Annexure B
H.P. University, Summerhill, Shimla

Structure and Syllabus of Botany Honours for B.Sc. Undergraduate Programme

Based on:

U.G.C. Choice Based Credit System (CBCS)
Model Curriculum (Annual Pattern)

(Effective from Academic Session July, 2018 onwards)

IMACHAL PRADESH UNIVERSITY
SUMMER-HILL, SHIMLA-171005
B.Sc. (Honours) Botany

GENERAL INSTRUCTIONS/ GUIDELINES FOR EXECUTION OF CURRICULUM

I. The B.Sc. (Honours) Botany will be of three years duration annually -based Choice Based Credit System [CBCS] course.

II. There will be broadly three types of courses for B.Sc. (Honours) Botany degree program.

1. The Core Courses (14 courses for honours; and 4 discipline specific papers) will be of 6- credits each including 2 credits assigned to the practical component. Thus a candidate will have to pass 14 courses for earning 14 X 6 = 84 credits during six semesters. Each of the 6 credits courses will carry 100 marks. These 100 marks will be split into marks assigned for Theory [TH]: 50 marks; Practical [P]: 20 marks and Internal Assessment [IA]: 30.

2. The Elective Courses will be chosen from a pool of courses and which may be very specific or specialized or advanced or supportive to the discipline/ subject of study or which provides an extended scope or which enables an exposure to some other discipline/ subject/ domain or nurtures the candidate’s proficiency / skill. The Elective Courses will include;

Discipline Specific Elective [DSE] Courses: A total of 4 courses offered under the main discipline/ subject of study is referred to as Discipline Specific Elective. These courses are discipline related and/ or interdisciplinary in nature. A total of 4 X 6 = 24 credits could be accumulated under DSE courses during the Honours degree program.
Generic Elective [GE] Courses: A total of 4 courses of 6-credits each including 2 credits assigned for the practical component of each of these courses i.e. one course per 1st to 4th semester will be studied by the candidates. An elective course chosen from an unrelated discipline/subject, with an intention to seek exposure beyond discipline(s) of choice is called Generic Elective Course. The purpose of this category of papers is to offer the students the option to explore disciplines of interest beyond the choices they make in Core and Discipline Specific Elective papers. Further, a course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa and such electives may also be referred to as Generic Elective Course. A total of $4 \times 6 = 24$ credits could be accumulated under GE courses during the Honours degree program.

2. **Ability Enhancement Compulsory Courses [AECC]:** Ability Enhancement Courses are of two types; Ability Enhancement Compulsory Courses [AECC] and Skill Enhancement Courses [SEC]. A total of $4 \times 4 = 16$ credits could be accumulated under these courses during the Honours degree program i.e. $4 \times 2 = 8$ credits for AECC, and $4 \times 2 = 8$ credits for SEC courses.

The AECC courses are the mandatory courses based upon the content that leads to knowledge enhancement; i. Environment Science and ii. English/ Hindi/ MIL Communication. All these are mandatory courses for obtaining a B.Sc. (Honours) degree in the concerned subject. These courses are mandatory for all disciplines. SEC courses are value-based and/ or skill-based and are aimed at providing hands-on-training, competencies, skills etc. A minimum of two such courses for obtaining an Honours degree are selected amongst the courses designed to provide value-based and/ or skill-based knowledge and may contain both theory and lab/ hands-on training. The main purpose of these courses is to provide students life-skills in hands-on mode so as to increase their employability.

III. Practical [P] component has been included in every core and discipline/generic specific elective paper. The list of practicals to be conducted by the candidates has been provided alongside each of such courses. The marks (20 marks) for the practical examination will be split as follows;
Write up of Practical I: 4 marks
Write up of Practical II: 4 marks
Performance of any one of these practicals: 4 marks
Practical record/ notebook: 4 marks
Viva voce: 4 marks

IV. Classroom Attendance Incentive: Those candidates who have greater than 75% attendance (for those participating in Co-curricular activities, 25% will be added to per cent attendance) will be awarded CCA marks as follows:

- 75% but < 80% 1 marks
- 80% but < 85% 2 marks
- 85 but < 90% 3 marks
- 90% but < 95% 4 marks
- 95% TO 100% 5 marks

V. The admission to B.Sc. (Honours) Botany programme of Himachal Pradesh University will be as per guidelines of Himachal Pradesh University, Shimla from time to time.

i. The candidate should have passed 10+2 (class XII) Examination or its equivalent from a recognized Board/University with any of the three subjects out of Physics, Chemistry and Biology or any other science subjects with 50% or equivalent grade (for SC/ST candidates marks of eligibility will be 45% or equivalent grade).

ii. In case of candidates who are studying in University/ Board/ College/ Schools in any of the foreign countries the eligibility/ Qualifying marks will be the same as recognized/equivalent to 10+2 by the University or the association of the Indian University with 50% marks of equivalent grade (for SC/ST candidates, eligibility will be 45% marks or equivalent grade).
iii. The candidate who has appeared in the qualifying examination but whose result has so far not been declared can also apply but his/her eligibility for the entrance test will be purely provisional subject to the condition that he/she has to produce a passing certificate scoring at least the minimum percentage of marks as prescribed for the qualifying examination on the day and the specified time of counseling.

iv. The candidate shall not be more than 22 years of age as on 01st July of the year of admission. Date of birth as recorded in the Secondary Education Board/University Certificate Only will be considered as authentic.
Preamble

