)

Types of Autoimmunity and Hypersensitivity with examples; Immunodeficiencies - Animal models (Nude and SCID mice), SCID, DiGeorge syndrome, Chediak- Higashi syndrome, Leukocyte adhesion deficiency, CGD; Types of tumors, tumor Antigens, causes and therapy for cancers.
COURSE: MICRO4C09PR
IMMUNOLOGY (PRACTICAL)

Practical

1. Identification of human blood groups.
2. Perform Total Leukocyte Count of the given blood sample.
3. Perform Differential Leukocyte Count of the given blood sample.
4. Separate serum from the blood sample (demonstration).
5. Perform immunodiffusion by Ouchterlony method.
6. Perform DOT ELISA.
7. Perform immunoelectrophoresis.

Suggested Readings

COURSE: MICRO4C10TH
FOOD AND DAIRY MICROBIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Microbial spoilage of various foods
(10 Periods)

Intrinsic and extrinsic factors that affect growth and survival of microbes in foods, natural flora and source of contamination of foods in general.
Principles, Spoilage of vegetables, fruits, meat, eggs, milk and butter, bread, canned Foods

Unit 2 Principles and methods of food preservation
(20 Periods)

Principles, physical methods of food preservation: temperature (low, high, canning, drying), irradiation, hydrostatic pressure, high voltage pulse, microwave processing and aseptic packaging, chemical methods of food preservation: salt, sugar, organic acids, SO2, nitrite and nitrates, ethylene oxide, antibiotics and bacteriocins

Unit 3 Fermented foods
(10 Periods)

Dairy starter cultures, fermented dairy products: yogurt, acidophilus milk, kumiss, kefir, dahi and cheese, other fermented foods: dosa, sauerkraut, soy sauce and tampeh, Probiotics: Health benefits, types of microorganisms used, probiotic foods available in market.

Unit 4 Food borne diseases, detection methods and Food sanitation
(20 Periods)

Food intoxications: Staphylococcus aureus, Clostridium botulinum and mycotoxins;
Food infections: Bacillus cereus, Vibrio parahaemolyticus, Escherichia coli, Salmonellosis, Shigellosis, Yersinia enterocolitica, Listeria monocytogenes and Campylobacter jejuni
Cultural and rapid detection methods of food borne pathogens in food and introduction to predictive microbiology
HACCP, Indices of food sanitary quality and sanitizers
COURSE: MICRO4C10PR
FOOD AND DAIRY MICROBIOLOGY (PRACTICAL)

Practical

1. MBRT of milk samples and their standard plate count.
2. Alkaline phosphatase test to check the efficiency of pasteurization of milk.
3. Isolation of any food borne bacteria from food products.
4. Isolation of spoilage microorganisms from spoiled vegetables/fruits.
5. Isolation of spoilage microorganisms from bread.

Suggested Readings

COURSE: MICRO5C11TH  
ENVIRONMENTAL MICROBIOLOGY (THEORY)

Semester end examination: 50 marks 
Practical examination: 30 marks 
Internal Assessment: 20 marks

**Note:** The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

---

**Unit 1 Microorganisms and their Habitats**

(14 Periods)

Structure and function of ecosystems
Terrestrial Environment: Soil profile and soil microflora
Aquatic Environment: Microflora of fresh water and marine habitats
Atmosphere: Aeromicroflora and dispersal of microbes
Animal Environment: Microbes in/on human body (Microbiomics) & animal (ruminants) body.
Extreme Habitats: Extremophiles: Microbes thriving at high & low temperatures, pH, high hydrostatic & osmotic pressures, salinity, & low nutrient levels.
Microbial succession in decomposition of plant organic matter

**Unit 2 Microbial Interactions and Bioremediation**

(17 Periods)

Microbe interactions: Mutualism, synergism, commensalism, competition, amensalism, parasitism, predation
Microbe-Plant interaction: Symbiotic and non symbiotic interactions
Microbe-animal interaction: Microbes in ruminants, nematophagus fungi and symbiotic luminescent bacteria
Principles and degradation of common pesticides, organic (hydrocarbons, oil spills) and inorganic (metals) matter, biosurfactants

**Unit 3 Biogeochemical Cycling**

(12 Periods)

Carbon cycle: Microbial degradation of cellulose, hemicelluloses, lignin and chitin
Nitrogen cycle: Nitrogen fixation, ammonification, nitrification, denitrification and nitrate reduction
Phosphorus cycle: Phosphate immobilization and solubilisation
Sulphur cycle: Microbes involved in sulphur cycle
Other elemental cycles: Iron and manganese

**Unit 4 Waste Management and Water Potability**

(17 Periods)

Solid Waste management: Sources and types of solid waste, Methods of solid waste disposal (composting and sanitary landfill)
Liquid waste management: Composition and strength of sewage (BOD and COD), Primary, secondary (oxidation ponds, trickling filter, activated sludge process and septic tank) and tertiary sewage treatment
Treatment and safety of drinking (potable) water, methods to detect potability of water samples: (a) standard qualitative procedure: presumptive test/MPN test, confirmed and completed tests for faecal coliforms (b) Membrane filter technique and (c) Presence/absence tests
COURSE: MICRO5C11PR
ENVIRONMENTAL MICROBIOLOGY (PRACTICAL)

Practical

1. Analysis of soil - pH, moisture content, water holding capacity, percolation, capillary action.
2. Isolation of microbes (bacteria & fungi) from soil (28°C & 45°C).
3. Isolation of microbes (bacteria & fungi) from rhizosphere and rhizoplane.
4. Assessment of microbiological quality of water.
5. Determination of BOD of waste water sample.
6. Study the presence of microbial activity by detecting (qualitatively) enzymes (dehydrogenase, amylase, urease) in soil.
7. Isolation of Rhizobium from root nodules.

Suggested Readings

COURSE: MICRO5C12TH
RECOMBINANT DNA TECHNOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Molecular Cloning- Tools and Strategies (20 Periods)

Introduction: Milestones in genetic engineering and biotechnology
Cloning Tools: Restriction modification systems: Types I, II and III. Mode of action, nomenclature, applications of Type II restriction enzymes in genetic engineering
DNA modifying enzymes and their applications: DNA polymerases. Terminal deoxynucleotidyl transferase, kinases and phosphatases, and DNA ligases
Cloning Vectors: Definition and Properties
Plasmid vectors: pBR and pUC series
Bacteriophage lambda and M13 based vectors
Cosmids, BACs, YACs
Use of linkers and adaptors
Expression vectors: E.coli lac and T7 promoter-based vectors, yeast YIp, YEp and YCp vectors, Baculovirus based vectors, mammalian SV40-based expression vectors

Unit 2 Methods in Molecular Cloning (20 Periods)

