Scheme for UG Syllabus
(Effective from 2016-17)

Under

CHOICE BASED CREDIT SYSTEM (CBCS)

In

Bachelor of Science Physical Science
(Physics, Chemistry and Mathematics)
And
Bachelor of Science with Physics

Department of Physics
Himachal Pradesh University
Shimla-5
CHOICE BASED CREDIT SYSTEM (CBCS):

The CBCS provides an opportunity for the students to choose courses from the prescribed courses comprising core, elective/minor or skill based courses. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Therefore, it is necessary to introduce uniform grading system in the entire higher education in India. This will benefit the students to move across institutions within India to begin with and across countries. The uniform grading system will also enable potential employers in assessing the performance of the candidates. In order to bring uniformity in evaluation system and computation of the Cumulative Grade Point Average (CGPA) based on student’s performance in examinations, the UGC has formulated the guidelines to be followed.

Outline of Choice Based Credit System:

1. **Core Course**: A course, which should compulsorily be studied by a candidate as a core requirement is termed as a Core course.

2. Elective Course: Generally a course which can be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/subject of study or which provides an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the candidate’s proficiency/skill is called an Elective Course.

 2.1 **Discipline Specific Elective (DSE) Course**: Elective courses may be offered by the main discipline/subject of study is referred to as Discipline Specific Elective. The University/Institute may also offer discipline related Elective courses of interdisciplinary nature (to be offered by main discipline/subject of study).

 2.2 **Dissertation/Project**: An elective course designed to acquire special/advanced knowledge, such as supplement study/support study to a project work, and a candidate studies such a course on his own with an advisory support by a teacher/faculty member is called dissertation/project.

3. Ability Enhancement Courses (AEC)/Competency Improvement Courses/Skill Development Courses/Foundation Course: The Ability Enhancement (AE) Courses may be of two kinds: AE Compulsory Course (AECC) and AE Elective Course (AEEC). “AECC” courses are the courses based upon the content that leads to Knowledge enhancement. They ((i) Environmental Science, (ii) English/MIL Communication) are mandatory for all disciplines. AEEC courses are value-based and/or skill-based and are aimed at providing hands-on-training, competencies, skills, etc.
3.1 **AE Compulsory Course (AECC):** Environmental Science, English Communication/MIL Communication.

3.2 **AE Elective Course (AEEC):** These courses may be chosen from a pool of courses designed to provide value-based and/or skill-based instruction.

Project work/Dissertation is considered as a special course involving application of knowledge in solving / analyzing /exploring a real life situation / difficult problem. A Project/Dissertation work would be of 6 credits. A Project/Dissertation work may be given in lieu of a discipline specific elective paper.
Details of Courses Under Undergraduate Program (B.Sc.)

<table>
<thead>
<tr>
<th>Course</th>
<th>*Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory+ Practical</td>
</tr>
<tr>
<td>I. Core Course</td>
<td>12X4= 48</td>
</tr>
<tr>
<td>(12 Papers)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04 Courses from each of the</td>
</tr>
<tr>
<td></td>
<td>03 disciplines of choice</td>
</tr>
<tr>
<td>Core Course Practical / T</td>
<td>12X2=24</td>
</tr>
<tr>
<td>Tutorial*</td>
<td></td>
</tr>
<tr>
<td>(12 Practical/ Tutorials*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04 Courses from each of the</td>
</tr>
<tr>
<td></td>
<td>03 Disciplines of choice</td>
</tr>
<tr>
<td>II. Discipline Specific Course</td>
<td></td>
</tr>
<tr>
<td>Elective Course</td>
<td>6x4=24</td>
</tr>
<tr>
<td>(6 Papers)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two papers from each discipline of</td>
</tr>
<tr>
<td></td>
<td>choice including paper of</td>
</tr>
<tr>
<td></td>
<td>interdisciplinary nature.</td>
</tr>
<tr>
<td>Discipline Specific Course Practical / Tutorials*</td>
<td>6 X 2=12</td>
</tr>
<tr>
<td>(6 Practical / Tutorials*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two Papers from each discipline of</td>
</tr>
<tr>
<td></td>
<td>choice including paper of</td>
</tr>
<tr>
<td></td>
<td>interdisciplinary nature</td>
</tr>
<tr>
<td></td>
<td>Optional Dissertation or project</td>
</tr>
<tr>
<td></td>
<td>work in place of one Discipline</td>
</tr>
<tr>
<td></td>
<td>elective paper (6 credits) in 6th</td>
</tr>
<tr>
<td></td>
<td>Semester</td>
</tr>
</tbody>
</table>
III. Ability Enhancement Courses

1. Ability Enhancement Compulsory

\[2 \times 4 = 8\] \(2 \times 4 = 8\)

(2 Papers of 4 credits each)
Environmental Science English/MIL Communication

2. Skill Enhancement Course

\[4 \times 4 = 16\] \(4 \times 4 = 16\)

(Skill Based)
(4 Papers of 4 credits each)

__ __ __

Total credit= 132

Total credit= 132

Institute should evolve a system/policy about ECA/ General Interest/ Hobby/ Sports/ NCC/ NSS/ related courses on its own.

*wherever there is practical there will be no tutorials and vice versa
<table>
<thead>
<tr>
<th>Sem</th>
<th>Course Type</th>
<th>Course Code</th>
<th>Title of paper</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CORE COURSE-I</td>
<td>PHYS101TH</td>
<td>MECHANICS Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS101IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS101PR</td>
<td>MECHANICS Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-II</td>
<td>CHEM101TH</td>
<td>ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY AND HYDROCARBONS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM101IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM101PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-III</td>
<td>MATH101TH</td>
<td>DIFFERENTIAL CALCULUS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH101IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.E.C. COURSE-I</td>
<td></td>
<td>ENGLISH/MIL COMMUNICATION/EVS</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>CORE COURSE-IV</td>
<td>PHYS201TH</td>
<td>ELECTRICITY, MAGNETISIM AND EMT Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS201IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS201PR</td>
<td>ELECTRICITY, MAGNETISIM AND EMT Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-V</td>
<td>CHEM201TH</td>
<td>CHEMICAL ENERGETICS, EQUILIBRIA FUNCTIONAL GROUP ORGANIC CHEMISTRY</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM201IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM201PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-VI</td>
<td>MATH201TH</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH201IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.E.C. COURSE-II</td>
<td></td>
<td>ENGLISH/MIL COMMUNICATION/EVS</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>CORE COURSE-VII</td>
<td>PHYS301TH</td>
<td>THERMAL PHYSICS AND STATISTICAL MECHANICS Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS301IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS301PR</td>
<td>THERMAL PHYSICS AND STATISTICAL MECHANICS Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-VIII</td>
<td>CHEM301TH</td>
<td>SOLUTIONS, PHASE EQUILIBRIA, CONDUCTANCE, ELECTROCHEMISTRY AND ORGANIC CHEMISTRY</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM301IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM301PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-IX</td>
<td>MATH101TH</td>
<td>REAL ANALYSIS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH101IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC1</td>
<td>Course Title</td>
<td>Course Code</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>(CHOOSE ANY ONE FROM GIVEN FOUR)</td>
<td>PHYSICS WORKSHOP SKILLS Theory</td>
<td>PHYS302TH</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYSICS WORKSHOP SKILLS Skill Exam</td>
<td>PHYS302IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPUTATIONAL PHYSICS Theory</td>
<td>PHYS303TH</td>
<td>3+1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPUTATIONAL PHYSICS Skill Exam</td>
<td>PHYS303IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL CIRCUITS AND NETWORK SKILLS Theory</td>
<td>PHYS304TH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL CIRCUITS AND NETWORK SKILLS Skill Exam</td>
<td>PHYS304IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RENEWABLE ENERGY AND ENERGY HARVESTING Theory</td>
<td>PHYS305TH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RENEWABLE ENERGY AND ENERGY HARVESTING Skill Exam</td>
<td>PHYS305IA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV	CORE COURSE-X	PHYS401TH	4
	WAVES AND OPTICS Theory	PHYS401IA	
	WAVES AND OPTICS Lab	PHYS401PR	2

| CORE COURSE-XI | COORDINATION CHEMISTRY, STATES OF MATTER AND CHEMICAL KINETICS | CHEM401TH | 6 |
| CORE COURSE-XII | ALGEBRA | MATH401TH | 6 |

| SEC2 | CHOOSE ONE COURSE OUT OF THE LIST OF SEC COURSES OF CHEMISTRY | CHEMxxxTH | 4+2 |
| | (TH+IA = 4 PR = 2) | CHEMxxxIA | |

<p>| V | DISCIPLINE SPECIFIC ELECTIVES | PHYS501TH | 4+2 |
| | DSE:1A (CHOOSE ANY ONE FROM GIVEN FIVE) | PHYS501IA | |
| | ELEMENTS OF MODERN PHYSICS Theory | PHYS502TH | |
| | MATHEMATICAL PHYSICS Theory | PHYS502IA | |
| | MATHEMATICAL PHYSICS Lab | PHYS502PR | |
| | SOLID STATE PHYSICS Theory | PHYS503TH | |
| | SOLID STATE PHYSICS Lab | PHYS503IA | |
| | SOLID STATE PHYSICS Lab | PHYS503PR | |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS504TH</td>
<td>MEDICAL PHYSICS Theory</td>
<td>Theory</td>
</tr>
<tr>
<td>PHYS504IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS504PR</td>
<td>MEDICAL PHYSICS Lab</td>
<td></td>
</tr>
<tr>
<td>PHYS505TH</td>
<td>DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION Theory</td>
<td></td>
</tr>
<tr>
<td>PHYS505IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS505PR</td>
<td>DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION Lab</td>
<td></td>
</tr>
<tr>
<td>SEC3</td>
<td>CHOOSE ONE COURSE OUT OF THE LIST OF SEC COURSES OF MATHEMATICS</td>
<td></td>
</tr>
<tr>
<td>MATHSxxxTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATHxxxIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATHxxxSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSE: 2A</td>
<td>CHEMxxxxTH</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSE 3A</td>
<td>MATHSxxxTH,</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>DISCIPLINE SPECIFIC ELECTIVES</td>
<td></td>
</tr>
<tr>
<td>DSE: 1B (CHOOSE ANY ONE FROM GIVEN FIVE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS601TH</td>
<td>NUCLEAR AND PARTICLE PHYSICS Theory</td>
<td></td>
</tr>
<tr>
<td>PHYS601IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS601TU</td>
<td>NUCLEAR AND PARTICLE PHYSICS Tutorials</td>
<td></td>
</tr>
<tr>
<td>PHYS602TH</td>
<td>QUANTUM MECHANICS Theory</td>
<td></td>
</tr>
<tr>
<td>PHYS602IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS602PR</td>
<td>QUANTUM MECHANICS Lab</td>
<td></td>
</tr>
<tr>
<td>PHYS603TH</td>
<td>DIGITAL SIGNAL PROCESSING Theory</td>
<td></td>
</tr>
<tr>
<td>PHYS603IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS603PR</td>
<td>DIGITAL SIGNAL PROCESSING Lab</td>
<td></td>
</tr>
<tr>
<td>PHYS604TH</td>
<td>ASTRONOMY AND ASTROPHYSICS Theory</td>
<td></td>
</tr>
<tr>
<td>PHYS604IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS604TU</td>
<td>ASTRONOMY AND ASTROPHYSICS Tutorials</td>
<td></td>
</tr>
<tr>
<td>PHYS605TH</td>
<td>PHYSICS OF DEVICES AND INSTRUMENTS Theory</td>
<td></td>
</tr>
<tr>
<td>PHYS605IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS605PR</td>
<td>PHYSICS OF DEVICES AND INSTRUMENTS Lab</td>
<td></td>
</tr>
<tr>
<td>5+1</td>
<td>(TH+IA = 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(TU = 1)</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>4+2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(TH+IA = 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR = 2</td>
<td></td>
</tr>
<tr>
<td>SEC4</td>
<td>CHOOSE ONE COURSE OUT OF THE LISTS OF SEC COURSES OF PHYSICS/CHEMISTRY/MATHEMATICS, BUT NOT CHOSEN EARLIER IN SEC1, SEC2 AND SEC3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSE: 2B</td>
<td>CHEMxxxxTH</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSE 3B</td>
<td>MATHSxxxTH,</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*TH = Theory, IA = Internal Assessment, PR = Practical, TU = Tutorials and SE = Skill Exam
SYLLABUS AND SCHEME OF EXAMINATION FOR B.Sc. WITH PHYSICS