Today plant science is a fusion of the traditional components with the modern aspects of biochemistry, molecular biology and biotechnology. Over the years, plant science (Botany) has shown enormous gain in information and applications owing to tremendous inputs from research in all its aspects. With global recognition of the need for conservation, field plant biologists have contributed significantly in assessing plant diversity. Taxonomists have explored newer dimensions for the classification of plants. New insights have been gained in functional and structural aspects of plant development by utilizing novel tools and techniques for botanical research. Challenging areas of teaching and research have emerged in ecology and reproductive biology. Concern for ever increasing pollution and climate change is at its highest than ever before. Keeping these advancements in view, a revision of the curriculum at the undergraduate level is perfectly timed. From the beginning of 2014-15 session, the Botany students across Indian Universities shall have the benefit of a balanced, carefully-crafted course structure taking care of different aspects of plant science, namely plant diversity, physiology, biochemistry, molecular biology, reproduction, anatomy, taxonomy, ecology, economic botany and the impact of environment on the growth and development of plants. All these aspects have been given due weightage over the six semesters. It is essential for the undergraduate students to acquaint themselves with various tools and techniques for exploring the world of plants up to the subcellular level. A paper on this aspect is proposed to provide such an opportunity to the students before they engage themselves with the learning of modern tools and techniques in plant science. Keeping the employment entrepreneurship in mind, applied courses have also been introduced. These courses shall provide the botany students hands on experience and professional inputs. On the whole, the curriculum is a source of lot of information and is supported by rich resource materials. It is hoped that a student graduating in Botany with the new curriculum will be a complete botanist at Honours level.

Students should be encouraged to opt for atleast 1 or 2 Generic Electives from other Life Sciences like Zoology/Microbiology/Biochemistry/Biotechnology and Chemistry courses.
<table>
<thead>
<tr>
<th>Discipline Specific COURSE(14)</th>
<th>Ability Enhancement Compulsory Course(AEC)(2)</th>
<th>Skill Enhancement Course (SEC) (2)</th>
<th>Discipline Specific Elective (DSE) (4)</th>
<th>GENERIC ELECTIVE: (GE) (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ist year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Algae and Microbiology
BOTA(H)101

Biomolecules and Cell Biology
BOTA(H)102

Mycology and Plantpathology
BOTA(H)103

Archegoniate
BOTA(H)104

Morphology and Anatomy
(BOTA(H) 201)

<table>
<thead>
<tr>
<th>IInd Year</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Economic Botany
BOTA(H) 202