Transformation of DNA: Chemical method, Electroporation,
Gene delivery: Microinjection, electroporation, biolistic method (gene gun), liposome and viral-mediated delivery, Agrobacterium - mediated delivery
DNA, RNA and Protein analysis: Agarose gel electrophoresis, Southern - and Northern - blotting techniques, dot blot, DNA microarray analysis, SDS-PAGE and Western blotting.
Construction and Screening of Genomic and cDNA libraries: Genomic and cDNA libraries: Preparation and uses, Screening of libraries: Colony hybridization and colony PCR, Chromosome walking and chromosome jumping

Unit 3 DNA Amplification and DNA sequencing (10 Periods)

PCR: Basics of PCR, RT-PCR, Real-Time PCR
Sanger’s method of DNA Sequencing: traditional and automated sequencing Primer walking and shotgun sequencing

Unit 4 Applications of Recombinant DNA Technology (10 Periods)

Products of recombinant DNA technology: Products of human therapeutic interest - insulin, hGH, antisense molecules. Bt transgenic - cotton, brinjal, Gene therapy, recombinant vaccines, protein engineering and site directed mutagensis
COURSE: MICRO5C12PR
RECOMBINANT DNA TECHNOLOGY (PRACTICAL)

Practical

1. Preparation of competent cells for transformation
2. Demonstration of Bacterial Transformation and calculation of transformation efficiency.
3. Digestion of DNA using restriction enzymes and analysis by agarose gel electrophoresis
4. Ligation of DNA fragments
5. Cloning of DNA insert and Blue white screening of recombinants.
6. Interpretation of sequencing gel electropherograms
7. Designing of primers for DNA amplification
8. Amplification of DNA by PCR
9. Demonstration of Southern blotting

Suggested Reading

COURSE: MICRO6C13TH
MEDICAL MICROBIOLOGY (THEORY)

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Normal microflora of the human body and host pathogen interaction (8 Periods)
Normal microflora of the human body: Importance of normal microflora, normal microflora of skin, throat, gastrointestinal tract, urogenital tract
Host pathogen interaction: Definitions - Infection, Invasion, Pathogen, Pathogenicity, Virulence, Toxigenicity, Carriers and their types, Opportunistic infections, Nosocomial infections. Transmission of infection, Pathophysiologic effects of LPS

Unit 2 Sample collection, transport, diagnosis and Antimicrobial agents (14 Periods)
Collection, transport and culturing of clinical samples, principles of different diagnostic tests (ELISA, Immunofluorescence, Agglutination based tests, Complement fixation, PCR, DNA probes).
Antibacterial agents: Five modes of action with one example each: Inhibitor of nucleic acid synthesis; Inhibitor of cell wall synthesis; Inhibitor of cell membrane function; Inhibitor of protein synthesis; Inhibitor of metabolism
Antifungal agents: Mechanism of action of Amphotericin B, Griseofulvin
Antiviral agents: Mechanism of action of Amantadine, Acyclovir, Azidothymidine
Antibiotic resistance, MDR, XDR, MRSA, NDM-1

Unit 3 Bacterial and Protozoan diseases (20 Periods)
Bacterial diseases: List of diseases of various organ systems and their causative agents. The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control
Respiratory Diseases: Streptococcus pyogenes, Haemophilus influenzae, Mycobacterium tuberculosis
Gastrointestinal Diseases: Escherichia coli, Salmonella typhi, Vibrio cholerae, Helicobacter pylori Others: Staphylococcus aureus, Bacillus anthracis, Clostridium tetani, Treponema pallidum, Clostridium difficile
Protozoan diseases: List of diseases of various organ systems and their causative agents. The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control Malaria, Kala-azar

Unit 4 Viral and Fungal diseases (18 Periods)
Viral diseases: List of diseases of various organ systems and their causative agents. The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control
Polio, Herpes, Hepatitis, Rabies, Dengue, AIDS, Influenza with brief description of swine flu, Ebola, Chikungunya, Japanese Encephalitis
Fungal diseases: Brief description of each of the following types of mycoses and one representative disease to be studied with respect to transmission, symptoms and prevention
Cutaneous mycoses: Tinea pedis (Athlete’s foot) Systemic mycoses: Histoplasmosis Opportunistic mycoses: Candidiasis
COURSE: MICRO6C13PR
MEDICAL MICROBIOLOGY (PRACTICAL)

Practical

1. Identify bacteria (any three of *E. coli*, *Salmonella*, *Pseudomonas*, *Staphylococcus*, *Bacillus*) using laboratory strains on the basis of cultural, morphological and biochemical characteristics: IMViC, TSI, nitrate reduction, urease production and catalase tests
2. Study of composition and use of important differential media for identification of bacteria: EMB Agar, McConkey agar, Mannitol salt agar, Deoxycholate citrate agar, TCBS
3. Study of bacterial flora of skin by swab method
4. Perform antibacterial sensitivity by Kirby-Bauer method
5. Determination of minimal inhibitory concentration (MIC) of an antibiotic.
6. Study symptoms of the diseases with the help of photographs: Polio, anthrax, herpes, chicken pox, HPV warts, AIDS (candidiasis), dermatomycoses (ring worms)
7. Study of various stages of malarial parasite in RBCs using permanent mounts.

Suggested Readings

COURSE: MICRO6C14TH
INDUSTRIAL MICROBIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Introduction and Isolation of industrially important microbial strains (14 Periods)

Brief history and developments in industrial microbiology
Sources of industrially important microbes and methods for their isolation, preservation and maintenance of industrial strains, strain improvement, Crude and synthetic media; molasses, corn-steep liquor, sulphite waste liquor, whey, yeast extract and protein hydrolysates

Unit 2 Types of fermentation processes, bio-reactors and measurement of fermentation parameters (14 Periods)

Types of fermentation processes - Solid-state and liquid-state (stationary and submerged) fermentations; batch, fed-batch (eg. baker’s yeast) and continuous fermentations
Components of a typical bio-reactor, Types of bioreactors-Laboratory, pilot-scale and production fermenters, constantly stirred tank and air-lift fermenters, Measurement and control of fermentation parameters - pH, temperature, dissolved oxygen, foaming and aeration

Unit 3 Microbial production of industrial products (micro-organisms involved, media, fermentation conditions, downstream processing and uses) (18 Periods)

Citric acid, ethanol, penicillin, glutamic acid, Vitamin B12
Enzymes (amylase, protease, lipase)
Wine, beer

Unit 4 Enzyme immobilization and Down-stream processing (14 Periods)

Methods of immobilization, advantages and applications of immobilization, large scale applications of immobilized enzymes (glucose isomerase and penicillin acylase)
Cell disruption, filtration, centrifugation, solvent extraction, precipitation, lyophilization and spray drying

35
Practical

1. Study different parts of fermenter
2. Microbial fermentations for the production and estimation (qualitative and quantitative) of:
   (a) Enzymes: Amylase and Protease
   (b) Amino acid: Glutamic acid
   (c) Organic acid: Citric acid
   (d) Alcohol: Ethanol
3. A visit to any educational institute/industry to see an industrial fermenter, and other downstream processing operations.