<table>
<thead>
<tr>
<th>Sem</th>
<th>Course Type</th>
<th>Course Code</th>
<th>Title of paper</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CORE COURSE-I</td>
<td>PHYS101TH PHYS101IA</td>
<td>MECHANICS Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS101PR</td>
<td>MECHANICS Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-II</td>
<td>CHEM101TH CHEM101IAA</td>
<td>ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY AND HYDROCARBONS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM101PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-III</td>
<td>MATH101TH MATH101IAA</td>
<td>DIFFERENTIAL CALCULUS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>A.E.C. COURSE-I</td>
<td></td>
<td>ENGLISH/MIL COMMUNICATION/EVS</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>CORE COURSE-IV</td>
<td>PHYS201TH PHYS201IAA</td>
<td>ELECTRICITY, MAGNETISIM AND EMT Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS201PR</td>
<td>ELECTRICITY, MAGNETISIM AND EMT Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-V</td>
<td>CHEM201TH CHEM201IAA</td>
<td>CHEMICAL ENERGETICS, EQUILIBRIA FUNCTIONAL GROUP ORGANIC CHEMISTRY</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM201PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-VI</td>
<td>MATH201TH MATH201IAA</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>A.E.C.COURSE-II</td>
<td></td>
<td>ENGLISH/MIL COMMUNICATION/EVS</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>CORE COURSE-VII</td>
<td>PHYS301TH PHYS301IAA</td>
<td>THERMAL PHYSICS AND STATISTICAL MECHANICS Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS301PR</td>
<td>THERMAL PHYSICS AND STATISTICAL MECHANICS Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-VIII</td>
<td>CHEM301TH CHEM301IAA</td>
<td>SOLUTIONS, PHASE EQUILIBRIA, CONDUCTANCE, ELECTROCHEMISTRY AND ORGANIC CHEMISTRY</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM301PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CORE COURSE-IX</td>
<td>MATH101TH MATH101IAA</td>
<td>REAL ANALYSIS</td>
<td>6</td>
</tr>
<tr>
<td>Section</td>
<td>Core Courses</td>
<td>Disciplines Specific Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC 1</td>
<td>PHYS302TH, PHYS302IA</td>
<td>PHYSICS WORKSHOP SKILLS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS302SE</td>
<td>PHYSICS WORKSHOP SKILLS Skill Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS303TH, PHYS303IA</td>
<td>COMPUTATIONAL PHYSICS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS303SE</td>
<td>COMPUTATIONAL PHYSICS Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>PHYS401TH, PHYS401IA</td>
<td>WAVES AND OPTICS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS401PR</td>
<td>WAVES AND OPTICS Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM401TH, CHEM401IA, CHEM401PR</td>
<td>COORDINATION CHEMISTRY, STATES OF MATTER AND CHEMICAL KINETICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH401TH, MATH401IA</td>
<td>ALGEBRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC 2</td>
<td>PHYS402TH, PHYS402IA</td>
<td>ELECTRICAL CIRCUITS AND NETWORK SKILLS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS402SE</td>
<td>ELECTRICAL CIRCUITS AND NETWORK SKILLS Skill Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS403TH, PHYS403IA</td>
<td>BASIC INSTRUMENTATION SKILLS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS403SE</td>
<td>BASIC INSTRUMENTATION SKILLS Skill Exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>PHYS501TH, PHYS501IA</td>
<td>ELEMENTS OF MODERN PHYSICS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS501PR</td>
<td>ELEMENTS OF MODERN PHYSICS Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS502TH, PHYS502IA</td>
<td>MATHEMATICAL PHYSICS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS502PR</td>
<td>MATHEMATICAL PHYSICS Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS503TH, PHYS503IA</td>
<td>SOLID STATE PHYSICS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS503PR</td>
<td>SOLID STATE PHYSICS Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS504TH, PHYS504IA</td>
<td>MEDICAL PHYSICS Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS504PR</td>
<td>MEDICAL PHYSICS Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS505TH, PHYS505IA</td>
<td>DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS505PR</td>
<td>DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC 3</td>
<td>(CHOOSE ANY ONE FROM GIVEN Two)</td>
<td>PHYS506TH</td>
<td>RADIATION SAFETY Theory</td>
<td>3+1 (TH+IA = 3 SE = 1)</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS506IA</td>
<td>RADIATION SAFETY Skill Exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS506SE</td>
<td>APPLIED OPTICS Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS507TH</td>
<td>APPLIED OPTICS Skill Exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS507IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS507SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSE: 2A</td>
<td>CHEMxxxTH</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>DSE 3A</td>
<td>MATHSxxxTH,</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>VI</td>
<td>DISCIPLINE SPECIFIC ELECTIVES</td>
<td>PHYS601TH</td>
<td>NUCLEAR AND PARTICLE PHYSICS Theory</td>
<td>5+1 (TH+IA = 5 TU = 1)</td>
</tr>
<tr>
<td></td>
<td>DSE:1B (CHOOSE ANY ONE FROM GIVEN FIVE)</td>
<td>PHYS601IA</td>
<td>Tutorials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS602TH</td>
<td>QUANTUM MECHANICS Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS602IA</td>
<td>Lab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS602PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS603TH</td>
<td>DIGITAL SIGNAL PROCESSING Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS603IA</td>
<td>Lab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS603PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS604TH</td>
<td>ASTRONOMY AND ASTROPHYSICS Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS604IA</td>
<td>Tutorials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS604TU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS605TH</td>
<td>PHYSICS OF DEVICES AND INSTRUMENTS Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS605IA</td>
<td>Lab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS605PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC 4</td>
<td>(CHOOSE ANY ONE FROM GIVEN Two)</td>
<td>PHYS606TH</td>
<td>WEATHER FORECASTING Theory</td>
<td>3+1 (TH+IA = 3 SE = 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS606IA</td>
<td>WEATHER FORECASTING Skill Exam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS606SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS607TH</td>
<td>RENEWABLE ENERGY AND ENERGY HARVESTING Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS607IA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS607SE</td>
<td>RENEWABLE ENERGY AND ENERGY HARVESTING Skill Exam</td>
<td></td>
</tr>
<tr>
<td>DSE: 2B</td>
<td>CHEMxxxTH</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>DSE 3B</td>
<td>MATHSxxxTH,</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

*TH = Theory, IA = Internal Assessment, PR = Practical, TU = Tutorials and SE = Skill Exam
<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>COURSE OPTED</th>
<th>COURSE NAME</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Ability Enhancement Compulsory Course-I</td>
<td>English/MIL communications/Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core course-I</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-I Practical/Tutorial</td>
<td>Mechanics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course II</td>
<td>DSC 2A</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course III</td>
<td>DSC 3A</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Ability Enhancement Compulsory Course-II</td>
<td>English/MIL communications/Environmental Science</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>Core course-IV</td>
<td>Electricity, Magnetism and EMT</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-IV Practical/Tutorial</td>
<td>Electricity, Magnetism and EMT Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course V</td>
<td>DSC 2B</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course VI</td>
<td>DSC 2B</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core course-VII</td>
<td>Thermal Physics and Statistical Mechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-VII Practical/Tutorial</td>
<td>Thermal Physics and Statistical Mechanics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course VIII</td>
<td>DSC 2C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course IX</td>
<td>DSC 2C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Skill Enhancement Course -1</td>
<td>SEC-1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-X</td>
<td>Waves and Optics</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>Core Course-XI</td>
<td>DSC 2C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course XII</td>
<td>DSC 2D</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Skill Enhancement Course -2</td>
<td>SEC-2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course-X Practical/Tutorial</td>
<td>Waves and Optics Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course XI</td>
<td>DSC 2D</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Core Course XII</td>
<td>DSC 2D</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>Skill Enhancement Course -3</td>
<td>SEC-3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -1</td>
<td>DSE-1A: Physics</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -2</td>
<td>DSE-2A: Chemistry</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -3</td>
<td>DSE-3A: Mathematics</td>
<td>6</td>
</tr>
<tr>
<td>V</td>
<td>Skill Enhancement Course -4</td>
<td>SEC-4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -4</td>
<td>DSE-1B: Physics</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -5</td>
<td>DSE-2B: Chemistry</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Discipline Specific Elective -6</td>
<td>DSE-1B: Mathematics</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

Wherever there is a practical there will be no tutorial and vice versa. The size of group for practical papers is recommended to be maximum of 12 to 15 students.
B.Sc. Program with Physics as one subject

Core papers Physics (Credit: 06 each) (CP 1-4):
PHYS101 Mechanics (4) + Lab (2)
PHYS201 Electricity, Magnetism and EMT (4) + Lab (2)
PHYS301 Thermal Physics and Statistical Mechanics (4) + Lab (2)
PHYS401 Waves and Optics (4) + Lab (2)

Discipline Specific Elective papers (Credit: 06 each) (DSE 1, DSE 2):
Choose two courses, one for each semester V and VI.

Semester V: DSE -1 A (Choose one course only)
PHYS501 Elements of Modern Physics (4) + Lab (2)
PHYS502 Mathematical Physics (4) + Lab (2)
PHYS503 Solid State Physics (4) + Lab (2)
PHYS504 Medical Physics (4) + Lab (2)
PHYS505 Digital and Analog Circuits and Instrumentation (4) + Lab (2)

Semester VI: DSE -1 B (Choose one course only)
PHYS601 Nuclear and particle Physics (5) + Tutorials (1)
PHYS602 Quantum Mechanics (4) + Lab (2)
PHYS603 Digital Signal Processing (4) + Lab (2)
PHYS604 Astronomy and Astrophysics (5) + Tutorials (1)
PHYS605 Physics of Devices and Instruments (4) + Lab (2)

Skill Enhancement Course (any four) (Credit: 04 each)- SEC 1 to SEC 4
SEC- 1
PHYS302 Physics Workshop Skills or
PHYS303 Computational Physics
SEC- 2
PHYS402 / PHYS304 Electrical Circuits and Network Skills or
PHYS403 Basic Instrumentation Skills
SEC- 3
PHYS506 Radiation Safety or
PHYS507 Applied Optics
SEC- 4
PHYS606 Weather Forecasting or
PHYS607/PHYS305 Renewable Energy and Energy Harvesting
End-Semester Examination (ESE) and Comprehensive Continuance Assessment (CCA) Scheme of Three Years Degree of B.Sc. Physical Sciences/B.Sc. with Physics

➢ Scheme for Examination for each course:

❖ The medium of instructions and Examinations shall be English only

❖ ESE, Practical and Skill Examinations shall be conducted at the end of each semester as per the Academic Calendar notified by H.P. University, Shimla-5, time to time.