Basics of Genetics
BOTA(H)203

i. Environment Science
EVNS1AECC02

ii. English/Hindi/SKT

SEC -1
Bio fertilizers
BOTA(H) 207
OR
Floriculture
BOTA(H)308

GE-1

GE-2

GE-3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTA(H) 204</td>
<td>Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>BOTA(H) 205</td>
<td>Plant Ecology and Phytogeography</td>
<td></td>
</tr>
<tr>
<td>BOTA(H) 206</td>
<td>Plant Systematics (BOTA(H) 206)</td>
<td></td>
</tr>
<tr>
<td>BOTA(H) 209</td>
<td>Medicinal Botany and Ethnobotany</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>BOTA(H) 210</td>
<td>Mushroom Culture Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>BOTA(H) 211</td>
<td>Intellectual Property Rights</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GE-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IIIrd Year</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Reproductive Biology</td>
<td>DSE-1 Analytical Techniques</td>
<td>Reproductive Biology</td>
</tr>
<tr>
<td>of Angiosperms</td>
<td>in Plant Sciences</td>
<td>of Angiosperms</td>
</tr>
<tr>
<td>BOTA(H) 301</td>
<td>BOTA(H) 305</td>
<td>BOTA(H) 301</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant Breeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOTA(H) 306</td>
<td></td>
</tr>
<tr>
<td>Plant Physiology</td>
<td></td>
<td>Plant Physiology</td>
</tr>
<tr>
<td>(BOTA(H) 302)</td>
<td></td>
<td>(BOTA(H) 302)</td>
</tr>
<tr>
<td>Course Title</td>
<td>Course Code</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Plant Metabolism</td>
<td>BOTA(H) 303</td>
<td>DSE -3 Natural Resource Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOT(AH) 309 OR Research Methodology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOT(AH) 310</td>
</tr>
<tr>
<td>Plant Biotechnology</td>
<td>BOTA(H) 304</td>
<td>DSE-4 Horticultural Practices and Post-Harvest Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOT(AH) 311 OR Industrial and Environmental Microbiology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOT(AH) 312 OR Biostatistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BOT(AH) 313</td>
</tr>
<tr>
<td>Year</td>
<td>COURSE OPTED</td>
<td>COURSE NAME</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>I</td>
<td>Ability Enhancement</td>
<td>i. Environment Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. English/Hindi/ SKT</td>
</tr>
<tr>
<td></td>
<td>Compulsory Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC-I (BOTA(H)101TH)</td>
<td>Algae and Microbiology</td>
</tr>
<tr>
<td></td>
<td>DSC-I Practical (BOTA(H)101PR)</td>
<td>Algae and Microbiology</td>
</tr>
<tr>
<td></td>
<td>DSC-II (BOTA(H)102TH)</td>
<td>Biomolecules and Cell Biology</td>
</tr>
<tr>
<td></td>
<td>DSC-II Practical (BOTA(H)102PR)</td>
<td>Biomolecules and Cell Biology-Practical</td>
</tr>
<tr>
<td></td>
<td>Generic Elective -1</td>
<td>GE-1</td>
</tr>
<tr>
<td></td>
<td>Generic Elective -1 Practical/Tutorial</td>
<td>GE-1 Practical</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>DSC-III (BOTA(H)103TH)</td>
<td>Mycology and Phytopathology</td>
<td>4</td>
</tr>
<tr>
<td>DSC-III Practical (BOTA(H)103PR)</td>
<td>Mycology and Phytopathology Practical</td>
<td></td>
</tr>
<tr>
<td>DSC-IV (BOTA(H)104TH)</td>
<td>Archegoniate</td>
<td>4</td>
</tr>
<tr>
<td>DSC-IV Practical (BOTA(H)104PR)</td>
<td>Archegoniate-Practical</td>
<td>2</td>
</tr>
<tr>
<td>Generic Elective -2 GE-2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Generic Elective -2 Practical GE-2 Practical</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>DSC-V (BOTA(H)201TH)</td>
<td>Morphology and Anatomy</td>
</tr>
<tr>
<td></td>
<td>DSC-V Practical (BOTA(H)201PR)</td>
<td>Morphology and Anatomy- Practical</td>
</tr>
<tr>
<td></td>
<td>DSC-VI (BOTA(H)202TH)</td>
<td>Economic Botany</td>
</tr>
<tr>
<td></td>
<td>DSC-VI Practical (BOTA(H)202PR)</td>
<td>Economic Botany- Practical</td>
</tr>
<tr>
<td></td>
<td>DSC-VII (BOTA(H)203TH)</td>
<td>Genetics</td>
</tr>
<tr>
<td></td>
<td>DSC-VII Practical (BOTA(H)203PR)</td>
<td>Genetics- Practical</td>
</tr>
<tr>
<td></td>
<td>Skill Enhancement Course-1 (BOTA(H)207 or (BOTA(H)208)</td>
<td>SEC-1 Bio fertilizers or Gardening & Floriculture</td>
</tr>
<tr>
<td></td>
<td>Generic Elective -3</td>
<td>GE-3</td>
</tr>
<tr>
<td></td>
<td>Generic Elective -3 Practical</td>
<td>GE-3 Practical</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>DSC-VIII (BOTA(H)204TH)</td>
<td>Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>DSC-VIII Practical (BOTA(H)204PR)</td>
<td>Molecular Biology- Practical</td>
<td>2</td>
</tr>
<tr>
<td>DSC-IX (BOTA(H)205TH)</td>
<td>Plant Ecology and Phytogeography</td>
<td>4</td>
</tr>
<tr>
<td>DSC-IX Practical (BOTA(H)205PR)</td>
<td>Plant Ecology and Phytogeography – practical</td>
<td>2</td>
</tr>
<tr>
<td>DSC-X (BOTA(H)206TH)</td>
<td>Plant Systematics</td>
<td>4</td>
</tr>
<tr>
<td>DSC- X Practical (BOTA(H)206PR)</td>
<td>Plant Systematics Practical</td>
<td>2</td>
</tr>
<tr>
<td>Skill Enhancement Course-2 (BOTA(H) 209) or (BOTA(H) 210) or (BOTA(H) 211)</td>
<td>SEC-2 Medicinal Botany and Ethnobotany or Mushroom Culture Technology or Intellectual Property Rights</td>
<td>4</td>
</tr>
<tr>
<td>Course</td>
<td>Code</td>
<td>Credits</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Generic Elective -4</td>
<td>GE-4</td>
<td>4</td>
</tr>
<tr>
<td>Generic Elective - 4 Practical</td>
<td>GE-4 Practical</td>
<td>2</td>
</tr>
<tr>
<td>DSC-XI (BOTA(H301TH)</td>
<td>Reproductive Biology of Angiosperms</td>
<td>4</td>
</tr>
<tr>
<td>DSC-XI Practical (BOTA(H301PR)</td>
<td>Reproductive Biology of Angiosperms - Practical</td>
<td>2</td>
</tr>
<tr>
<td>DSC-XII (BOTA(H302TH)</td>
<td>Plant Physiology</td>
<td>4</td>
</tr>
<tr>
<td>DSC-XII Practical (BOTA(H302PR)</td>
<td>Plant Physiology - Practical</td>
<td>2</td>
</tr>
<tr>
<td>Discipline Specific Elective -1</td>
<td>DSE-I</td>
<td>4</td>
</tr>
<tr>
<td>(BOTA(H305TH) or (BOTA(H306TH))</td>
<td>Analytical Techniques in Plant Sciences or Plant Breeding</td>
<td>4</td>
</tr>
<tr>
<td>Discipline Specific Elective -1 Practical</td>
<td>DSE-I</td>
<td>2</td>
</tr>
<tr>
<td>(BOTA(H305PR) or (BOTA(H306PR))</td>
<td>Analytical Techniques in Plant Sciences or Plant Breeding</td>
<td>2</td>
</tr>
<tr>
<td>Discipline Specific Elective -2</td>
<td>DSE-2 Specific Elective -2</td>
<td>DSE-2 Bioinformatics or Stress Biology</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>(BOTA(H)307 TH) or (BOTA(H)308TH)</td>
<td>Practical/Tutorial (BOTA(H)307PR) or (BOTA(H)308PR)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discipline Specific Elective -2</th>
<th>DSE-2 Specific Elective -2</th>
<th>DSE-2 Bioinformatics or Stress Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BOTA(H)307 TH) or (BOTA(H)308TH)</td>
<td>Practical/Tutorial (BOTA(H)307PR) or (BOTA(H)308PR)</td>
<td>2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>DSC-XIII</td>
<td>Plant Metabolism</td>
<td>4</td>
</tr>
<tr>
<td>DSC-XIII</td>
<td>Practical/Tutorial</td>
<td>2</td>
</tr>
<tr>
<td>DSC-XIV</td>
<td>Plant Biotechnology</td>
<td>4</td>
</tr>
<tr>
<td>DSC-XIV</td>
<td>Practical/Tutorial</td>
<td>2</td>
</tr>
<tr>
<td>Discipline</td>
<td>Elective -3 Centric</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>Natural Resource Management</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Research Methodology</td>
<td></td>
</tr>
<tr>
<td>Discipline</td>
<td>Elective-4 Centric</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>Horticultural Practices and Post-Harvest Technology</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Industrial and Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>Biostatistics</td>
<td></td>
</tr>
<tr>
<td>Discipline/Elective</td>
<td>Practical</td>
<td>Centric</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>BOTA(H)311PR or BOTA(H)312PR or BOTA(H)313PR</td>
<td>DSE-4 Practical Horticultural Practices and Post-Harvest Technology or Industrial and Environmental Microbiology or Biostatistics</td>
<td>-1</td>
</tr>
<tr>
<td>Total:</td>
<td>148</td>
<td></td>
</tr>
</tbody>
</table>
Structure of B.Sc. Honours Botany under CBCS