Suggested Readings

B.Sc. (HONOURS) MICROBIOLOGY
(CBCS STRUCTURE)
DISCIPLINE SPECIFIC ELECTIVE
COURSE: MICRO5DSE01TH
BIOINFORMATICS (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Introduction to Computer Fundamentals and Bioinformatics and Biological Databases (20 Periods)

RDBMS - Definition of relational database
Mode of data transfer (FTP, SFTP, SCP), advantage of encrypted data transfer

Biological databases - nucleic acid, genome, protein sequence and structure, gene expression databases, Database of metabolic pathways, Mode of data storage - File formats - FASTA, Genbank and Uniprot, Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot, PDB

Unit 2 Sequence Alignments, Phylogeny and Phylogenetic trees (16 Periods)

Local and Global Sequence alignment, pairwise and multiple sequence alignment.
Scoring an alignment, scoring matrices, PAM & BLOSUM series of matrices
Types of phylogenetic trees, Different approaches of phylogenetic tree construction - UPGMA, Neighbour joining, Maximum Parsimony, Maximum likelihood

Unit 3 Genome organization and analysis (12 Periods)

Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes
Genome, transcriptome, proteome, 2-D gel electrophoresis, Maldi Toff spectroscopy Major features of completed genomes: E.coli, S.cerevisiae, Arabidopsis, Human

Unit 4 Protein Structure Predictions (12 Periods)

Hierarchy of protein structure - primary, secondary and tertiary structures, modeling
Structural Classes, Motifs, Folds and Domains
Protein structure prediction in presence and absence of structure template
Energy minimizations and evaluation by Ramachandran plot
Protein structure and rational drug design
COURSE: MICRO5DSE01PR
BIOINFORMATICS (PRACTICAL)

PRACTICAL

1. Introduction to different operating systems - UNIX, LINUX and Windows
2. Introduction to bioinformatics databases (any three): NCBI/PDB/DDBJ, Uniprot, PDB
3. Sequence retrieval using BLAST
4. Sequence alignment & phylogenetic analysis using clustalW & phylip
5. Picking out a given gene from genomes using Genscan or other softwares (promoter region identification, repeat in genome, ORF prediction). Gene finding tools (Glimmer, GENSCAN), Primer designing, Genscan/Genetool
6. Protein structure prediction: primary structure analysis, secondary structure prediction using psipred, homology modeling using Swissmodel. Molecular visualization using jmol, Protein structure model evaluation (PROCHECK)
7. Prediction of different features of a functional gene

Suggested Readings

COURSE: MICRO5DSE02TH
MICROBIAL BIOTECHNOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Microbial Biotechnology, RNAi and its Applications (16 Periods)
Microbial biotechnology: Scope and its applications in human therapeutics, agriculture (Biofertilizers, PGPR, Mycorrhizae), environmental, and food technology
Use of prokaryotic and eukaryotic microorganisms in biotechnological applications
Genetically engineered microbes for industrial application: Bacteria and yeast
RNAi: RNAi and its applications in silencing genes, drug resistance, therapeutics and host pathogen interactions

Unit 2 Therapeutic and Industrial Biotechnology (10 Periods)
Recombinant microbial production processes in pharmaceutical industries - Streptokinase, recombinant vaccines (Hepatitis B vaccine)
Microbial polysaccharides and polyesters, Microbial production of bio-pesticides, bioplastics Microbial biosensors

Unit 3 Applications of Microbes in Biotransformations and Microbial Products and their Recovery (20 Periods)
Microbial based transformation of steroids and sterols
Bio-catalytic processes and their industrial applications: Production of high fructose syrup and production of cocoa butter substitute
Microbial product purification: filtration, ion exchange & affinity chromatography techniques Immobilization methods and their application: Whole cell immobilization

Unit 4 Microbes for Bio-energy and Environment and IPR (14 Periods)
Bio-ethanol and bio-diesel production: commercial production from lignocellulosic waste and algal biomass,
Biogas production: Methane and hydrogen production using microbial culture. Microorganisms in bioremediation:
Degradation of xenobiotics, mineral recovery, removal of heavy metals from aqueous effluents
Intellectual Property Rights: Patents, Copyrights, Trademarks
COURSE: MICRO5DSE02PR  
MICROBIAL BIOTECHNOLOGY (PRACTICAL)

Practical

1. Study yeast cell immobilization in calcium alginate gels
2. Study enzyme immobilization by sodium alginate method
3. Pigment production from fungi (Trichoderma / Aspergillus / Penicillium)
4. Isolation of xylanase or lipase producing bacteria
5. Study of algal Single Cell Proteins

Suggested Readings

COURSE: MICRO5DSE03TH
ADVANCES IN MICROBIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Evolution of Microbial Genomes (15 Periods)
Salient features of sequenced microbial genomes, core genome pool, flexible genome pool and concept of pangenome, Horizontal gene transfer (HGT), Evolution of bacterial virulence - Genomic islands, Pathogenicity islands (PAI) and their characteristics

Unit 2 Metagenomics (15 Periods)
Brief history and development of metagenomics, Understanding bacterial diversity using metagenomics approach, Prospecting genes of biotechnological importance using metagenomics Basic knowledge of viral metagenome, metatranscriptomics, metaproteomics and metabolomics.

Unit 3 Molecular Basis of Host-Microbe Interactions (15 Periods)
Epiphytic fitness and its mechanism in plant pathogens, Hypersensitive response (HR) to plant pathogens and its mechanism, Type three secretion systems (TTSS) of plant and animal pathogens, Biofilms: types of microorganisms, molecular aspects and significance in environment, health care, virulence and antimicrobial resistance

Unit 4 Systems and Synthetic Biology (15 Periods)
Networking in biological systems, Quorum sensing in bacteria, Co-ordinated regulation of bacterial virulence factors, Basics of synthesis of poliovirus in laboratory, Future implications of synthetic biology with respect to bacteria and viruses
COURSE: MICRO5DSE03PR
ADVANCES IN MICROBIOLOGY (PRACTICAL)

Practical

1. Extraction of metagenomic DNA from soil
2. Understand the impediments in extracting metagenomic DNA from soil
3. PCR amplification of metagenomic DNA using universal 16s ribosomal gene primers
4. Case study to understand how the poliovirus genome was synthesized in the laboratory
5. Case study to understand how networking of metabolic pathways in bacteria takes place

Suggested Readings

1. Fraser CM, Read TD and Nelson KE. Microbial Genomes, 2004, Humana Press
COURSE: MICRO5DSE04TH
PLANT PATHOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Introduction, History of plant pathology, Stages in development of a disease and Plant disease epidemiology (12 Periods)


Stages in development of a disease: Infection, invasion, colonization, dissemination of pathogens and perennation.