❖ Practical (2 Credits) and Skill Test Examinations (1 Credit) shall be conducted in Laboratory.

❖ Each course of 6 credits (Theory + Practical/Tutorials)/4 credits (SEC Theory + Skill Exam) will carry 100 marks and distribution of marks is given under each courses.

❖ Minimum Pass Percentage in each component (Semester Term End Examination, CCA, Practical/Tutorials and Skill Exam) shall be 40% separately.

❖ Criteria for Class-room and Laboratory/Tutorials Attendance (05 marks):
 75% attendance is compulsory both in theory and practical. Each seminars and submission of Projects/Dissertation/Assignments is mandatory.

 (a) Attendance 75% to 80% 1 marks
 (b) Attendance 81% to 85% 2 marks
 (c) Attendance 86% to 90% 3 marks
 (d) Attendance 91% to 95% 4 marks
 (e) Attendance 96% to 100% 5 marks

⚠ Note: B.Sc. Physical Science or B.Sc. with Physics qualifications are eligible to apply for master degree courses in Physics/Chemistry/Mathematics.
Semester –I

MECHANICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 1A: MECHANICS (Credits: Theory-04) Theory: 60 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS101TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
<tr>
<td>CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance: CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.</td>
<td></td>
</tr>
</tbody>
</table>

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(Unit I), section C(Unit II), section D(Unit III) and section E(Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.
2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. (4 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (6 Lectures)

Unit-II

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (5 Lectures)

Unit-III

Unit-IV

Elasticity: Hooke’s law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson’s Ratio-Expression for Poisson’s ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and g by Searles method

(8 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate.

Reference Books:
- University Physics. FW Sears, MW Zemansky and HD Young13/e, 1986. Addison-Wesley

MECHANICS LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 2A LAB: MECHANICS (Credits: 02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS 101PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.

PHYSICS LAB: DSC 1A LAB: MECHANICS

60 Lectures
1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
2. To determine the Height of a Building using a Sextant.
3. To determine the Moment of Inertia of a Flywheel.
4. To determine the Young's Modulus of a Wire by Optical Lever Method.
5. To determine the Modulus of Rigidity of a Wire by Maxwell’s needle.
6. To determine the Elastic Constants of a Wire by Searle’s method.
7. To determine g by Bar Pendulum.
8. To determine g by Kater’s Pendulum.
9. To determine g and velocity for a freely falling body using Digital Timing Technique
10. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g
11. To find the moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum.
12. To compare the moment of inertia of a solid sphere and hollow sphere or solid disc of same mass with the torsional pendulum.

Reference Books:
- Advanced Practical Physics for students, B.L.Flint and H.T.Worsnop, 1971, Asia
Publishing House.

- Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.
- B.Sc Practical Physics C.L. Arora, S. Chand and company Ltd.

Semester-II

ELECTRICITY, MAGNETISM AND EMT

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 1A: ELECTRICITY, MAGNETISM AND EMT (Credits: Theory-04) Theory: 60 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS201TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive</td>
<td>30 marks</td>
</tr>
<tr>
<td>Assessment (CCA)</td>
<td></td>
</tr>
<tr>
<td>CCA: Based on Midterm Exam,</td>
<td></td>
</tr>
<tr>
<td>Class Test/Seminar/Assignments/Quiz and Attendance:</td>
<td></td>
</tr>
<tr>
<td>CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.</td>
<td></td>
</tr>
</tbody>
</table>

Instructions for Paper Setters and Candidates:

1. The question paper will consist of five sections: Section A (compulsory, covering syllabus from all the units), section B (Unit I), section C (Unit II), section D (Unit III) and section E (Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Vector Analysis: Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke’s theorem of vectors (statement only).

(12 Lectures)

Unit-II

Electrostatics: Electrostatic Field, electric flux, Gauss’s theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as
line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. (22 Lectures)

Unit-III

Magnetism:
Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para- and ferro-magnetic materials. (10 Lectures)

Unit-IV

Maxwell’s equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. (10 Lectures)

Reference Books:
• Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education..
• Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing House.
• University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
• D.J. Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.

--

ELECTRICITY, MAGNETISM AND EMT LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 2A LAB: ELECTRICITY, MAGNETISM AND EMT (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS 201PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
<tr>
<td>Distribution of Marks:</td>
<td>Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.</td>
</tr>
</tbody>
</table>

PHYSICS LAB- DSC 2A LAB: ELECTRICITY, MAGNETISM AND EMT
60 Lectures
1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
2. Ballistic Galvanometer:
(i) Measurement of charge and current sensitivity
(ii) Measurement of CDR
(iii) Determine a high resistance by Leakage Method
(iv) To determine Self Inductance of a Coil by Rayleigh’s Method.

3. To compare capacitances using De’Sauty’s bridge.
5. To study the Characteristics of a Series RC Circuit.
6. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor
7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q
8. To determine a Low Resistance by Carey Foster’s Bridge.
9. To verify the Thevenin and Norton theorem
10. To verify the Superposition, and Maximum Power Transfer Theorem
11. To determine unknown capacitance by flashing and quenching method

Reference Books
- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.

Semester-III
THERMAL PHYSICS AND STATISTICAL MECHANICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 1A: THERMAL PHYSICS AND STATISTICAL MECHANICS MAGNETISM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: Theory-04)</td>
</tr>
<tr>
<td>Code</td>
<td>PHYS301TH</td>
</tr>
<tr>
<td>Semester Term End</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>30 marks</td>
</tr>
<tr>
<td>Comprehensive</td>
<td></td>
</tr>
<tr>
<td>Assessment (CCA)</td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td>60 Lectures</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(UNIT I), section C(UNIT II), section D(UNIT III) and section E(UNIT...
IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Laws of Thermodynamics:

Unit-II

Thermodynamic Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell’s relations & applications - Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for $(C_P - C_V)$, C_P/C_V, TdS equations. (10 Lectures)

Unit-III

Kinetic Theory of Gases: Derivation of Maxwell’s law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. (10 Lectures)

Unit-IV

Reference Books:

• A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.
• Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
• Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears & G.L.Salinger.
THERMAL PHYSICS AND STATISTICAL MECHANICS LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 3A LAB: THERMAL PHYSICS AND STATISTICAL MECHANICS (Credits: 02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS 301PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Experiment = 8 Marks, Written Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.

PHYSICS LAB-DSC 3A LAB: THERMAL PHYSICS AND STATISTICAL MECHANICS

60 Lectures

1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne’s constant flow method.
3. To determine Stefan’s Constant.
4. To determine the coefficient of thermal conductivity of copper by Searle’s Apparatus.
5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom’s Method.
6. To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton’s disc method.
7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system.
11. To prove the law of probability by using one coin, two coins and 10 or more coins.
12. To determine the coefficient of increase of volume of air at constant pressure.
13. To determine the coefficient of increase of pressure of air at constant volume.

Reference Books:

- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
Semester-IV

WAVES AND OPTICS

Name of the Course	PHYSICS-DSC 1A: WAVES AND OPTICS
	(Credits: Theory-04)
	Theory: 60 Lectures
Code	PHYS401TH
Semester Term End Examination	50 marks (3 Hrs)
Continuous Comprehensive Assessment (CCA)	30 marks
CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance: CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.	

Instructions for Paper Setters and Candidates:

1. The question paper will consist of five sections: Section A (compulsory, covering syllabus from all the units), section B (Unit I), section C (Unit II), section D (Unit III) and section E (Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Superposition of Two Collinear Harmonic oscillations: Linearity and Superposition Principle.
(1) Oscillations having equal frequencies and (2) Oscillations having different frequencies (Beats).
(4 Lectures)

Superposition of Two Perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal and unequal frequency and their uses.
(2 Lectures)

(7 Lectures)

Unit-II

(6 Lectures)
Sound: Simple harmonic motion - forced vibrations and resonance - Fourier’s Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine’s formula - measurement of reverberation time - Acoustic aspects of halls and auditoria. (6 Lectures)

Unit-III

Wave Optics: Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle. (3 Lectures)

Interference: Interference: Division of amplitude and division of wavefront. Young’s Double Slit experiment. Lloyd’s Mirror and Fresnel’s Biprism. Phase change on reflection: Stokes’ treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton’s Rings: measurement of wavelength and refractive index. (10 Lectures)

Michelson's Interferometer: Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength difference, Refractive index and Visibility of fringes. (3 Lectures)

Unit-IV

Polarization: Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization. (5 Lectures)

Reference Books:
- Principles of Optics, B.K. Mathur, 1995, Gopal Printing
- University Physics. FW Sears, MW Zemansky and HD Young 13/e, 1986.
 Addison-Wesley

WAVES AND OPTICS LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 4A LAB: WAVES AND OPTICS (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS 401PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Experiment = 8 Marks, Written/ Skills = 4 Marks Viva Voce = 4 Marks, Practical Record Book = 4 Marks.

23
PHYSICS LAB-DSC 4A LAB: WAVES AND OPTICS

60 Lectures

1. To investigate the motion of coupled oscillators
2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde’s Experiment to verify λ^2-T Law.
3. To study Lissajous Figures
4. Familiarization with Schuster’s focussing; determination of angle of prism.
5. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille’s method).
6. To determine the Refractive Index of the Material of a given Prism using Sodium Light.
7. To determine Dispersive Power of the Material of a given Prism using Mercury Light
8. To determine the value of Cauchy Constants of a material of a prism.
10. To determine wavelength of sodium light using Fresnel Bi prism.
12. To determine the wavelength of Laser light using Diffraction of Single Slit.
13. To determine wavelength of (1) Sodium & (2) spectrum of Mercury light using plane diffraction Grating
15. To measure the intensity using photo sensor and laser in diffraction patterns of single and double slits.
16. To find the refractive index of glass slab using travelling microscope
17. To find the refractive index of water using travelling microscope
18. To determine the magnifying power of a telescope

Reference Books:

• Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia Publishing House.
DISCIPLINE SPECIFIC ELECTIVE:
SELECT TWO PAPERS

Semester-V

ELEMENTS OF MODERN PHYSICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 1A: ELEMENTS OF MODERN PHYSICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: Theory-04)</td>
</tr>
<tr>
<td></td>
<td>Theory: 60 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>PHYS501TH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(Unit I), section C(Unit II), section D(Unit III) and section E(Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.
2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I
Planck’s quantum, Planck’s constant and light as a collection of photons; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. (8 Lectures)
Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra. (4 Lectures)