Discipline Specific Courses

1. Algae and Microbiology (BOTA(H)101)
2. Biomolecules and Cell Biology (BOTA(H)102)
3. Mycology and Phytopathology (BOTA(H)103)
4. Archegoniate (BOTA(H)104)
5. Morphology and Anatomy (BOTA(H)201)
6. Economic Botany (BOTA(H)202)
7. Genetics (BOTA(H)203)
8. Molecular Biology (BOTA(H)204)
9. Plant Ecology and Phytogeography (BOTA(H)205)
10. Plant Systematics (BOTA(H)206)
11. Reproductive Biology of Angiosperms (BOTA(H)301)
12. Plant Physiology (BOTA(H)302)
13. Plant Metabolism (BOTA(H)303)
14. Plant Biotechnology (BOTA(H)304)

Discipline Specific Electives

1. Analytical Techniques in Plant Sciences (BOTA(H)305)
2. Plant Breeding (BOTA(H)306)
3. Bioinformatics (BOTA(H)307)
4. Stress Biology (BOTA(H)308)
5. Natural Resource Management (BOTA(H)309)
6. Research Methodology (BOTA(H)310)
7. Horticultural Practices and Post-Harvest Technology (BOTA(H)311)
8. Industrial and Environmental Microbiology (BOTA(H)312)
9. Biostatistics (BOTA(H)313)

Generic Electives

1. Biodiversity (Microbes, Algae, Fungi and Archegoniate) (BOTA(H)105)
2. Plant Ecology and Taxonomy (BOTA(H)106)
3. Plant Anatomy and Embryology (BOTA(H)212)
4. Plant Physiology and Metabolism (BOTA(H)213)
5. Economic Botany and Biotechnology (BOTA(H)214)
6. Environmental Biotechnology (BOTA(H)215)
Ability Enhancement Course Compulsory
1. Environmental Science
2. English/Hindi/SKT

Ability Enhancement Courses Elective

1. Biofertilizers (BOTA(H)207)
2. Gardening and Floriculture (BOTA(H)208)
3. Medicinal Botany and Ethnobotany (BOTA(H)209)
4. Mushroom Culture Technology (BOTA(H)210)
5. Intellectual Property Rights (BOTA(H)211)
Core Courses
Core Course I: Phycology and Microbiology
(BOTA(H)101TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Introduction to microbial world
Microbial nutrition, growth and metabolism. Economic importance of viruses with reference to vaccine production, role in research, medicine and diagnostics, as causal organisms of plant diseases. Economic importance of bacteria with reference to their role in agriculture and industry (fermentation and medicine). (7 lectures)

Unit 2: Viruses
Discovery, physiochemical and biological characteristics; classification (Baltimore), general structure with special reference to viroids and prions; replication (general account), DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV). (7 lectures)

Unit 3: Bacteria
Discovery, general characteristics; Types-archaebacteria, eubacteria, wall-less forms (mycoplasma and spheroplasts); Cell structure; Nutritional types; Reproduction-vegetative, asexual and recombination (conjugation, transformation and transduction). (7 lectures)

Unit 4: Algae (8 Lectures)
General characteristics; Ecology and distribution; range of thallus organization; Cell structure and components; cell wall, pigment system, reserve food (of only groups represented in the syllabus), flagella; methods of reproduction; Classification; criteria, system of Fritsch, and evolutionary classification of Lee (only upto groups); Significant contributions of important phycologists (F.E. Fritsch, G.M. Smith, R.N. Singh, T.V. Desikachary, H.D. Kumar, M.O.P.)
Iyengar). Role of algae in the environment, agriculture, biotechnology and industry.

Unit 5: Cyanophyta and Xanthophyta

Ecology and occurrence; Range of thallus organization; Cell structure; Reproduction, Morphology and life-cycle of Nostoc and Vaucheria. (8 lectures)

Unit 6: Chlorophyta and Charophyta

General characteristics; Occurrence; Range of thallus organization; Cell structure; Reproduction. Morphology and life-cycles of Chlamydomonas, Volvox, Oedogonium, Coleochaete, Chara.