Plant disease epidemiology: Concepts of monocyclic, polycyclic and polyetic diseases, disease triangle & disease pyramid, forecasting of plant diseases and its relevance in Indian context.

Unit 2 Host Pathogen Interaction (19 Periods)

A. Microbial Pathogenicity

Virulence factors of pathogens: enzymes, toxins (host specific and non specific) growth regulators, virulence factors in viruses (replicase, coat protein, silencing suppressors) in disease development. Effects of pathogens on host physiological processes (photosynthesis, respiration, cell membrane permeability, translocation of water and nutrients, plant growth and reproduction).

B. Genetics of Plant Diseases

Concept of resistance (R) gene and avirulence (avr) gene; gene for gene hypothesis, types of plant resistance: true resistance– horizontal & vertical, apparent resistance.

C. Defense Mechanisms in Plants

Concepts of constitutive defense mechanisms in plants, inducible structural defenses (histological-cork layer, abscession layer, tyloses, gums), inducible biochemical defenses [hypersensitive response (HR), systemic acquired resistance (SAR), phytoalexins, pathogenesis related (PR) proteins, plantibodies, phenolics, quinones, oxidative bursts].

Unit 3 Control of Plant Diseases (10 Periods)

Principles & practices involved in the management of plant diseases by different methods, viz. regulatory - quarantine, crop certification, avoidance of pathogen, use of pathogen free propagative material cultural - host eradication, crop rotation, sanitation, polyethylene traps and mulches chemical - protectants and systemic fungicides, antibiotics, resistance of pathogens to chemicals, biological - suppressive soils, antagonistic microbes-bacteria and fungi, trap plants genetic engineering of disease resistant plants- with plant derived genes and pathogen derived genes
Unit 4 Specific Plant diseases

Study of some important plant diseases giving emphasis on its etiological agent, symptoms, epidemiology and control

A. Important diseases caused by fungi
   - White rust of crucifers - *Albugo candida*
   - Downy mildew of onion - *Peronospora destructor*
   - Late blight of potato - *Phytophthora infestans*
   - Powdery mildew of wheat - *Erysiphe graminis*
   - Ergot of rye - *Claviceps purpurea*
   - Black stem rust of wheat - *Puccinia graminis tritici*
   - Loose smut of wheat - *Ustilago nuda*
   - Wilt of tomato - *Fusarium oxysporum* f.sp. *lycopersici*
   - Red rot of sugarcane - *Colletotrichum falcatum*
   - Early blight of potato - *Alternaria solani*

B. Important diseases caused by phytopathogenic bacteria: Angular leaf spot of cotton, bacterial leaf blight of rice, crown galls, bacterial cankers of citrus

C. Important diseases caused by phytoplasmas: Aster yellow, citrus stubborn

D. Important diseases caused by viruses: Papaya ring spot, tomato yellow leaf curl, banana bunchy top, rice tungro

E. Important diseases caused by viroids: Potato spindle tuber, coconut cadang cadang
COURSE: MICRO5DSE04PR
PLANT PATHOLOGY (PRACTICAL)

Practical

1. Demonstration of Koch’s postulates in fungal, bacterial and viral plant pathogens.
2. Study of important diseases of crop plants by cutting sections of infected plant material - *Albugo, Puccinia, Ustilago, Fusarium, Colletotrichum*.

Suggested Readings

COURSE: MICRO5DSE05TH
BIOMATHEMATICS AND BIOSTATISTICS (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Biomathematics (15 Periods)
Sets. Functions and their graphs: polynomial, sine, cosine, exponential and logarithmic functions. Motivation and illustration for these functions through projectile motion, simple pendulum, biological rhythms, cell division, muscular fibres etc.
Simple observations about these functions like increasing, decreasing and, periodicity.
Sequences to be introduced through the examples arising in Science beginning with finite sequences, followed by concepts of recursion and difference equations. For instance, the Fibonacci sequence arising from branching habit of trees and breeding habit of rabbits. Intuitive idea of algebraic relationships and convergence.
Infinite Geometric Series. Series formulas for ex, log (1+x), sin x, cos x. Step function. Intuitive idea of discontinuity, continuity and limits.

Unit 2 (15 Periods)
Differentiation. Conception to be motivated through simple concrete examples as given above from Biological and Physical Sciences. Use of methods of differentiation like Chain rule, Product rule and Quotient rule. Second order derivatives of above functions.
Integration as reverse process of differentiation.
Integrals of the functions introduced above. Differential Equations of first order, Linear Differential Equations.
Points in plane and space and coordinate form. Examples of matrices arising in Biological Sciences and Biological networks. Sum and Produce of matrices upto order 3.

Unit 3 Biostatistics (15 Periods)
Measures of central tendency, Measures of dispersion; skewness, kurtosis; Elementary Probability and basic laws; Discrete and Continuous Random variable, Mathematical Expectation; Curve Fitting; Correlation and Regression. Emphasis on examples from Biological Sciences;
Mean and Variance of Discrete and Continuous Distributions namely Binomial, Poisson, Geometric, Weibull, Logistic and Normal distribution. Fitting of Distributions;

Unit 4 (15 Periods)
Sampling Distributions, Standard Error, Testing of Hypothesis, Level of Significance and Degree of Freedom;
Large Sample Test based on Normal Distribution, Small sample test based on t-test, Z-test and F test; Confidence Interval; Distribution-free test - Chi-square test;
Basic introduction to Multivariate statistics, etc.
COURSE: MICRO5DSE05PR
BIOMATHEMATICS AND BIOSTATISTICS (PRACTICAL)

Practical

1. Word Problems based on Differential Equations
2. Mean, Median, Mode from grouped and ungrouped Data set
3. Standard Deviation and Coefficient of Variation
4. Skewness and Kurtosis
5. Curve fitting
6. Correlation
7. Regression
8. Finding area under the curve using normal probability
9. Testing of Hypothesis- Normal Distribution, t-test and Chi-Square-test
10. Confidence Interval

Suggested Readings

COURSE: MICRO6DSE06TH
INHERITANCE BIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Introduction to Genetics and Characteristics of Chromosomes (20 Periods)

Historical developments
Model organisms in genetic analyses and experimentation: Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, Caenorhabditis elegans Drosophila melanogaster, Arabidopsis thaliana

Characteristics of Chromosomes: Structural organization of chromosomes - centromeres, telomeres and repetitive DNA, Packaging DNA molecules into chromosomes, Concept of euchromatin and heterochromatin, Normal and abnormal karyotypes of human chromosomes, Chromosome banding, Giant chromosomes: Polytene and lambrush chromosomes, Variations in chromosome structure: Deletion, duplication, inversion and translocation, Variation in chromosomal number and structural abnormalities - Klinefelter syndrome, Turner syndrome, Down syndrome

Unit 2 Mendelian Principles and Linkage (20 Periods)

Mendel’s Laws: Dominance, segregation, independent assortment, deviation from Mendelian inheritance, Rediscovery of Mendel’s principles, Chromosome theory of inheritance: Allele, multiple alleles, pseudoallele, complementation tests, Extensions of Mendelian genetics: Allelic interactions, concept of dominance, recessiveness, Incomplete dominance and co-dominance, Multiple alleles, Epistasis, penetrance and expressivity

Linkage and Crossing over: Linkage and recombination of genes, Cytological basis of crossing over, Crossing over at four-strand stage, Molecular mechanism of crossing over, mapping

Unit 3 Extra-Chromosomal Inheritance (10 Periods)

Rules of extra nuclear inheritance, Organelle heredity - Chloroplast mutations in Chlamydomonas, mitochondrial, mutations in Saccharomyces, Maternal effects – Shell coiling in Limnea peregra Infectious heredity - Kappa particles in Paramecium

Unit 4 Recombination and Human genetics (10 Periods)

Homologous and non-homologous recombination, including transposition, site-specific recombination.