Unit-II
Position measurement- gamma ray microscope thought duality, Heisenberg uncertainty principle- impossibility trajectory; Estimating minimum energy of a confined principle; Energy-time uncertainty principle. Experiment; Wave-particle of a particle following a particle using uncertainty. (4 Lectures)
Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation.
of wave function, probabilities and normalization; Probability and probability current densities in one dimension. (11 Lectures)

Unit-III
One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier. (12 Lectures)

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy. (6 Lectures)

Unit-IV
Radioactivity: stability of nucleus; Law of radioactive decay; Mean life & half-life; α decay; β decay - energy released, spectrum and Pauli’s prediction of neutrino; γ-ray emission. (11 Lectures)

Fission and fusion - mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions. (4 Lectures)

Reference Books:
- Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill

ELEMENTS OF MODERN PHYSICS LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSC 5A LAB: ELEMENTS OF MODERN PHYSICS (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS501PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
<tr>
<td>Distribution of Marks:</td>
<td>Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.</td>
</tr>
</tbody>
</table>

PRACTICALS - DSE LAB: ELEMENTS OF MODERN PHYSICS
60 Lectures
1. To determine value of Boltzmann constant using V-I characteristic of PN diode.
2. To determine work function of material of filament of directly heated vacuum diode.
3. To determine value of Planck’s constant using LEDs of at least 4 different colours.
4. To determine the ionization potential of mercury.
5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
6. To determine the absorption lines in the rotational spectrum of iodine vapour.
7. To study the diffraction patterns of single and double slits using laser source and measure its intensity variation using Photosensor and compare with incoherent source – Na light.
8. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
9. To determine the value of e/m by magnetic focusing.
10. To setup the Millikan oil drop apparatus and determine the charge of an electron.
11. To verify the inverse square law by using photovoltaic cell.
12. To measure the DC voltage by using CRO
13. To display the action of junction Diode as (a) Half wave rectifier and (b) Full wave rectifier using CRO

Reference Books:
• Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia Publishing House.

Semester-V

MATHMATICAL PHYSICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSE: MATHEMATICAL PHYSICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: Theory-04)</td>
</tr>
<tr>
<td></td>
<td>Theory: 60 Lectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>PHYS502TH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance: CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(Unit I), section C(Unit II), section D(Unit III) and section E(Unit
IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

The emphasis of the course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

Unit-I

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers. (6 Lectures)

Unit-II

Unit-III

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). (4 Lectures)

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. (10 Lectures)

Unit-IV

Reference Books:
• An Introduction to Ordinary Differential Equations, Earl A Coddington, 1961, PHI Learning.
• Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
• Essential Mathematical Methods, K.F. Riley and M.P. Hobson, 2011, Cambridge University Press

MATHEMATICAL PHYSICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PRACTICALS - DSE LAB: MATHEMATICAL PHYSICS (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS502PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.

PRACTICALS – DSE LAB: MATHEMATICAL PHYSICS 60 Lectures

The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

• Highlights the use of computational methods to solve physical problems
• Use of computer language as a tool in solving physics problems (applications)
• The course will consist of lectures (both theory and practical) in the Computer Lab
• Evaluation done not on the programming but on the basis of formulating the problem
• Aim at teaching students to construct the computational problem to be solved
• Students can use anyone operating system Linux or Microsoft Windows

<table>
<thead>
<tr>
<th>Topics</th>
<th>Description with Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and Overview</td>
<td>Computer architecture and organization, memory and Input/output devices</td>
</tr>
<tr>
<td>Basics of scientific computing</td>
<td>Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow- emphasize the importance</td>
</tr>
<tr>
<td>Errors and error Analysis</td>
<td>Truncation and round off errors, Absolute and relative errors, Floating point computations.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Programs: using C/C++ language</td>
<td>Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending-descending order, Binary search</td>
</tr>
<tr>
<td>Random number generation</td>
<td>Area of circle, area of square, volume of sphere, value of pi (π)</td>
</tr>
<tr>
<td>Solution of Algebraic and Transcendental equations by Bisection, Newton Raphson and Secant methods</td>
<td>Solution of linear and quadratic equation, solving $\frac{dI}{d\alpha} = \tan \alpha$; $I = I_0 \left(\frac{\sin \alpha}{\alpha}\right)^2$ in optics.</td>
</tr>
<tr>
<td>Interpolation by Newton Gregory Forward and Backward difference formula, Error estimation of linear interpolation</td>
<td>Evaluation of trigonometric functions e.g. $\sin \theta, \cos \theta, \tan \theta$, etc.</td>
</tr>
<tr>
<td>Numerical differentiation (Forward and Backward difference formula) and Integration (Trapezoidal and Simpson rules), Monte Carlo method</td>
<td>Given Position with equidistant time data to calculate velocity and acceleration and vice-versa. Find the area of B-H Hysteresis loop</td>
</tr>
</tbody>
</table>
| Solution of Ordinary Differential Equations (ODE) First order Differential | First order differential equation
- Radioactive decay
- Current in RC, LC circuits with DC source |
equation Euler, modified Euler and Runge-Kutta (RK) second and fourth order methods

- Newton's law of cooling
- Classical equations of motion

Attempt following problems using RK 4 order method:
- Solve the coupled differential equations
 \[
 \frac{dx}{dt} = y + x - \frac{x^3}{3}; \quad \frac{dy}{dt} = -x
 \]
 for four initial conditions
 \(x(0) = 0, \ y(0) = -1, \ -2, \ -3, \ -4\).
 Plot \(x\) vs \(y\) for each of the four initial conditions on the same screen for \(0 \leq t \leq 15\).

The differential equation describing the motion of a pendulum is
 \[
 \frac{d^2\theta}{dt^2} = -\sin(\theta).
 \]
 The pendulum is released from rest at an angular displacement \(\alpha\), i.e. \(\theta(0) = \alpha\) and \(\theta' = 0\).
 Solve the equation for \(\alpha = 0.1, 0.5\) and \(1.0\) and plot \(\theta\) as a function of time in the range \(0 \leq t \leq 8\pi\).
 Also plot the analytic solution valid for small \(\theta\) \(\sin(\theta) = \theta\).

Reference Books:
- A first course in Numerical Methods, Uri M. Ascher and Chen Greif, 2012, PHI Learning
- An Introduction to Computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press
Semester –V

SOLID STATE PHYSICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSE: SOLID STATE PHYSICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: Theory-04)</td>
</tr>
<tr>
<td></td>
<td>Theory: 60 Lectures</td>
</tr>
<tr>
<td>Code</td>
<td>PHYS503TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A (compulsory, covering syllabus from all the units), section B (Unit I), section C (Unit II), section D (Unit III) and section E (Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.
2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Unit-II

Unit-III

Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom.

Unit-IV

Reference Books:
- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- Solid-state Physics, H. Ibach and H Luth, 2009, Springer
- Elementary Solid State Physics, l/e M. Ali Omar, 1999, Pearson India

SOLID STATE PHYSICS LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PRACTICALS –DSE LAB: SOLID STATE PHYSICS (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS503PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
<tr>
<td>Distribution of Marks: Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.</td>
<td></td>
</tr>
</tbody>
</table>

PRACTICALS –DSE LAB: SOLID STATE PHYSICS

60 Lectures
1. Measurement of susceptibility of paramagnetic solution (Quinck’s Tube Method)
2. To measure the Magnetic susceptibility of Solids.
3. To determine the Coupling Coefficient of a Piezoelectric crystal.
4. To measure the Dielectric Constant of a dielectric Materials with frequency
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
6. To determine the refractive index of a dielectric layer using SPR
7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
8. To draw the BH curve of iron using a Solenoid and determine the energy loss from Hysteresis.
9. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four-probe method (from room temperature to 150 °C) and to determine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.
11. To study the characteristics of FET
12. To find energy gap of a semiconductor.
13. To study the characteristics of Zener diode.
14. To study the voltage regulation using Zener diode
15. To study the characteristics of NPN transistor
16. To study the characteristics of PNP transistor

Reference Books

• Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
• A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Ed., 2011, Kitab Mahal, New Delhi
• Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India

Semester- V

MEDICAL PHYSICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSE: MEDICAL PHYSICS (Credits: Theory-04)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory: 60 Lectures</td>
</tr>
<tr>
<td>Code</td>
<td>PHYS504TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:

1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(Unit I), section C(Unit II), section D(Unit III) and section E(Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.
Unit-I

PHYSICS OF THE BODY-I

PHYSICS OF THE BODY-II
Acoustics of the body: Nature and characteristics of sound, Production of speech, Physics of the ear, Diagnostics with sound and ultrasound. Optical system of the body: Physics of the eye. Electrical system of the body: Physics of the nervous system, Electrical signals and information transfer. (10 Lectures)

Unit-II

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-I
RADIATION PHYSICS: Radiation units exposure, absorbed dose, units: rad, gray, relative biological effectiveness, effective dose, inverse square law. Interaction of radiation with matter Compton & photoelectric effect, Rem & Sievert, linear attenuation coefficient.
Radiation Detectors: Thimble chamber, condenser chambers, Geiger Muller counter, Scintillation counters and Solid State detectors, ionization chamber, Dosimeters, survey methods, area monitors, TLD, Semiconductor detectors. (14 Lectures)

Unit-III

MEDICAL IMAGING PHYSICS: Evolution of Medical Imaging, X-ray diagnostics and imaging, Physics of nuclear magnetic resonance (NMR), NMR imaging, MRI Radiological imaging, Ultrasound imaging, Physics of Doppler with applications and modes, Vascular Doppler. Radiography: Filters, grids, cassette, X-ray film, film processing, fluoroscopy.
Computed tomography scanner- principle & function, display, generations, mammography. Thyroid uptake system and Gamma camera (Only Principle, function and display).
RADIATION ONCOLOGY PHYSICS: External Beam Therapy (Basic Idea): Telecobalt, Conformal Radiation Therapy (CRT), 3DCRT, IMRT, Image Guided Radiotherapy, EPID, Rapid Arc, Proton Therapy, Gamma Knife, Cyber Knife. Contact Beam Therapy (Basic Idea):
Brachytherapy-LDR and HDR, Intra Operative Brachytherapy. Radiotherapy, kilo voltage machines, deep therapy machines, Telecobalt machines, Medical linear accelerator. Basics of Teletherapy units, deep x-ray, Telecobalt units, medical linear accelerator, Radiation protection, external beam characteristics, dose maximum and build up – bolus, percentage depth dose, tissue maximum ratio and tissue phantom ratio, Planned target Volume and Gross Tumour Volume (18 Lectures)

Unit-IV

PHYSICS OF DIAGNOSTIC AND THERAPEUTIC SYSTEMS-II

References:
• Medical Physics, J.R. Cameron and J.G. Skofronick, Wiley (1978)
• Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
• Physics of the human body, Irving P. Herman, Springer (2007).
 Handbook of Physics in Diagnostic Imaging: R.S. Livingstone: B.I. Publication Pvt Ltd.
• The Physics of Radiology-H E Johns and Cunningham.
MEDICAL PHYSICS LAB

Name of the Course | PRACTICALS –DSE LAB: MEDICAL PHYSICS
(Credits: -02) |
---|---|
Code | PHYS504PR |
Semester Term End Examination | 20 marks (3 Hrs) |
Distribution of Marks: Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.