Evolutionary significance of Prochloron. (8 lectures)

Unit 7: Phaeophyta and Rhodophyta

Characteristics; Occurrence; Range of thallus organization; Cell structure; Reproduction. Morphology and life-cycles of Ectocarpus, Fucus and Polysiphonia. (12 lectures)

Practical (BOTA(H)101PR)

Microbiology

2. Types of Bacteria to be observed from temporary/permanent slides/photographs. Electron micrographs of bacteria, binary fission, endospore, conjugation, root Nodule.

3. Gram staining.

4. Endospore staining with malachite green using the (endospores taken from soil bacteria).

Phycology

Study of vegetative and reproductive structures of Nostoc, Chlamydomonas (electron micrographs), Volvox, Oedogonium, Coleochaete, Chara, Vaucheria, Ectocarpus, Fucus and Polysiphonia, Prochloron through electron micrographs, temporary preparations and permanent slides.
Suggested Readings

Core Course II: Biomolecules and Cell Biology
(BOTA(H)102TH)

(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Biomolecules
(20 lectures)
Types and significance of chemical bonds; Structure and properties of water; pH and buffers. Carbohydrates: Nomenclature and classification; Monosaccharides; Disaccharides; Oligosaccharides and polysaccharides.
Lipids: Definition and major classes of storage and structural lipids; Fatty acids structure and functions; Essential fatty acids; Triacyl glycerols structure, functions and properties; Phosphoglycerides.
Proteins: Structure of amino acids; Levels of protein structure-primary, secondary, tertiary and quarternary; Protein denaturation and biological roles of proteins.
Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotides; Types of nucleic acids; Structure of A, B, Z types of DNA; Types of RNA; Structure of tRNA.

Unit 2: Bioenergetics (4 lectures)
Laws of thermodynamics, concept of free energy, endergonic and exergonic reactions, coupled reactions, redox reactions. ATP: structure, its role as a energy currency molecule.
Unit 3: Enzymes

(6 lectures)

Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; Classification of enzymes; Features of active site, substrate specificity, mechanism of action (activation energy, lock and key hypothesis, induced - fit theroy), Michaelis – Menten equation, enzyme inhibition and factors affecting enzyme activity.

Unit 4: The cell

(4 lectures)

Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic theory).

Unit 5: Cell wall and plasma membrane

(4 lectures)

Chemistry, structure and function of Plant cell wall. Overview of membrane function; fluid mosaic model; Chemical composition of membranes; Membrane transport – Passive, active and facilitated transport, endocytosis and exocytosis.

Unit 6: Cell organelles (16 lectures)

Nucleus: Structure-nuclear envelope, nuclear pore complex, nuclear lamina, molecular organization of chromatin; nucleolus.

Cytoskeleton: Role and structure of microtubules, microfilaments and intermediary filament.

Chloroplast, mitochondria and peroxisomes: Structural organization; Function;

Semiautonomous nature of mitochondria and chloroplast.

Endomembrane system: Endoplasmic Reticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing; Smooth ER and lipid synthesis, export of proteins and lipids; Golgi Apparatus – organization, protein glycosylation, protein sorting and export from Golgi Apparatus; Lysosomes

Unit 7: Cell division

(6 lectures)

Phases of eukaryotic cell cycle, mitosis and meiosis; Regulation of cell cycle-checkpoints, role of protein kinases.
Practical (BOTA(H)102PR)

1. Qualitative tests for carbohydrates, reducing sugars, non-reducing sugars, lipids and proteins.
2. Study of plant cell structure with the help of epidermal peel mount of Onion/Rhoeo/Crinum.
3. Demonstration of the phenomenon of protoplasmic streaming in Hydrilla leaf.
4. Measurement of cell size by the technique of micrometry.
5. Counting the cells per unit volume with the help of haemocytometer. (Yeast/pollen grains).
6. Study of cell and its organelles with the help of electron micrographs.
7. Cytochemical staining of : DNA- Feulgen and cell wall in the epidermal peel of onion using Periodic Schiff’s (PAS) staining technique.
8. Study the phenomenon of plasmolysis and deplasmolysis.
9. Study the effect of organic solvent and temperature on membrane permeability.
10. Study different stages of mitosis and meiosis.

Suggested Readings

Core Course III: Mycology and Phytopathology
(BOTA(H)103TH)
(Credits: Theory-4, Practical-2)

THEORY Lectures: 60

Unit 1: Introduction to true fungi (6 lectures)
General characteristics; Affinities with plants and animals; Thallus organization; Cell wall composition; Nutrition; Classification.

Unit 2: Chytridiomycota and Zygomycota (5 lecture)
Characteristic features; Ecology and significance; Thallus organisation; Reproduction; Life cycle with reference to Synchytrium, Rhizopus.

Unit 4: Ascomycota (10 lectures)
General characteristics (asexual and sexual fruiting bodies); Ecology; Life cycle, Heterokaryosis and parasexuality; Life cycle and classification with reference to Saccharomyces, Aspergillus, Penicillium, Alternaria, Neurospora and Peziza.

Unit 5: Basidiomycota (8 lectures)
General characteristics; Ecology; Life cycle and Classification with reference to black stem rust on wheat Puccinia (Physiological Specialization), loose and covered smut (symptoms only), Agaricus; Bioluminescence, Fairy Rings and Mushroom Cultivation.

Unit 6: Allied Fungi (3 lectures)
General characteristics; Status of Slime molds, Classification; Occurrence; Types of plasmodia; Types of fruiting bodies.

Unit 7: Oomycota (4 lectures)
General characteristics; Ecology; Life cycle and classification with reference to Phytophthora, Albugo.