Human genetics: Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders. Polygenic inheritance, heritability and its measurements, QTL mapping
COURSE: MICRO6DSE06PR
INHERITANCE BIOLOGY (PRACTICAL)

Practical

1. Mendelian deviations in dihybrid crosses
2. Studying Barr Body with the temporary mount of human cheek cells
3. Studying *Rhoeo* translocation with the help of photographs
4. Karyotyping with the help of photographs
5. Chi-Square Analysis
6. Study of polytene chromosomes using temporary mounts of salivary glands of *Chiromonas* / *Drosophila* larvae
7. Study of pedigree analysis
8. Analysis of a representative quantitative trait

Suggested Readings

COURSE: MICRO6DSE07TH
MICROBES IN SUSTAINABLE AGRICULTURE AND DEVELOPMENT (THEORY)
Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Soil Microbiology (15 Periods)
Soil as Microbial Habitat, Soil profile and properties, Soil formation, Diversity and distribution of microorganisms in soil
Mineralization of cellulose, hemicelluloses, lignocelluloses, lignin and humus, phosphate, nitrate, silica, potassium

Unit 2 Microbial Activity in Soil, Green House Gases and Soil Borne Plant Pathogens (14 Periods)
Carbon dioxide, methane, nitrous oxide, nitric oxide – production and control
Microbial Control of Soil Borne Plant Pathogens: Biocontrol mechanisms and ways, Microorganisms used as biocontrol agents against Microbial plant pathogens, Insects, Weeds

Unit 3 Biofertilization, Phytostimulation, Bioinsecticides (15 Periods)
Plant growth promoting bacteria, biofertilizers – symbiotic (Bradyrhizobium, Rhizobium, Frankia), Non Symbiotic (Azospirillum, Azotobacter, Mycorrhizae, MHBs, Phosphate solubilizers, algae), Novel combination of microbes as biofertilizers, PGPRs

Unit 4 Secondary Agriculture Biotechnology and GM crops (16 Periods)
Biotech feed, Silage, Biomanure, biogas, biofuels – advantages and processing parameters
GM crops: Advantages, social and environmental aspects, Bt crops, golden rice, transgenic animals.
COURSE: MICRO6DSE07PR
MICROBES IN SUSTAINABLE AGRICULTURE AND DEVELOPMENT (PRACTICAL)

Practical

1. Study soil profile
2. Study microflora of different types of soils
3. Rhizobium as soil inoculants characteristics and field application
4. Azotobacter as soil inoculants characteristics and field application
5. Design and functioning of a biogas plant
6. Isolation of cellulose degrading organisms

Suggested Readings

COURSE: MICRO6DSE08TH
BIOSAFETY AND INTELLECTUAL PROPERTY RIGHTS (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1  (20 Periods)
Biosafety: Introduction; biosafety issues in biotechnology; Biological Safety Cabinets & their types; Primary Containment for Biohazards; Biosafety Levels of Specific Microorganisms

Biosafety Guidelines: Biosafety guidelines and regulations (National and International); GMOs/LMOs- Concerns and Challenges; Role of Institutional Biosafety Committees (IBSC), RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of International Agreements – AERB/RSD/RES guidelines for using radioisotopes in laboratories and precautions Cartagena Protocol.

Unit 2  (14 Periods)

Unit 3  (12 Periods)

Unit 4  (14 Periods)
Agreements and Treaties: GATT, TRIPS Agreements; Role of Madrid Agreement; Hague Agreement; WIPO Treaties; Budapest Treaty on international recognition of the deposit of microorganisms; UPOV & BRENE conventions; Patent Co-operation Treaty (PCT); Indian Patent Act 1970 & recent amendments.
COURSE: MICRO6DSE08PR
BIOSAFETY AND INTELLECTUAL PROPERTY RIGHTS (Practical)

Practical

1. Study of components and design of a BSL-III laboratory
2. Filing applications for approval from biosafety committee
3. Filing primary applications for patents
4. Study of steps of a patenting process
5. A case study

Suggested Readings

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Microscopy (12 Periods)

Brightfield and darkfield microscopy, Fluorescence Microscopy, Phase contrast Microscopy, Confocal Microscopy, Electron Microscopy (Scanning and Transmission Electron Microscopy) and Micrometry.

Unit 2 Chromatography (14 Periods)

Principles and applications of paper chromatography (including Descending and 2-D), Thin layer chromatography. Column packing and fraction collection. Gel filtration chromatography, ion-exchange chromatography and affinity chromatography, GLC, HPLC.

Unit 3 Electrophoresis (14 Periods)

Principle and applications of native polyacrylamide gel electrophoresis, SDS- polyacrylamide gelelectrophoresis, 2D gel electrophoresis, Isoelectric focusing, Zymogram preparation and Agarose gelelectrophoresis.

Unit 4 Spectrophotometry and Centrifugation (20 Periods)

Principle and use of study of absorption spectra of biomolecules. Analysis of biomolecules using UV and visible range. Colorimetry and turbidometry. Preparative and analytical centrifugation, fixed angle and swinging bucket rotors. RCF and sedimentation coefficient, differential centrifugation, density gradient centrifugation and ultracentrifugation.
COURSE: MICRO6DSE09PR
INSTRUMENTATION AND BIOTECHNIQUES (PRACTICAL)

Practical

1. Study of fluorescent micrographs to visualize bacterial cells.
2. Ray diagrams of phase contrast microscopy and Electron microscopy.
4. Demonstration of column packing in any form of column chromatography.
5. Separation of protein mixtures by any form of chromatography.
7. Determination of $\lambda_{max}$ for an unknown sample and calculation of extinction coefficient.
8. Separation of components of a given mixture using a laboratory scale centrifuge.
9. Understanding density gradient centrifugation with the help of pictures.