PRACTICALS -DSE LAB: MEDICAL PHYSICS 60 Lectures

1. Understanding the working of a manual Hg Blood Pressure monitor and measure the Blood Pressure.
2. Understanding the working of a manual optical eye-testing machine and to learn eye-testing.
3. Correction of Myopia (short sightedness) using a combination of lenses on an optical bench/breadboard.
4. Correction of Hypermetropia/Hyperopia (long sightedness) using a combination of lenses on an optical bench/breadboard.
5. To learn working of Thermoluminescent dosimeter (TLD) badges and measure the background radiation.
6. Familiarization with Geiger-Muller (GM) Counter and to measure background radiation.
7. Familiarization with Radiation meter and to measure background radiation.
8. Familiarization with the Use of a Vascular Doppler.

References:
- Christensen’s Physics of Diagnostic Radiology: Curry, Dowdey and Murry - Lippincot Williams and Wilkins (1990)
- The Physics of Radiology-H E Johns and Cunningham.
- Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia Publishing House.
Semester- V

DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSE: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION (Credits: Theory-04) Theory: 60 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS505TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
<tr>
<td>CCA:</td>
<td>Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance: CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.</td>
</tr>
</tbody>
</table>

Instructions for Paper Setters and Candidates:

1. The question paper will consist of five sections: Section A (compulsory, covering syllabus from all the units), section B (Unit I), section C (Unit II), section D (Unit III) and section E (Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Digital Circuits:

Binary Subtraction using 2's Complement Method). Half Adders and Full Adders and Subtractors, 4-bit binary Adder-Subtractor. (4 Lectures)

Unit-II

Semiconductor Devices and Amplifiers:

(12 Lectures)

Unit-III

Operational Amplifiers (Black Box approach):

(13 Lectures)

Sinusoidal Oscillators: Barkhausen's Criterion for Self-sustained Oscillations. Determination of Frequency of RC Oscillator

(5 Lectures)

Unit-IV

Instrumentations:
Introduction to CRO: Block Diagram of CRO. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference.

(3 Lectures)

Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Zener Diode and Voltage Regulation

(6 Lectures)

Timer IC: IC 555 Pin diagram and its application as Astable & Monostable Multivibrator

(3 Lectures)

Reference Books:
- Electronic devices and circuits, S. Salivahanan and N. Suresh Kumar, 2012, Tata Mc-Graw Hill.
- Modern Electronic Instrumentation & Measurement Tech., Helfrick&Cooper,1990, PHI Learning
PRACTICALS - DSE LAB: DIGITAL AND ANALOG CIRCUITS AND INSTRUMENTATION

60 Lectures

1. To measure (a) Voltage, and (b) Frequency of a periodic waveform using a CRO.
2. To verify and design AND, OR, NOT and XOR gates using NAND gates.
3. To minimize a given logic circuit.
4. Half adder, Full adder and 4-bit Binary Adder.
5. Adder-Subtractor using Full Adder IC.
6. To design an astable multivibrator of given specifications using 555 Timer.
7. To design a monostable multivibrator of given specifications using 555 Timer.
8. To study IV characteristics of PN diode, Zener and Light emitting diode
9. To study the characteristics of a Transistor in CE configuration.
10. To design a CE amplifier of a given gain (mid-gain) using voltage divider bias.
11. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.
12. To design a non-inverting amplifier of given gain using Op-amp 741 and study its Frequency Response.
13. To study a precision Differential Amplifier of given I/O specification using Opamp.
14. To investigate the use of an op-amp as a Differentiator.
15. To design a Wien Bridge Oscillator using an op-amp.

Reference Books:

Semester –VI

NUCLEAR AND PARTICLE PHYSICS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSE:NUCLEAR AND PARTICLE PHYSICS (Credits: Theory-05, Tutorials-01) Theory: 72 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS601TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>70 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:

CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Tutorial: Tutorial/Tutorial Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A (compulsory, covering syllabus from all the units), section B (Unit I), section C (Unit II), section D (Unit III) and section E (Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 12 marks. Question Number 1. (Section A), will consist of eleven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.
2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and eleven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about size, mass, charge density (matter energy), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of various terms, condition of nuclear stability. Two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force. (18 Lectures)

Unit-II

Radioactivity decay: (a) Alpha decay: basics of -decay processes, theory of α-emission, Gamow factor, Geiger Nuttall law, -decay spectroscopy. (b) β-decay: energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays
emission & kinematics, internal conversion.

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering (Rutherford scattering).

(18 Lectures)

Unit-III

Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation, Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si & Ge) for charge particle and photon detection (concept of charge carrier and mobility).

(18 Lectures)

Unit-IV

Particle Accelerators: Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quarkmodel, color quantum number and gluons.

(18 Lectures)

Reference Books:

- Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi
- Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
Semester – VI

QUANTUM MECHANICS

| Name of the Course | PHYSICS-DSE: QUANTUM MECHANICS
 (Credits: Theory-04)
 Theory: 60 Lectures |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS602TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>
| CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
 CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks. |

Instructions for Paper Setters and Candidates:

1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(Unit I), section C(Unit II), section D(Unit III) and section E(Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Time dependent Schrodinger equation: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions. Position, momentum & Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. *(6 Lectures)*

Time independent Schrodinger equation Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to the spread of Gaussian wavepacket for a free particle in one dimension; wave packets, Fourier transforms and momentum space wavefunction; Position-momentum uncertainty principle. *(10 Lectures)*

Unit-II

General discussion of bound states in an arbitrary potential continuity of wave function,
boundary condition and emergence of discrete energy levels; application to one-dimensional problem- square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions using Frobenius method. (12 Lectures)

Unit-III

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for the second order partial differential equation; angular momentum operator and quantum numbers; Radial wave functions from Frobenius method; Orbital angular momentum quantum numbers l and m; s, p, d,.. shells (idea only) (10 Lectures)

Unit-IV

Atoms in External Magnetic Fields: - Normal and Anomalous Zeeman Effect. (4 Lectures)

Reference Books:
• Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
• Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
• Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press

Additional Books for Reference
• Quantum Mechanics, Eugen Merzbacher. 2004, John Wiley and Sons, Inc.
• Introduction to Quantum Mechanics, David J. Griffith, 2nd Ed. 2005, Pearson Education
• Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer

QUANTUM MECHANICS LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PRACTICALS –DSE LAB: QUANTUM MECHANICS (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS602PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
<tr>
<td>Distribution of Marks: Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.</td>
<td></td>
</tr>
</tbody>
</table>
PRACTICAL-DSE LAB: QUANTUM MECHANICS
60 Lectures

Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom

\[\frac{d^2 y}{dt^2} = A(r)u(r), \quad A(r) = \frac{2m}{\hbar^2} [V(r) - E] = -\frac{\mu^2}{r} \]

Here, \(m \) is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wave functions. Remember that the ground state energy of the hydrogen atom is \(\approx -13.6 \text{ eV} \). Take \(\mu = 3.795 \text{ (eVÅ)}^{1/2}, \hbar c = 1973 \text{ (eV Å)} \) and \(m = 0.511 \times 10^6 \text{eV/c}^2 \).

2. Solve the s-wave radial Schrodinger equation for an atom

\[\frac{d^2 y}{dr^2} = A(r)u(r), \quad A(r) = \frac{2m}{\hbar^2} [V(r) - E] \]

Here \(m \) is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

\[V(r) = -\frac{e^2}{r} e^{-r/\alpha} \]

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wave function. Take \(\mu = 3.795 \text{ (eVÅ)}^{1/2}, m=0.511 \times 10^6 \text{eV/c}^2 \), and \(\alpha = 3 \text{ Å} \). In these Units \(\hbar c = 1973 \text{ (eVÅ)} \). The ground state energy is expected to be above \(-12 \text{ eV} \) in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass \(m \):

\[\frac{d^2 y}{dr^2} = A(r)u(r), \quad A(r) = \frac{2m}{\hbar^2} [V(r) - E] \]

for the ground state energy (in MeV) of the particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose \(m = 940 \text{ MeV/c}^2, k = 100 \text{ MeV fm}^{-2}, b = 0, 10, 30 \text{ MeV fm}^{-3} \) In these units \(\hbar = 1973 \text{ (eVÅ)} \). The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule

\[\frac{d^2 y}{dr^2} = A(r)u(r), \quad A(r) = \frac{2\mu}{\hbar^2} [V(r) - E] \]

Where \(\mu \) is the reduced mass of the two atom system for the Morse potential

\[V(r) = D (e^{-2\alpha r'} e^{-\alpha r}), \quad r' = \frac{r - r_0}{r} \]
Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take: \(m = 940 \times 10^6 \text{e V/C}^2 \), \(D = 0.755501 \text{ eV} \), \(\phi = 1.44 \), \(r_p = 0.131349 \AA \)

Laboratory based experiments:

5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
7. To study the quantum tunnelling effect with solid state device, e.g. tunnelling current in backward diode or tunnel diode.

Reference Books:

- Scilab by example: M. Affouf2012ISBN: 978-1479203444
- Quantum Mechanics, Bruce Cameron Reed, 008, Jones and Bartlett Learning

Semester - VI

DIGITAL SIGNAL PROCESSING

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSE: DIGITAL SIGNAL PROCESSING (Credits: Theory-04) Theory: 60 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS603TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks.
CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.
Instructions for Paper Setters and Candidates:

1. The question paper will consist of five sections: Section A (compulsory, covering syllabus from all the units), section B (Unit I), section C (Unit II), section D (Unit III) and section E (Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.

2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hour.

Unit-I

Discrete-Time Signals and Systems: Classification of Signals, Transformations of the Independent Variable, Periodic and Aperiodic Signals, Energy and Power Signals, Even and Odd Signals, Discrete-Time Systems, System Properties. Impulse Response, Convolution Sum; Graphical Method; Analytical Method, Properties of Convolution; Commutative; Associative; Distributive; Shift; Sum Property System Response to Periodic Inputs, Relationship Between LTI System Properties and the Impulse Response; Causality; Stability; Invertibility, Unit Step Response.

(10 Lectures)

Discrete-Time Fourier Transform: Fourier Transform Representation of Aperiodic Discrete-Time Signals, Periodicity of DTFT, Properties; Linearity; Time Shifting; Frequency Shifting; Differencing in Time Domain; Differentiation in Frequency Domain; Convolution Property. The z-Transform: Bilateral (Two-Sided) z-Transform, Inverse z-Transform, Relationship Between z-Transform and Discrete-Time Fourier Transform, z-plane, Region-of-Convergence; Properties of ROC, Properties; Time Reversal; Differentiation in the z-Domain; Power Series Expansion Method (or Long Division Method); Analysis and Characterization of LTI Systems; Transfer Function and Difference-Equation System. Solving Differential Equations.

(10 Lectures)

Unit-II

Filter Concepts: Phase Delay and Group delay, Zero-Phase Filter, Linear-Phase Filter, Simple FIR Digital Filters, Simple IIR Digital Filters, All pass Filters, Averaging Filters, Notch Filters.