Unit 8: Symbiotic associations (4 lectures)
Lichen – Occurrence; General characteristics; Growth forms and range of thallus organization; Nature of associations of algal and fungal partners; Reproduction; Mycorrhiza -Ectomycorrhiza, Endomycorrhiza and their significance.
Unit 8: Applied Mycology

(10 Lectures)

Role of fungi in biotechnology; Application of fungi in food industry (Flavour & texture, Fermentation, Baking, Organic acids, Enzymes, Mycoproteins); Secondary metabolites (Pharmaceutical preparations); Agriculture (Biofertilizers); Mycotoxins; Biological control (Mycofungicides, Mycoherbicides, Mycoinsecticides, Myconematicides); Medical mycology.

Unit 9: Phytopathology

(10 lectures)

Terms and concepts; General symptoms; Geographical distribution of diseases; Etiology; Symptomology; Host-Pathogen relationships; Disease cycle and environmental relation; prevention and control of plant diseases, and role of quarantine. Bacterial diseases – Citrus canker and angular leaf spot of cotton. Viral diseases – Tobacco Mosaic viruses, vein clearing. Fungal diseases – Early blight of potato, Black stem rust of wheat, White rust of crucifers.

Practical (BOTA(H)103PR)

1. Introduction to the world of fungi (Unicellular, coenocytic/septate mycelium, ascocarps & basidiocarps).

2. Rhizopus: study of asexual stage from temporary mounts and sexual structures through permanent slides.

3. Aspergillus and Penicillium: study of asexual stage from temporary mounts. Study of Sexual stage from permanent slides/photographs.

4. Peziza: sectioning through ascocarp.

5. Alternaria: Specimens/photographs and temporary mounts.

6. Puccinia: Herbarium specimens of Black Stem Rust of Wheat and infected Barberry leaves; sections/ mounts of spores on wheat and permanent slides of both the hosts.

7. Agaricus: Specimens of button stage and full grown mushroom; sectioning of gills of Agaricus, fairy rings and bioluminescent mushrooms to be shown.
8. Study of phaneroplasmodium from actual specimens and/or photograph. Study of *Stemonitis* sporangia.

9. *Albugo*: Study of symptoms of plants infected with *Albugo*; asexual phase study through section/temporary mounts and sexual structures through permanent slides.

10. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose) on different substrates. Study of thallus and reproductive structures (soredia and apothecium) through permanent slides. Mycorrhizae: ectomycorrhiza and endomycorrhiza (Photographs)

Suggested Readings

Course IV: Archegoniate

(BOTA(H)104TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Introduction (4 lectures)
Unifying features of archegoniates; Transition to land habit; Alternation of generations.

Unit 2: Bryophytes (6 lectures)
General characteristics; Adaptations to land habit; Classification; Range of thallus organization.

Unit 3: Type Studies - Bryophytes (12 lectures)
Classification (up to family), morphology, anatomy and reproduction of Riccia, Marchantia, Pellia, Porella, Anthoceros, Sphagnum and Funaria; Reproduction and evolutionary trends in Riccia, Marchantia, Anthoceros and Funaria (developmental stages not included). Ecological and economic importance of bryophytes with special reference to Sphagnum.

Unit 4: Pteridophytes (6 lectures)
General characteristics; Classification; Early land plants (Cooksonia and Rhynia).

Unit 5: Type Studies - Pteridophytes (14 lectures)
Classification (up to family), morphology, anatomy and reproduction of Psilotum, Selaginella, Equisetum and Pteris (Developmental details not to be included). Apogamy, and apospory, heterospory and seed habit, telome theory, stelar evolution; Ecological and economic importance.

Unit 6: Gymnosperms (18 lectures)
General characteristics, classification (up to family), morphology, anatomy and reproduction of Cycas, Pinus and Gnetum (Developmental details not to be included); Ecological and economic importance.
Practical (BOTA(H)104PR)

1. **Riccia** – Morphology of thallus.

2. **Marchantia**- Morphology of thallus, whole mount of rhizoids & Scales, vertical section of thallus through Gemma cup, whole mount of Gemmae (all temporary slides), vertical section of Antheridiophore, Archegoniophore, longitudinal section of Sporophyte (all permanent slides).

3. **Anthoceros**- Morphology of thallus, dissection of sporophyte (to show stomata, spores, pseudoelaters, columella) (temporary slide), vertical section of thallus (permanent slide).

4. **Pellia, Porella**- Permanent slides.

5. **Sphagnum**- Morphology of plant, whole mount of leaf (permanent slide only).

6. **Funaria**- Morphology, whole mount of leaf, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridial and archegonial heads, longitudinal section of capsule and protonema.

7. **Psilotum**- Study of specimen, transverse section of synangium (permanent slide).

8. **Selaginella**- Morphology, whole mount of leaf with ligule, transverse section of stem, whole mount of strobilus, whole mount of microsporophyll and megasporophyll (temporary slides), longitudinal section of strobilus (permanent slide).

9. **Equisetum**- Morphology, transverse section of internode, longitudinal section of strobilus, transverse section of strobilus, whole mount of sporangiophore, whole mount of spores (wet and dry) (temporary slide), transverse section of rhizome (permanent slide).

10. **Pteris**- Morphology, transverse section of rachis, vertical section of sporophyll, whole mount of sporangium, whole mount of spores (temporary slides), transverse section of rhizome, whole mount of prothallus with sex organs and young sporophyte (permanent slide).