Suggested Readings

   Hill.
COURSE: MICRO6DSE10TH
BASICS OF FORENSIC SCIENCE (Theory)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 (15 Periods)
Introduction and principles of forensic science, forensic science laboratory and its organization and service, tools and techniques in forensic science, branches of forensic science, causes of crime, role of modus operandi in criminal investigation. Classification of injuries and their medico-legal aspects, method of assessing various types of deaths.

Unit 2 (15 Periods)
Classification of fire arms and explosives, introduction to internal, external and terminal ballistics. Chemical evidence for explosives. General and individual characteristics of handwriting, examination and comparison of handwritings and analysis of ink various samples.

Unit 3 (15 Periods)
Role of the toxicologist, significance of toxicological findings, Fundamental principles of fingerprinting, classification of fingerprints, development of finger print as science for personal identification,

Unit 4 (15 Periods)
COURSE: MICRO6DSE10PR
BASICS OF FORENSIC SCIENCE (Practical)

Practica

1. Documentation of crime scene by photography, sketching and field notes.
2. a. Simulation of crime scene for training.
   b. To lift footprints from crime scene.
3. Case studies to depict different types of injuries and death.
4. Separation of nitro compounds (explosives)/ ink samples by thin layer chromatography.
5. Investigate method for developing fingerprints by Iodine crystals.
6. PCR amplification on target DNA and DNA profiling.
7. E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery, Recovering deleted evidences, Password Cracking

Suggested Readings

B.Sc. (HONOURS) MICROBIOLOGY
(CBCS STRUCTURE)
GENERIC ELECTIVE
COURSE: MICRO1GE01TH
BIOPROCESS TECHNOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT 1 (10 Periods)


UNIT 2 (20 Periods)

Design of bioprocess vessels- Significance of Impeller, Baffles, Sparger; Types of culture/production vessels- Airlift; Cyclone Column; Packed Tower and their application in production processes. Principles of upstream processing – Media preparation, Inocula development and sterilization.

UNIT 3 (15 Periods)

Introduction to oxygen requirement in bioprocess; mass transfer coefficient; factors affecting KLa. Bioprocess measurement and control system with special reference to computer aided process control.

UNIT 4 (15 Periods)

Introduction to downstream processing, product recovery and purification. Effluent treatment. Microbial production of ethanol, amylase, lactic acid and Single Cell Proteins.
COURSE: MICRO1GE01PR
BIOPROCESS TECHNOLOGY (PRACTICAL)

Practical

1. Bacterial growth curve.
2. Calculation of thermal death point (TDP) of a microbial sample.
3. Production and analysis of ethanol.
4. Production and analysis of amylase.
5. Production and analysis of lactic acid.
6. Isolation of industrially important microorganism from natural resource.

SUGGESTED READING

COURSE: MICRO2GE02TH
PARASITOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT 1 (10 Periods)
Protozoology: Brief history of protozoology, ecology and host-parasite relationship (parasitism and symbiosis): Basis of host cell parasite interactions with special reference to autoimmune response and pathogenesis of protozoan diseases in general, zoonotic potentiality of protozoa.

UNIT 2 (20 Periods)
Amoeba: Non-pathogenic and pathogenic amoeba. Morphology and life cycle of amoeba pathology. Symptomatology Laboratory Diagnosis of

- Giardia (G. Limblia)
- Flagellates of genital tract Trichomonas (T. tenax, T. hominis, T. vaginalis)

UNIT 3 (15 Periods)

UNIT 4 (15 Periods)
Medical entomology: Role of arthropods in the spread and causation of parasite diseases. Classification and general characteristics of important insects vectors. Mode of transmission of various diseases.
COURSE: MICRO2GE02PR
PARASITOLOGY (PRACTICAL)

Practical

1. To perform microscopic examination of cyst like *E.histolytica*, *E.coli*, *Giardia*.
2. Intestinalis in the given stool sample.
3. To observe the given stool sample & identify helminthic ova.
4. To perform microscopic examination for the given urine sample.
5. To perform microscopic examination for the given stool sample.
6. Examination of stool sample using concentration technique for ova.
7. Examination of blood film for Malaria, Filaria, Leishman

Suggested Readings

1. Parasitology (K.D Chatterjee)
2. Medical Parasitology (Gillespie and Hawkey)
3. Modern Parasitology (F.E.G Cox)
4. Essential of Parasitology (Schimidt).
COURSE: MICRO3GE03TH
MYCOLOGY AND PHYCOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover the entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT 1
(15 Periods)

An introduction to algae:
   a) The position of algae in continuation of life
   b) General classification
   c) Comparative morphology and reproduction

Phycoviruses: Structure and multiplication of phyco Viruses(Mainly Cyanophages)

Physiological Aspects of Ecology: Fresh water algae, soil algae, marine algae (seaweeds), aerial algae and algae as symbionts.

Nitrogen Fixation: Site of nitrogen fixation, heterocyst, ultrastructure of heterocyst, heterocyst in nitrogen fixation in Cyanobacteria, nitrogenase and biochemistry of nitrogen.

Nitrogen assimilation, amino acids and proteins, inorganic phosphorous uptake and metabolism. Sulphur, halogen, major cations and inorganic micronutrients.

UNIT 2
(15 Periods)

Photosynthesis, The physical nature of light, pigments in systems of photo synthesis, the photosynthesis apparatus, path electron in photosynthesis, factors affecting the rate of photosynthesis and carbon fixation. Respiration, Photorespiration fermentation, substrate assimilation and heterotrophy.

Algae as bio fertilizer, algae as food including single cell protein. Source of agar agar, alginate, diatomic and iodine etc. Antibiotics from algae, Role of algae in indicating pollution (water pollution) Algal photosynthesis in sewerage treatment.

UNIT 3
(20 Periods)

General characteristics of molds, types of reproduction, spore types

Ecophysiology: Lichens, their associations and applications syngamy horones, synthetic fungicides, fungal toxins, absorption of nutrients, transport mechanism, chemical and physical environment for growth. Fungal attack mechanisms.

Mycotechnology: Fungi in the production of antibiotics, organic acids, vitamins and single cell protein, alcohols, oriental food fermentation and solid substrate fermentations, mushrooms and cultivation of mushrooms.

Fungal genetics and Mycoviruses: General information about genetics of fungi, various mycoviruses, their nature and multiplication.

UNIT 4
(10 Periods)

Medical Mycology: Fungal infection of skin, nail and hair, subcutaneous mycoses systemic mycoses, opportunistic fungal infections, Mushroom food poisoning. Plant Pathology: Fungi in relation to plant diseases.
COURSE: MICRO3GE03PR
MYCOLOGY AND PHYCOLOGY (PRACTICAL)

Practical

1. Identification of Pathogenic and non Pathogenic Fungi.
2. Preparation of media for isolating Fungi.
3. To find Heterocyst frequency.
4. Quantification of total Chlorophyll by cold exaction method.
5. Quantification of total Chlorophyll by warm exaction method.
6. Quantification of carotenoids in given algal sample using organic solvents.
7. To examine the amylolytic activity of Fungi.
8. To prepare media for isolating non symbiotic-nitrogen fixing bacteria ammonifying bacteria, nitrifying bacteria.