(5 Lectures)

Discrete Fourier Transform: Frequency Domain Sampling (Sampling of DTFT), The Discrete Fourier Transform (DFT) and its Inverse, DFT as a Linear transformation, Properties; Periodicity; Linearity; Circular Time Shifting; Circular Frequency Shifting; Circular Time Reversal; Multiplication Property; Parseval’s Relation, Linear Convolution Using the DFT (Linear Convolution Using Circular Convolution), Circular Convolution as Linear Convolution with aliasing.

(10 Lectures)

Unit-III

Fast Fourier Transform: Direct Computation of the DFT, Symmetry and Periodicity Properties of the Twiddle factor (WN), Radix-2 FFT Algorithms; Decimation-In-Time (DIT) FFT Algorithm; Decimation-In-Frequency (DIF) FFT Algorithm, Inverse DFT Using FFT Algorithms.

(5 Lectures)
Realization of Digital Filters: Non Recursive and Recursive Structures, Canonic and Non Canonic Structures, Equivalent Structures (Transposed Structure), FIR Filter structures; Direct-Form; Cascade-Form; Basic structures for IIR systems; Direct-Form I. (5 Lectures)

Unit-IV

Finite Impulse Response Digital Filter: Advantages and Disadvantages of Digital Filters, Types of Digital Filters: FIR and IIR Filters; Difference Between FIR and IIR Filters, Desirability of Linear-Phase Filters, Frequency Response of Linear-Phase FIR Filters, Impulse Responses of Ideal Filters, Windowing Method; Rectangular, Triangular, Kaiser Window, FIR Digital Differentiators.

Infinite Impulse Response Digital Filter: Design of IIR Filters from Analog Filters, IIR Filter Design by Approximation of Derivatives, Backward Difference Algorithm, Impulse Invariance Method. (15 Lectures)

Reference Books:
- Digital Signal Processing, Tarun Kumar Rawat, 2015, Oxford University Press, India

DIGITAL SIGNAL PROCESSING LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PRACTICALS –DSE LAB: DIGITAL SIGNAL PROCESSING (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS603PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.

PRACTICALS –DSE LAB: DIGITAL SIGNAL PROCESSING
60 Lectures

Scilab based simulations experiments based problems like
1. Write a program to generate and plot the following sequences: (a) Unit sample sequence \(\delta(n) \), (b) unit step sequencet \(u(n) \), (c) ramp sequence \(r(n) \), (d) real valued exponential sequence \(x(n) = 0.8^n \) for \(0 \leq n \leq 50 \).
2. Write a program to compute the convolution sum of a rectangle signal (or gate function) with itself for \(N = 5 \)

\[
x(n) = \text{rect}\left(\frac{n}{2n} \right) \Pi \left(\frac{n}{2n} \right) = \begin{cases}
1, & -N \leq n \leq N \\
0, & \text{otherwise}
\end{cases}
\]

3. An LTI system is specified by the difference equation
49

\[y(n) = 0.9y(n-1) + x(n) \]
(a) Determine \(H(e^{jw}) \)
(b) Calculate and plot the steady state response \(Y_s \) to \(x(n) = \cos(0.5\pi n)u(n) \)

4. Given a casual system \(y(n) = 0.9y(n-1)+x(n) \)
(a) Find \(H(z) \) and sketch its pole-zero plot
(b) Plot the frequency response \(|H(e^{jw})| \) and

5. Design a digital filter to eliminate the lower frequency sinusoid of \(\sin(7\pi t) + \sin(200\pi t) \). The sampling frequency is \(f_s = 500 \). Plot its pole zero diagram, magnitude response, input and output of the filter.

6. Let \(x(n) \) be a 4-point sequence:

\[x(n) = \begin{cases} 1 & 0 \leq n \leq 3 \\ 0 & \text{otherwise} \end{cases} \]

Compute the DTFT \(X(e^{jw}) \) and plot its magnitude
(a) Compute and plot the 4 point DFT of \(x(n) \)
(b) Compute and plot the 8 point DFT of \(x(n) \) (by appending 4 zeros)
(c) Compute and plot the 16 point DFT of \(x(n) \) (by appending 12 zeros)

7. Let \(x(n) \) and \(h(n) \) be the two 4-point sequences.

\[x(n) = \begin{bmatrix} 1 & 1 & 2 & 1 \end{bmatrix} \quad h(n) = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix} \]

Write a program to compute their linear convolution using circular convolution.

8. Using a rectangular window, design a FIR low-pass filter with a pass-band gain of unity, cut off frequency of 1000 Hz and working at a sampling frequency of 5 KHz. Take the length of the impulse response as 17.

9. Design an FIR filter to meet the following specifications:
 - Passband edge \(F_p = 2KHz \)
 - Stopband edge \(F_s = 5KHz \)
 - Passband attenuation \(A_p = 2dB \)
 - Stopband attenuation \(A_s = 42dB \)
 - Sampling frequency \(F_s = 20KHz \)

10. The frequency response of a linear phase digital differentiator is given by

\[H_d(e^{jw}) = jwe^{-jw} \quad \text{for} \quad 0 \leq \pi \]

Using a Hamming window of length \(M = 21 \), design a digital FIR differentiator.
Plot the amplitude response.
Reference Books:
1. Digital Signal Processing, Tarun Kumar Rawat, Oxford University Press, India.

Semester –VI

ASTRONOMY AND ASTROPHYSICS

| Name of the Course | PHYSICS-DSE:ASTRONOMY AND ASTROPHYSICS
(Credits: Theory-05, Tutorial-01)
Theory: 72 Lectures |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS604TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>70 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Tutorials: Tutorials/Tutorial Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(Unit I), section C(Unit II), section D(Unit III) and section E(Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 12 marks. Question Number 1. (Section A), will consist of eleven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.
2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and eleven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hours.

Unit-I

Sphere, Geometry of a Sphere, Astronomical Coordinate Systems, Geographical Coordinate Systems, Horizon System, Equatorial System, Diurnal Motion of the Stars, Conversion of Coordinates. Measurement of Time, Sidereal Time, Apparent Solar Time, Mean Solar Time, Equation of Time, Calendar. Basic Parameters of Stars: Determination of Distance by Parallax Method; Brightness, Radiant Flux and Luminosity, Apparent and Absolute magnitude scale, Distance Modulus; Determination of Temperature and Radius of a star; Determination of Masses from Binary orbits; Stellar Spectral Classification, Hertzsprung-Russell Diagram.

(18 Lectures)

Unit-II

Astronomical techniques: Basic Optical Definitions for Astronomy (Magnification Light Gathering Power, Resolving Power and Diffraction Limit, Atmospheric Windows), Optical Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space Telescopes, Detectors and their use with Telescopes (Types of Detectors, detection limits with Telescopes).

(18 Lectures)

Unit-III

Stellar spectra and classification Structure (Atomic Spectra Revisited, Stellar Spectra, Spectral Types and Their Temperature Dependence, Black Body Approximation, H R Diagram, Luminosity Classification)

(18 Lectures)

Unit-IV

Large scale structure & expanding universe: Cosmic Distance Ladder (An Example from Terrestrial Physics, Distance Measurement using Cepheid Variables), Hubble’s Law (Distance-Velocity Relation), Clusters of Galaxies (Virial theorem and Dark Matter).

(18 Lectures)

Reference Books:

- Fundamental of Astronomy (Fourth Edition), H. Karttunen et al. Springer
• Textbook of Astronomy and Astrophysics with elements of cosmology, V.B.Bhatia, Narosa Publication.

Semester - VI

PHYSICS OF DEVICES AND INSTRUMENTS

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-DSE: PHYSICS OF DEVICES AND INSTRUMENTS (Credits: Theory-04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS603TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Lab: Lab Seminar/Lab Attendance = 5+5 marks.

Instructions for Paper Setters and Candidates:
1. The question paper will consist of five sections: Section A(compulsory, covering syllabus from all the units), section B(Unit I), section C(Unit II), section D(Unit III) and section E(Unit IV). Examiner will set nine questions in all, question number 1 (One) will be compulsory and selecting two questions each from Units I, II, III and IV respectively. Each question from section B, C, D and E will carry 09 marks. Question Number 1. (Section A), will consist of seven sub-questions each of 2 marks of types: Multiple Choice Questions (MCQ)/fill in the blanks and/or short answer type questions.
2. The candidate will be required to attempt five questions in all i.e. selecting one question from each sections B, C, D and E and seven sub-questions from section A (Compulsory question number 1). The duration of the examination will be 3 hour.

Unit-I

Devices: Characteristic and small signal equivalent circuits of UJT and JFET. Metalsemiconductor Junction. Metal oxide semiconductor (MOS) device. Ideal MOS and Flat Band voltage. SiO2-Si based MOS. MOSFET– their frequency limits. Enhancement and Depletion Mode MOSFETS, CMOS. Charge coupled devices. Tunnel diode. (14 Lectures)

Unit-II

Power supply and Filters: Block Diagram of a Power Supply, Qualitative idea of C and L Filters. IC Regulators, Line and load regulation, Short circuit protection. Active and Passive Filters, Low Pass, High Pass, Band Pass and band Reject Filters.
Multivibrators: Astable, Monostable and Bistable Multivibrators using transistors.
Phase Locked Loop (PLL): Basic Principles, Phase detector (XOR & edge triggered), Voltage Controlled Oscillator (Basics, varactor). Loop Filter– Function, Loop Filter Circuits, transient response, lock and capture. Basic idea of PLL IC (565 or 4046).

Unit-III

Unit-IV

Introduction to communication systems: Block diagram of electronic communication system, Need for modulation. Amplitude modulation. Modulation Index. Analysis of Amplitude Modulated wave. Sideband frequencies in AM wave. CE Amplitude Modulator. Demodulation of AM wave using Diode Detector. basic idea of Frequency, Phase, Pulse and Digital Modulation including ASK, PSK, FSK.

Reference Books:
- Physics of Semiconductor Devices, S.M. Sze & K.K. Ng, 3rd Ed.2008, John Wiley & Sons
- PC based instrumentation; Concepts & Practice, N.Mathivanan, 2007, Prentice-Hall of India

--
PHYSICS OF DEVICES AND INSTRUMENTS LAB

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PRACTICALS –DSE LAB: PHYSICS OF DEVICES AND INSTRUMENTS (Credits: -02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS603PR</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Experiment = 8 Marks, Written/ Skills= 4 Marks Viva Voce = 4 Marks, Practical Record Book= 4 Marks.

PRACTICALS –DSE LAB: PHYSICS OF DEVICES AND INSTRUMENTS 60 Lectures

Experiments from both Section A and Section B:

Section-A:
1. To design a power supply using bridge rectifier and study effect of C-filter.
2. To design the active Low pass and High pass filters of given specification.
3. To design the active filter (wide band pass and band reject) of given specification.
4. To study the output and transfer characteristics of a JFET.
5. To design a common source JFET Amplifier and study its frequency response.
6. To study the output characteristics of a MOSFET.
7. To study the characteristics of a UJT and design a simple Relaxation Oscillator.
8. To design an Amplitude Modulator using Transistor.
9. To design PWM, PPM, PAM and Pulse code modulation using ICs.
10. To design an Astable multivibrator of given specifications using transistor.
11. To study a PLL IC (Lock and capture range).
12. To study envelope detector for demodulation of AM signal.
13. Study of ASK and FSK modulator.
14. Glow an LED via USB port of PC.
15. Sense the input voltage at a pin of USB port and subsequently glow the LED connected with another pin of USB port.