11. **Cycas**- Morphology (coralloid roots, bulbil, leaf), whole mount of microsporophyll, transverse section of coralloid root, transverse section of rachis,
12. vertical section of leaflet, vertical section of microsporophyll, whole mount of spores (temporary slides), longitudinal section of ovule, transverse section of root (permanent slide).

13. **Pinus** - Morphology (long and dwarf shoots, whole mount of dwarf shoot, male and female cones), transverse section of Needle, transverse section of stem, longitudinal section of / transverse section of male cone, whole mount of microsporophyll, whole mount of Microspores (temporary slides), longitudinal section of female cone, tangential longitudinal section & radial longitudinal sections stem (permanent slide).

14. **Gnetum** - Morphology (stem, male & female cones), transverse section of stem, vertical section of ovule (permanent slide)

15. **Botanical excursion.**

Suggested Readings

IIInd year

Core Course V: Anatomy of Angiosperms
(BOTA(H)201TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Introduction and scope of Plant Anatomy (4 Lectures)
Applications in systematics, forensics and pharmacognosy.

Unit 2: Structure and Development of Plant Body (6 Lectures)
Internal organization of plant body: The three tissue systems, types of cells and tissues. Development of plant body: Polarity, Cytodifferentiation and organogenesis during embryogenic development.

Unit 2: Tissues (12 Lectures)
Classification of tissues; Simple and complex tissues (no phylogeny); cytodifferentiation of tracheary elements and sieve elements; Pits and plasmodesmata; Wall ingrowths and transfer cells, adcrustation and incrustation, Ergastic substances. Hydathodes, cavities, lithocysts and laticifers.

Unit 3: Apical meristems (15 Lectures)
Evolution of concept of organization of shoot apex (Apical cell theory, Histogen theory, Tunica Corpus theory, continuing meristematic residue, cytohistological zonation); Types of vascular bundles; Structure of dicot and monocot stem. Origin, development, arrangement and diversity in size and shape of leaves; Structure of dicot and monocot leaf, Kranz anatomy. Organization of root apex (Apical cell theory, Histogen theory, Korper Kappe theory); Quiescent centre; Root cap; Structure of dicot and monocot root; Endodermis, exodermis and origin of lateral root.

Unit 4: Vascular Cambium and Wood (15 Lectures)
Structure, function and seasonal activity of cambium; Secondary growth in root and stem. Axially and radially oriented elements; Types of rays and axial parenchyma; Cyclic aspects and reaction wood; Sapwood and heartwood; Ring and diffuse
porous wood; Early and late wood, tyloses; Dendrochronology. Development and composition of periderm, rhytidome and lenticels.

Unit 5: Adaptive and Protective Systems (8 Lectures)

Epidermal tissue system, cuticle, epicuticular waxes, trichomes (uni-and multicellular, glandular and nonglandular, two examples of each), stomata (classification); Adcrustation and incrustation; Anatomical adaptations of xerophytes and hydrophytes.

Practical (BOTA(H)201PR)

1. Study of anatomical details through permanent slides/temporary stain mounts/macérations/museum specimens with the help of suitable examples.
3. Distribution and types of parenchyma, collenchyma and sclerenchyma.
4. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibres.
5. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
6. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.
7. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.
9. Stem: monocot, dicot - primary and secondary growth; periderm; lenticels.
10. Leaf: isobilateral, dorsiventral, C4 leaves (Kranz anatomy).

Suggested Readings

Core Course VI: Economic Botany
(BOTA(H)202TH)
(Credits: Theory-4, Practical-2)

THEORY Lectures: 60

Unit 1: Origin of Cultivated Plants (6 lectures)
Concept of Centres of Origin, their importance with reference to Vavilov’s work.
Examples of major plant introductions; Crop domestication and loss of genetic
diversity; evolution of new crops/varieties, importance of germplasm diversity.

Unit 2: Cereals (6 lectures)
Wheat and Rice (origin, morphology, processing & uses); Brief account of millets.

Unit 3: Legumes (6 lectures)
Origin, morphology and uses of Chick pea, Pigeon pea and fodder legumes.
Importance to man and ecosystem.

Unit 4: Sources of sugars and starches (4 lectures)
Morphology and processing of sugarcane, products and by-products of sugarcane
industry. Potato – morphology, propagation & uses.

Unit 5: Spices (6 lectures)
Listing of important spices, their family and part used. Economic importance with
special reference to fennel, saffron, clove and black pepper.

Unit 6: Beverages (4 lectures)
Tea, Coffee (morphology, processing & uses)

Unit 7: Sources of oils and fats (10 lectures)
General description, classification, extraction, their uses and health implications
groundnut, coconut, linseed, soybean, mustard and coconut (Botanical name,
family & uses). Essential Oils: General account, extraction methods, comparison
with fatty oils & their uses.

Unit 8: Natural Rubber (3 lectures)
Para-rubber: tapping, processing and uses.
Unit 9: Drug-yielding plants (8 lectures)
Therapeutic and habit-forming drugs with special reference to Cinchona, Digitalis, Papaver and Cannabis; Tobacco (Morphology, processing, uses and health hazards).

Unit 10: Timber plants (3 Lectures)
General account with special reference to teak and pine.

Unit 11: Fibers (4 lectures)
Classification based on the origin of fibers; Cotton, Coir and Jute (morphology, extraction and uses).