Suggested Readings

2. Introduction to Fungi by Webster (1992)
7. Ectomycorrhizal Fungi Caiey J.W.C 1999
8. The Mycota Esserk
COURSE: MICRO4GE04TH
MOLECULAR DIAGNOSTICS (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT 1
(15 Periods)

Enzyme Immunoassays:
Applications of enzyme immunoassays in diagnostic microbiology

UNIT 2
(15 Periods)

Molecular methods in clinical microbiology:
Applications of PCR, RFLP, Nuclear hybridization methods, Single nucleotide polymorphism and plasmid finger printing in clinical microbiology
Laboratory tests in chemotherapy:

UNIT 3
(18 Periods)


UNIT 4
(12 Periods)

GLC, HPLC, Electron microscopy, flowcytometry and cell sorting. Transgenic animals.
PRACTICALS

(Wherever wet lab experiments are not possible the principles and concepts can be demonstrated through any other material or medium including videos/virtual labs etc.)

1. Perform/demonstrate RFLP and its analysis
2. Kirby-Bauer method (disc-diffusion method) to study antibiotic sensitivity of a bacterial culture
3. A kit-based detection of a microbial infection (Widal test)
4. Study of Electron micrographs (any four).
5. Perform any one immuno diagnostic test (Typhoid, Malaria, Dengue)

Suggested Readings

1. Practical Biochemistry, Principles and Techniques, Keith Wilson and John Walker
2. Bioinstrumentation, Webster
3. Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes, J.F. Van Impe, Kluwer Academic
9. Microscopic Techniques in Biotechnology, Michael Hoppert
COURSE: MICRO4GE05TH
AGRICULTURAL MICROBIOLOGY (THEORY)

Semester end examination: 50 marks
Practical examination: 30 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing ten (10) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT 1
(15 Periods)

Enzyme Immunoassays:
Applications of enzyme immunoassays in diagnostic microbiology

UNIT 2
(15 Periods)

Molecular methods in clinical microbiology:
Applications of PCR, RFLP, Nuclear hybridization methods, Single nucleotide polymorphism and plasmid finger printing in clinical microbiology
Laboratory tests in chemotherapy:

UNIT 3
(18 Periods)


UNIT 4
(12 Periods)

GLC, HPLC, Electron microscopy, flowcytometry and cell sorting. Transgenic animals.
COURSE: MICRO4GE05PR  
AGRICULTURAL MICROBIOLOGY (PRACTICALS)

Practicals

1. To detect the occurrence of Arthropods in soil.
2. Isolation of nematodes from the soil sample.
3. To perform the examination of soil protozoa.
4. Examination and estimation of soil algae by the most probable number methods.
5. Qualitative estimation of soil microflora by the buried slide method.
6. Enumeration of soil bacteria by direct microscopic account.
7. Direct count of soil microorganism by the haemocytometer method.
8. Bacteria and Actinomycetes as estimated by the dilution plate method.
9. Soil fungi by dilution plating.
10. Examination of the rhizosphere.
12. Cellulose decomposition in soil.

Suggested Readings

1. A practical manual of soil microbiology laboratory method, soils Bulletin
ABILITY
ENHANCEMENT
COMPULSORY
COURSE
Course: ENGL103
ENGLISH COMMUNICATION (Theory)
Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions of 2 marks each that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT I (20 Periods)

Introduction to environmental studies & ecosystems: Multidisciplinary nature of environmental studies: Scope and importance; What is an ecosystem? The structure and function of ecosystem, Energy flow in an ecosystem, food chains, food webs and ecological succession, forest ecosystem, grassland ecosystem, desert ecosystem, aquatic ecosystems; Levels of biological diversity such as genetic, species and ecosystem diversity; biogeography zones of India, biodiversity patterns and global biodiversity hot spots, India as a mega-biodiversity nation, endangered and endemic species of India, threats to biodiversity, habitat loss, poaching of wildlife, man-wildlife conflicts, biological invasions, conservation of biodiversity, in-situ and ex-situ conservation of biodiversity, concept of sustainability and sustainable development.

UNIT II (15 Periods)

Natural resources & its management and conservation: Land resources and land use change: Land degradation, soil erosion and desertification; Deforestation: Causes and impacts due to mining, dam building on environment, forests, biodiversity and tribal populations; Water: Use and over-exploitation of surface and ground water, floods, droughts, conflicts over water (international & inter-state); Energy resources: Renewable and non renewable energy sources, use of alternate energy sources and growing energy needs.

UNIT III (15 Periods)


UNIT IV (10 Periods)

Environment & social issues: Human population growth: Impacts on environment, human health and welfare; Resettlement and rehabilitation of project affected persons; case studies; Disaster management: floods, earthquake, cyclones and landslides; Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan; Environmental ethics: Role of Indian and other religions and cultures in environmental conservation; environmental communication and public awareness.
Suggested Readings:

B.Sc. (HONOURS) MICROBIOLOGY (CBCS STRUCTURE) SKILL ENHANCEMENT COURSES
COURSE: MICRO3SEC01
MICROBIAL QUALITY CONTROL IN FOOD AND PHARMACEUTICAL INDUSTRIES

Semester end examination: 80 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions of 2 marks each that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Microbiological Laboratory and Safe Practices (12 Periods)

Good laboratory practices - Good laboratory practices, Good microbiological practices
Biosafety cabinets – Working of biosafety cabinets, using protective clothing, specification for BSL1, BSL-2, BSL-3. Discarding biohazardous waste – Methodology of Disinfection, Autoclaving & Incineration

Unit 2 Determining Microbes in Food / Pharmaceutical Samples (18 Periods)

Culture and microscopic methods - Standard plate count, Most probable numbers, Direct microscopic counts, Biochemical and immunological methods: Limulus lysate test for endotoxin, gel diffusion, sterility testing for pharmaceutical products
Molecular methods - Nucleic acid probes, PCR based detection, biosensors.

Unit 3 Pathogenic Microorganisms of Importance in Food & Water (18 Periods)

Enrichment culture technique, Detection of specific microorganisms - on XLD agar, Salmonella Shigella Agar, Manitol salt agar, EMB agar, McConkey Agar, Saboraud Agar
Ascertaining microbial quality of milk by MBRT, Rapid detection methods of microbiological quality of milk at milk collection centres (COB, 10 min Resazurin assay)

Unit 4 HACCP for Food Safety and Microbial Standards (12 Periods)

Hazard analysis of critical control point (HACCP) - Principles, flow diagrams, limitations
Microbial Standards for Different Foods and Water – BIS standards for common foods and drinking water

Suggested Readings

COURSE: MICRO3SEC02
MICROBIAL DIAGNOSIS IN HEALTH CLINICS

Semester end examination: 80 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions of 2 marks each that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Importance of Diagnosis of Diseases and Collection of Clinical Samples  (18 Periods)
Bacterial, Viral, Fungal and Protozoan Diseases of various human body systems, Disease associated clinical samples for diagnosis.
Collection of Clinical Samples: How to collect clinical samples (oral cavity, throat, skin, Blood, CSF, urine and faeces) and precautions required. Method of transport of clinical samples to laboratory and storage.