Section-B:

SPICE/MULTISIM simulations for electrical networks and electronic circuits:
1. To verify the Thevenin and Norton Theorems.
2. Design and analyze the series and parallel LCR circuits.
3. Design the inverting and non-inverting amplifier using an Op-Amp of given gain.
4. Design and Verification of op-amp as integrator and differentiator.
5. Design the 1st order active low pass and high pass filters of given cutoff frequency.
6. Design a Wein’s Bridge oscillator of given frequency.
8. Design 4-bit asynchronous counter using Flip-Flop ICs.
9. Design the CE amplifier of a given gain and its frequency response.
10. Design an Astable multivibrator using IC555 of given duty cycle.

Reference Books:

SKILL ENHANCEMENT COURSE (Any four) (Credit: 04 each) - SEC1 to SEC4

Semester-III

Part A - PHYSICS WORKSHOP SKILL - SEC1

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS - SEC: PHYSICS WORKSHOP SKILL (Credits: Theory-03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS302TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
<tr>
<td>CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance: CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Skill: Project File or Dissertation Seminar/Record = 5+5 marks.</td>
<td></td>
</tr>
</tbody>
</table>

Part B - PHYSICS WORKSHOP SKILL EXAM - SEC1

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS - SEC: PHYSICS WORKSHOP SKILL EXAM (Credits: -01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS302SE</td>
</tr>
<tr>
<td>Semester Term End Skill Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
<tr>
<td>Distribution of Marks: Hands on Skill Test = 15 Marks, Viva Voce = 5 Marks.</td>
<td></td>
</tr>
</tbody>
</table>
PHYSICS - SEC: PHYSICS WORKSHOP SKILL EXAM

▷ Skill based Project or Dissertation work on any topic of syllabus mentioned under Physics Work Shop Skill (PHYS302TH) for Analytical skill/ Problem solving.

Instructions for Paper Setters and Candidates:

1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks,
2. The candidate will be required to attempt five questions in all. The duration of the examination will be 3 hours.

The aim of this course is to enable the students to familiar and experience with various mechanical and electrical tools through hands-on mode

Introduction: Measuring units. Conversion to SI and CGS. Familiarization with meter scale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc. (4 Lectures)

Introduction to prime movers: Mechanism, gear system, wheel, Fixing of gears with motor axel. Lever mechanism, Lifting of heavy weight using lever, braking systems, pulleys, working principle of power generation systems. Demonstration of pulley experiment. (6 Lectures)

Reference Books:

- Performance and design of AC machines – M.G. Say, ELBS Edn.
Semester - III

Part A - COMPUTATIONAL PHYSICS - SEC1

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS -SEC: COMPUTATIONAL PHYSICS (Credits: Theory-03)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory: 30 Lectures</td>
</tr>
<tr>
<td>Code</td>
<td>PHYS303TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
<tr>
<td>CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:</td>
<td></td>
</tr>
<tr>
<td>CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Skill: Project File or Dissertation Seminar/Record = 5+5 marks.</td>
<td></td>
</tr>
</tbody>
</table>

Part B - COMPUTATIONAL PHYSICS SKILL EXAM - SEC1

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: COMPUTATIONAL PHYSICS SKILL EXAM (Credits: -01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain Project file or Dissertation to check Analytic skill/Problem solving in skill exam.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>PHYS303SE</td>
</tr>
<tr>
<td>Semester Term End Skill Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
<tr>
<td>Distribution of Marks:</td>
<td>Hands on Skill Test = 15 Marks, Viva Voce = 5 Marks.</td>
</tr>
</tbody>
</table>

PHYSICS-SEC: COMPUTATIONAL PHYSICS SKILL EXAM

- Skill based Project or Dissertation work on any topic of syllabus mentioned under Physics Work Shop Skill (PHYS303TH) for Analytical skill/ Problem solving.

Instructions for Paper Setters and Candidates:

1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks, the examination will be 3 hours.
2. The candidate will be required to attempt five questions in all. The duration of the examination will be 3 hours.

The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- Use of computer language as a tool in solving physics problems (applications)
- Course will consist of hands on training on the Problem solving on Computers.

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. Algorithms and Flowcharts: Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin (x) as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the

Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements, Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:
1. Exercises on syntax on usage of Object oriented C++/FORTRAN
2. Usage of GUI Windows, Linux Commands, familiarity with DOS commands and working in an editor to write sources codes in FORTRAN.
3. To print out all natural even/odd numbers between given limits.
4. To find maximum, minimum and range of a given set of numbers.
5. Calculating Euler number using exp(x) series evaluated at x=1

Scientific word processing: Introduction to LaTeX: TeX/LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages. Equation representation: Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating table of contents, bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors.

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot. importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot

Hands on exercises:
1. To compile a frequency distribution and evaluate mean, standard deviation etc.
2. To evaluate sum of finite series and the area under a curve.
3. To find the product of two matrices
4. To find a set of prime numbers and Fibonacci series.
5. To write program to open a file and generate data for plotting using Gnuplot.
6. Plotting trajectory of a projectile projected horizontally.
7. Plotting trajectory of a projectile projected making an angle with the horizontally.
8. Creating an input Gnuplot file for plotting a data and saving the output for seeing on
the screen. Saving it as an eps file and as a pdf file.

9. To find the roots of a quadratic equation.

10. Motion of a projectile using simulation and plot the output for visualization.

11. Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.

12. Motion of particle in a central force field and plot the output for visualization.

(9 Lectures)

Reference Books:

- Computer Programming in Fortran 77”. V. Rajaraman (Publisher:PHI).
- Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)

Semester – IV/III

Part A - ELECTRICAL CIRCUITS AND NETWORK SKILLS - SEC2

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: ELECTRICAL CIRCUITS AND NETWORK SKILLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: Theory-03)</td>
</tr>
<tr>
<td></td>
<td>Theory: 30 Lectures</td>
</tr>
<tr>
<td>Code</td>
<td>PHYS402TH/PHYS304TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Skill: Project File or Dissertation Seminar/Record = 5+5 marks.

Part B - ELECTRICAL CIRCUITS AND NETWORK SKILLS EXAM - SEC2

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: ELECTRICAL CIRCUITS AND NETWORK SKILLS EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: -01)</td>
</tr>
<tr>
<td>Maintain Project file or Dissertation to check Analytic skill/Problem solving in skill exam.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>PHYS402SE/PHY304SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Term End Skill Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Hands on Skill Test = 15 Marks, Viva Voce = 5 Marks.
PHYSICS-SEC: ELECTRICAL CIRCUITS AND NETWORK SKILLS EXAM

❖ Skill based Project or Dissertation work on any topic of syllabus mentioned under Electrical Circuits and Network Skills (PHYS402TH/PHYS304TH) for Analytical skill/Problem solving.

Instructions for Paper Setters and Candidates:
1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks,
2. The candidate will be required to attempt five questions in all. The duration of the examination will be 3 hours.

The aim of this course is to enable the students to design and trouble shoots the electrical circuits, networks and appliances through hands-on mode

(3 Lectures)

(4 Lectures)

(4 Lectures)

(3 Lectures)

Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor.

(4 Lectures)

Solid-State Devices: Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources

(3 Lectures)

(4 Lectures)

(5 Lectures)
Reference Books:

- A text book in Electrical Technology - B L Theraja - S Chand & Co.
- A text book of Electrical Technology - A K Theraja
- Performance and design of AC machines - M G Say ELBS Edn.

Semester - IV

Part A - BASIC INSTRUMENTATION SKILLS - SEC2

| Name of the Course | PHYSICS-SEC: BASIC INSTRUMENTATION SKILLS
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: Theory-03)</td>
</tr>
<tr>
<td></td>
<td>Theory: 30 Lectures</td>
</tr>
</tbody>
</table>

Code	PHYS403TH
Semester Term End Examination	50 marks (3 Hrs)
Continuous Comprehensive Assessment (CCA)	30 marks

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks,
Attendance Theory = 05 marks. CCA Skill: Project File or Dissertation Seminar/Record = 5+5 marks.

Part B - BASIC INSTRUMENTATION SKILLS EXAM - SEC2

| Name of the Course | PHYSICS-SEC: BASIC INSTRUMENTATION SKILLS EXAM
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: -01)</td>
</tr>
</tbody>
</table>

| Maintain Project file or Dissertation to check Analytic skill/Problem solving in skill exam. |

| Code | PHYS403SE |
| Semester Term End Skill Examination | 20 marks (3 Hrs) |

Distribution of Marks: Hands on Skill Test = 15 Marks, Viva Voce = 5 Marks.

PHYSICS-SEC: BASIC INSTRUMENTATION SKILLS EXAM

- Skill based Project or Dissertation work on any topic of syllabus mentioned above under Basic Instrumentation Skills (PHYS403TH) for Analytical skill/ Problem solving.

Instructions for Paper Setters and Candidates:

1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks ,
2. The candidate will be required to attempt five questions in all . The duration of the examination will be 3 hours.

This course is to get exposure with various aspects of instruments and their usage through
hands-on mode. Experiments listed below are to be done in continuation of the topics.

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. **Multimeter:** Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance. (4 Lectures)

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. **AC millivoltmeter:** Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance. (4 Lectures)

Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. (6 Lectures)

Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working. (3 Lectures)

Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis. (4 Lectures)

Impedance Bridges & Q-Meters: Block diagram of bridge. working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working principles of a Q-Meter. Digital LCR bridges. (3 Lectures)

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. (3 Lectures)

The test of lab skills will be of the following test items:

1. Use of an oscilloscope.
2. CRO as a versatile measuring device.
3. Circuit tracing of Laboratory electronic equipment.
5. Circuit tracing of Laboratory electronic equipment.
7. Study the layout of receiver circuit.
8. Trouble shooting a circuit.

Laboratory Exercises:

1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
2. To observe the limitations of a multimeter for measuring high frequency voltage and
currents.
3. To measure Q of a coil and its dependence on frequency, using a Q-meter.
4. Measurement of voltage, frequency, time period and phase angle using CRO.
5. Measurement of time period, frequency, average period using universal counter/ frequency counter.
6. Measurement of rise, fall and delay times using a CRO.

Open Ended Experiments:
1. Using a Dual Trace Oscilloscope
2. Converting the range of a given measuring instrument (voltmeter, ammeter)

Reference Books:
- A text book in Electrical Technology - B L Theraja - S Chand and Co.
- Performance and design of AC machines - M G Say ELBS Edn.
- Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

--

Semester - V

Part A - RADIATION SAFETY – SEC3

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: RADIATION SAFETY (Credits: Theory-03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS506TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Skill: Project File or Dissertation Seminar/Record = 5+5 marks.
PHYSICS-SEC: RADIATION SAFETY SKILL EXAM

Skill based Project or Dissertation work on any topic of syllabus mentioned under Radiation Safety (PHYS506TH) for Analytical skill/ Problem solving.

Instructions for Paper Setters and Candidates:

1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks ,
2. The candidate will be required to attempt five questions in all. The duration of the examination will be 3 hours.

The aim of this course is for awareness and understanding regarding radiation hazards and safety. The list of laboratory skills and experiments listed below the course are to be done in continuation of the topics

Basics of Atomic and Nuclear Physics: Basic concept of atomic structure; X rays characteristic and production; concept of bremsstrahlung and auger electron, The composition of nucleus and its properties, mass number, isotopes of element, spin, binding energy, stable and unstable isotopes, law of radioactive decay, Mean life and half life, basic concept of alpha, beta and gamma decay, concept of cross section and kinematics of nuclear reactions, types of nuclear reaction, Fusion, fission. (6 Lectures)

Radiation detection and monitoring devices: Radiation Quantities and Units: Basic idea of different units of activity, KERMA, exposure, absorbed dose, equivalent dose, effective dose, collective equivalent dose, Annual Limit of Intake (ALI) and derived Air Concentration (DAC). Radiation detection: Basic concept and working principle of gas detectors (Ionization Chambers, Proportional Counter, Multi-Wire Proportional Counters (MWPC) and Gieger Muller Counter), Scintillation Detectors (Inorganic and Organic Scintillators), Solid States Detectors and Neutron Detectors, Thermo luminescent Dosimetry.

Application of nuclear techniques: Application in medical science (e.g., MRI, PET, Projection Imaging Gamma Camera, radiation therapy), Archaeology, Art, Crime detection, Mining and oil. Industrial Uses: Tracing, Gauging, Material Modification, Sterization, Food preservation.

Experiments:
1. Study the background radiation levels using Radiation meter

Characteristics of Geiger Muller (GM) Counter:
2. Study of characteristics of GM tube and determination of operating voltage and plateau length using background radiation as source (without commercial source).
4. Study of radiation in various materials (e.g. KSO4 etc.), Investigation of possible radiation in different routine materials by operating GM at operating voltage.
6. Detection of α-particles using reference source & determining its half life using spark counter
7. Gamma spectrum of Gas Light mantle (Source of Thorium)

Reference Books:
2. G.F.Knoll, Radiation detection and measurements
3. Thermoluminescence Dosimetry, Mcklnay, A.F., Bristol, Adam Hilger (Medical Physics Handbook 5)
8. NCRP, ICRP, ICRU, IAEA, AERB Publications.

Semester - V

Part A - APPLIED OPTICS - SEC3

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: APPLIED OPTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: Theory-03)</td>
</tr>
<tr>
<td></td>
<td>Theory: 30 Lectures</td>
</tr>
<tr>
<td>Code</td>
<td>PHYS507TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Skill: Project File or Dissertation Seminar/Record = 5+5 marks.

Part B - APPLIED OPTICS SKILL EXAM – SEC3

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: APPLIED OPTICS SKILL EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Credits: -01)</td>
</tr>
<tr>
<td>Maintain Project file or Dissertation to check Analytic skill/Problem solving in skill exam.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>PHYS507SE</td>
</tr>
<tr>
<td>Semester Term End Skill Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Hands on Skill Test = 15 Marks, Viva Voce = 5 Marks.

PHYSICS-SEC: APPLIED OPTICS SKILL EXAM

❖ Skill based Project or Dissertation work on any topic of syllabus mentioned above under Applied Optics (PHYS507TH) for Analytical skill/Problem solving.

Instructions for Paper Setters and Candidates:

1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks,
2. The candidate will be required to attempt five questions in all. The duration of the examination will be 3 hours.

Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.

(i) Sources and Detectors (9 Lectures)

Experiments on Lasers:
a. Determination of the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid state laser.
b. To find the width of the wire or width of the slit using diffraction pattern obtained by a He-
Ne or solid state laser.
c. To find the polarization angle of laser light using polarizer and analyzer
d. Thermal expansion of quartz using laser

Experiments on Semiconductor Sources and Detectors:
a. V-I characteristics of LED
b. Study the characteristics of solid state laser
c. Study the characteristics of LDR
d. Photovoltaic Cell
e. Characteristics of IR sensor

(ii) **Fourier Optics:**

(6 Lectures)

- Concept of Spatial frequency filtering, Fourier transforming property of a thin lens

Experiments on Fourier Optics:
a. Fourier optic and image processing
 1. Optical image addition/subtraction
 2. Optical image differentiation
 3. Fourier optical filtering
 4. Construction of an optical 4f system
b. Fourier Transform Spectroscopy
 - Fourier Transform Spectroscopy (FTS) is a powerful method for measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry and forensic science.

Experiment:

To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

(iii) **Holography:**

(6 Lectures)

- Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition.

Experiments on Holography and interferometry:

1. Recording and reconstructing holograms
2. Constructing a Michelson interferometer or a Fabry Perot interferometer
3. Measuring the refractive index of air
4. Constructing a Sagnac interferometer
5. Constructing a Mach-Zehnder interferometer
6. White light Hologram

(iv) **Photonics: Fibre Optics**

(9 Lectures)

- Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating

Experiments on Photonics: Fibre Optics
a. To measure the numerical aperture of an optical fibre
b. To study the variation of the bending loss in a multimode fibre
c. To determine the mode field diameter (MFD) of fundamental mode in a single-mode fibre by measurements of its far field Gaussian pattern

d. To measure the near field intensity profile of a fibre and study its refractive index profile

e. To determine the power loss at a splice between two multimode fibre

Reference Books:

Semester - VI

Part A - WEATHER FORECASTING - SEC4

| Name of the Course | PHYSICS-SEC: WEATHER FORECASTING
(Credits: Theory-03)
Theory: 30 Lectures |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS606TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
</tbody>
</table>

CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance:
CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks.
CCA Skill: Project File or Dissertation
Seminor/Record = 5+5 marks.

Part B - WEATHER FORECASTING SKILL EXAM – SEC4

| Name of the Course | PHYSICS-SEC: WEATHER FORECASTING SKILL EXAM
(Credits: -01) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain Project file or Dissertation to check Analytic skill/Problem solving in skill exam.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>PHYS606SE</td>
</tr>
<tr>
<td>Semester Term End Skill Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
</tbody>
</table>

Distribution of Marks: Hands on Skill Test = 15 Marks, Viva Voce = 5 Marks.

PHYSICS-SEC: WEATHER FORECASTING SKILL EXAM

❖ Skill based Project or Dissertation work on any topic of syllabus mentioned under
Weather Forecasting (PHYS606TH) for Analytical skill/ Problem solving.

Instructions for Paper Setters and Candidates:
1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks.
2. The candidate will be required to attempt five questions in all. The duration of the examination will be 3 hours.

The aim of this course is not just to impart theoretical knowledge to the students but to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting techniques

Introduction to atmosphere: Elementary idea of atmosphere: physical structure and composition; compositional layering of the atmosphere; variation of pressure and temperature with height; air temperature; requirements to measure air temperature; temperature sensors: types; atmospheric pressure: its measurement; cyclones and anticyclones: its characteristics.

(9 Lectures)

Measuring the weather: Wind; forces acting to produce wind; wind speed direction: units, its direction; measuring wind speed and direction; humidity, clouds and rainfall, radiation: absorption, emission and scattering in atmosphere; radiation laws.

(4 Lectures)

Weather systems: Global wind systems; air masses and fronts: classifications; jet streams; local thunderstorms; tropical cyclones: classification; tornadoes; hurricanes.

(3 Lectures)

Climate and Climate Change: Climate: its classification; causes of climate change; global warming and its outcomes; air pollution; aerosols, ozone depletion, acid rain, environmental issues related to climate.

(6 Lectures)

Basics of weather forecasting: Weather forecasting: analysis and its historical background; need of measuring weather; types of weather forecasting; weather forecasting methods; criteria of choosing weather station; basics of choosing site and exposure; satellites observations in weather forecasting; weather maps; uncertainty and predictability; probability forecasts.

(8 Lectures)

Demonstrations and Experiments:
1. Study of synoptic charts & weather reports, working principle of weather station.
2. Processing and analysis of weather data:
 (a) To calculate the sunniest time of the year.
 (b) To study the variation of rainfall amount and intensity by wind direction.
 (c) To observe the sunniest/driest day of the week.
 (d) To examine the maximum and minimum temperature throughout the year.
 (e) To evaluate the relative humidity of the day.
 (f) To examine the rainfall amount month wise.
4. Formats and elements in different types of weather forecasts/ warning (both aviation and non aviation)
Reference books:

Semester – VI/III

Part A - RENEWABLE ENERGY AND ENERGY HARVESTING - SEC4

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: RENEWABLE ENERGY AND ENERGY HARVESTING (Credits: Theory-03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>PHYS607TH/PHYS305TH</td>
</tr>
<tr>
<td>Semester Term End Examination</td>
<td>50 marks (3 Hrs)</td>
</tr>
<tr>
<td>Continuous Comprehensive Assessment (CCA)</td>
<td>30 marks</td>
</tr>
<tr>
<td>CCA: Based on Midterm Exam, Class Test/Seminar/Assignments/Quiz and Attendance: CCA Theory: Midterm Exam = 10 marks, Class Test/Seminar/Assignments/Quiz = 05 marks, Attendance Theory = 05 marks. CCA Skill: Project File or Dissertation Seminar/Record = 5+5 marks.</td>
<td></td>
</tr>
</tbody>
</table>

Part B - RENEWABLE ENERGY AND ENERGY HARVESTING SKILL EXAM – SEC4

<table>
<thead>
<tr>
<th>Name of the Course</th>
<th>PHYSICS-SEC: RENEWABLE ENERGY AND ENERGY HARVESTING SKILL EXAM (Credits: -01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain Project file or Dissertation to check Analytic skill/Problem solving in skill exam.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>PHYS607SE/PHYS305SE</td>
</tr>
<tr>
<td>Semester Term End Skill Examination</td>
<td>20 marks (3 Hrs)</td>
</tr>
<tr>
<td>Distribution of Marks:</td>
<td>Hands on Skill Test = 15 Marks, Viva Voce = 5 Marks.</td>
</tr>
</tbody>
</table>

PHYSICS-SEC: RENEWABLE ENERGY AND ENERGY HARVESTING SKILL EXAM

Skill based Project or Dissertation work on any topic of syllabus mentioned under Renewable Energy and Energy Harvesting (PHYS607TH/PHYS305TH) for Analytical skill/Problem solving.
Instructions for Paper Setters and Candidates:

1. Examiner will set seven questions in all covering the entire syllabus each of 10 marks,
2. The candidate will be required to attempt five questions in all. The duration of the examination will be 3 hours.

The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible

(3 Lectures)

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.

(6 Lectures)

(3 Lectures)

(7 Lectures)

Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

(2 Lectures)

Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Human power

(4 Lectures)

Electromagnetic Energy Harvesting: Linear generators, physics mathematical models, recent applications, Carbon captured technologies, cell, batteries, power consumption, Environmental issues and Renewable sources of energy, sustainability.

(5 Lectures)

Demonstrations and Experiments
1. Demonstration of Training modules on Solar energy, wind energy, etc.
2. Conversion of vibration to voltage using piezoelectric materials
3. Conversion of thermal energy into voltage using thermoelectric modules.
Reference Books:

- Non-conventional energy sources - G.D Rai - Khanna Publishers, New Delhi
- Solar energy - M P Agarwal - S Chand and Co. Ltd.
- J. Balfour, M. Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).

--