Unit 2 Direct Microscopic Examination and Culture.  (18 Periods)
Examination of sample by staining - Gram stain, Ziehl-Neelson staining for tuberculosis, Giemsa-stained thin blood film for malaria
Preparation and use of culture media - Blood agar, Chocolate agar, Lowenstein-Jensen medium, MacConkey agar, Distinct colony properties of various bacterial pathogens.

Unit 3 Serology, Molecular Methods and Kits for Rapid Detection of Pathogens  (14 Periods)
Serological Methods - Agglutination, ELISA, immunofluorescence, Nucleic acid based methods - PCR, Nucleic acid probes
Kits for Rapid Detection of Pathogens: Typhoid, Dengue and HIV, Swine flu

Unit 4 Testing for Antibiotic Sensitivity in Bacteria  (10 Periods)
Importance. Determination of resistance/sensitivity of bacteria using disc diffusion method, Determination of minimal inhibitory concentration (MIC) of an antibiotic by serial double dilution method

Suggested Readings

COURSE: MICRO3SEC03
BIOFERTILIZERS AND BIOPESTICIDES

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions of 2 marks each that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Biofertilizers (20 Periods)
General account of the microbes used as biofertilizers for various crop plants and their advantages over chemical fertilizers.
Symbiotic N2 fixers: *Rhizobium* - Isolation, characteristics, types, inoculum production and field application, legume/pulse plants
*Frantia* - Isolation, characteristics, Alder, Casurina plants, non-leguminous crop symbiosis. Cyanobacteria, *Azolla* - Isolation, characterization, mass multiplication, Role in rice cultivation, Crop response, field application.

Unit 2 Non-Symbiotic Nitrogen Fixers and Phosphate Solubilizers (15 Periods)
Free living *Azospirillum, Azotobacter* - free isolation, characteristics, mass inoculums, production and field application.
Phosphate solubilizing microbes - Isolation, characterization, mass inoculum production, field application.

Unit 3 Mycorrhizal Biofertilizers (15 Periods)
Importance of mycorrizal inoculum, types of mycorrhizae and associated plants, Mass inoculum production of VAM, field applications of Ectomycorrhizae and VAM.

Unit 4 Bioinsecticides (10 Periods)
General account of microbes used as bioinsecticides and their advantages over synthetic pesticides, *Bacillus thuringiensis*, production, Field applications, Viruses – cultivation and field applications.

Suggested Readings

COURSE: MICRO4SEC04
FOOD FERMENTATION TECHNIQUES

Semester end examination: 80 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions of 2 marks each that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Fermented foods and beverages (15 Periods)
Definition, types of fermented foods and beverages, advantages and health benefits, Solid state and submerged food fermentation processes, factors affecting solid/submerged fermentation and scale up; fermentation starters.

Unit 2 Milk based fermented and grain based fermented foods and beverages (15 Periods)
Dahi, Yogurt, Buttermilk (Chach) and cheese: Preparation of inoculums, types of microorganisms and production process
Grain Based Fermented Foods:Soy sauce, Bread, Idli and Dosa, sake, beer: Microorganisms and production process

Unit 3 Vegetable based fermented foods and beverages/ fermented meat and fish (15 Periods)
Pickels, Sauerkraut, wine, cider: Microorganisms and production process
Fermented Meat and Fish :Types, microorganisms involved, fermentation process

Unit 4 Probiotic foods (15 Periods)
Definition, types, microorganisms and health benefits of probiotics and prebiotics, synbiotics. Concept of functional foods and neutraceuticals.

Suggested Readings

COURSE: MICRO4SEC05
MANAGEMENT OF HUMAN MICROBIAL DISEASES

Semester end examination: 80 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions of 2 marks each that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Human Diseases (15 Periods)

Infectious and non infectious diseases, microbial and non microbial diseases, Deficiency diseases, occupational diseases, Incubation period, mortality rate, nosocomial infections

Unit 2 Microbial diseases (15 Periods)

Respiratory microbial diseases, gastrointestinal microbial diseases, Nervou system diseases, skin diseases, eye diseases, urinary tract diseases, Sexually transmitted diseases: Types, route of infection, clinical systems and general prevention methods, study of recent outbreaks of human diseases (SARS/ Swine flu/Ebola) – causes, spread and control, Mosquito borne disease – Types and prevention.

Unit 3 Therapeutics of Microbial diseases (14 Periods)

Treatment using antibiotics: beta lactam antibiotics (penicillin, cephalosporins), quinolones, polypeptides and aminoglycosides.
Judicious use of antibiotics, importance of completing antibiotic regimen, Concept of DOTS, emergence of antibiotic resistance, current issues of MDR/XDR microbial strains.
Treatment using antiviral agents: Amantadine, Acyclovir, Azidothymidine. Concept of HAART.

Unit 4 Prevention of Microbial Diseases (16 Periods)

General preventive measures, Importance of personal hygiene, environmental sanitation and methods to prevent the spread of infectious agents transmitted by direct contact, food, water and insect vectors. Vaccines:Importance, types, vaccines available against microbial diseases, vaccination schedule (compulsory and preventive) in the Indian context.

Suggested Readings

COURSE: MICRO4SEC06
MICROBIOLOGICAL ANALYSIS OF AIR AND WATER

Semester end examination: 80 marks
Internal Assessment: 20 marks

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions of 2 marks each that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 Aeromicrobiology  (16 Periods)

Bioaerosols, Air borne microorganisms (bacteria, Viruses, fungi) and their impact on human health and environment, significance in food and pharma industries and operation theatres, allergens

Unit 2 Air Sample Collection and Analysis/ Control Measures  (14 Periods)

Bioaerosol sampling, air samplers, methods of analysis, CFU, culture media for bacteria and fungi, Identification characteristics

Control Measures:Fate of bioaerosols, inactivation mechanisms – UV light, HEPA filters, desiccation, Incineration

Unit 3 Water Microbiology and Microbiological Analysis of Water  (16 Periods)

Water borne pathogens, water borne diseases
Microbiological Analysis of Water: Sample Collection, Treatment and safety of drinking (potable) water, methods to detect potability of water samples: (a) standard qualitative procedure: presumptive/MPN tests, confirmed and completed tests for faecal coliforms (b) Membrane filter technique and (c) Presence/absence tests

Unit 4 Control Measures  (14 Periods)

Precipitation, chemical disinfection, filtration, high temperature, UV light

Suggested Reading