Practical (BOTA(H)302PR)

2. Legumes: Soybean, Groundnut, (habit, fruit, seed structure, micro-chemical tests).
3. Sources of sugars and starches: Sugarcane (habit sketch; cane juice- micro-chemical tests), Potato (habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, w.m. starch grains, micro-chemical tests).
4. Spices: Black pepper, Fennel and Clove (habit and sections).
5. Beverages: Tea (plant specimen, tea leaves), Coffee (plant specimen, beans).
7. Essential oil-yielding plants: Habit sketch of Rosa, Vetiveria, Santalum and Eucalyptus (specimens/photographs).
10. Tobacco: specimen and products of Tobacco.
12. Fiber-yielding plants: Cotton (specimen, whole mount of seed to show lint and fuzz; whole mount of fiber and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fiber).

Suggested Readings

Core Course VII: Genetics
(BOTA(H)203TH)
(Credits: Theory-4, Practical-2)

THEORY

Lectures: 60

Unit 1: Mendelian genetics and its extension (16 lectures)
Mendelism: History; Principles of inheritance; Chromosome theory of inheritance; Autosomes and sex chromosomes; Probability and pedigree analysis; Incomplete dominance and codominance; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy, Recessive and Dominant traits, Penetrance and Expressivity, Numericals; Polygenic inheritance.

Unit 2: Extrachromosomal Inheritance (6 lectures)
Chloroplast mutation: Variegation in Four o’clock plant; Mitochondrial mutations in yeast; Maternal effects-shell coiling in snail; Infective heredity- Kappa particles in *Paramecium*.

Unit 3: Linkage, crossing over and chromosome mapping (12 lectures)
Linkage and crossing over-Cytological basis of crossing over; Recombination frequency, two factor and three factor crosses; Interference and coincidence; Numericals based on gene mapping; Sex Linkage.

Unit 4: Variation in chromosome number and structure (8 lectures)
Deletion, Duplication, Inversion, Translocation, Position effect, Euploidy and Aneuploidy

Unit 5: Gene mutations (6 lectures)
Types of mutations; Molecular basis of Mutations; Mutagens – physical and chemical (Base analogs, deaminating, alkylating and intercalating agents); Detection of mutations: CLB method. Role of Transposons in mutation. DNA repair mechanisms.
Unit 6: Fine structure of gene

Classical vs molecular concepts of gene; Cis-Trans complementation test for functional allelism; Structure of Phage T4, rII Locus.

Unit 6. Population and Evolutionary Genetics

Allele frequencies, Genotype frequencies, Hardy-Weinberg Law, role of natural selection, mutation, genetic drift. Genetic variation and Speciation.

Practical (BOTA(H)203PR)

1. Meiosis through temporary squash preparation.
2. Mendel’s laws through seed ratios. Laboratory exercises in probability and chi-square.
3. Chromosome mapping using point test cross data.
4. Pedigree analysis for dominant and recessive autosomal and sex linked traits.
7. Study of aneuploidy: Down’s, Klinefelter’s and Turner’s syndromes.
8. Photographs/Permanent Slides showing Translocation Ring, Laggards and Inversion Bridge.

Suggested Readings

Core Course VIII: Molecular Biology
(BOTA(H)204TH)

THEORY (Credit : 4) Lectures: 60

Unit 1: Nucleic acids : Carriers of genetic information (4 lectures)
Historical perspective; DNA as the carrier of genetic information (Griffith’s, Hershey & Chase, Avery, McLeod & McCarty, Fraenkel-Conrat’s experiment.

Unit 2. The Structures of DNA and RNA / Genetic Material (10 lectures)
DNA Structure: Miescher to Watson and Crick- historic perspective, DNA structure, Salient features of double helix, Types of DNA, Types of genetic material, denaturation and renaturation, cot curves; Organization of DNA-Prokaryotes, Viruses, Eukaryotes.RNA Structure Organelle DNA -- mitochondria and chloroplast DNA.The Nucleosome Chromatin structure- Euchromatin, Heterochromatin- Constitutive and Facultative heterochromatin.

Unit 2: The replication of DNA (10 lectures)
Chemistry of DNA synthesis (Kornberg’s discovery); General principles – bidirectional, semiconservative and semi discontinuous replication, RNA priming; Various models of DNA replication, including rolling circle, θ (theta) mode of replication, replication of linear ds-DNA, replication of the 5’end of linear chromosome; Enzymes involved in DNA replication.

Unit 3: Central dogma and genetic code (2 lectures)
Key experiments establishing-The Central Dogma (Adaptor hypothesis and discovery of mRNA template), Genetic code (deciphering & salient features)

Unit 4: Transcription (18 lectures)
Transcription in prokaryotes and eukaryotes. Principles of transcriptional regulation; Prokaryotes: Regulation of lactose metabolism and tryptophan synthesis in E.coli. Eukaryotes: transcription factors, heat shock proteins, steroids and peptide hormones; Gene silencing.

Unit 5: Processing and modification of RNA (8 lectures)
Split genes-concept of introns and exons, removal of introns, spliceosome machinery, splicing pathways, group I and group II intron splicing, alternative splicing eukaryotic mRNA processing(5’ cap, 3’ polyA tail); Ribozymes; RNA editing and mRNA transport.
Unit 6: Translation (8 lectures)
Ribosome structure and assembly, mRNA; Charging of tRNA, aminoacyl tRNA synthetases; Various steps in protein synthesis, proteins involved in initiation, elongation and termination of polypeptides; Fidelity of translation; Inhibitors of protein synthesis; Post-translational modifications of proteins.

Practical (BOTA(H)204PR)

1. Preparation of LB medium and raising *E.Coli*.
2. Isolation of genomic DNA from *E.Coli*.
3. DNA isolation from cauliflower head.
4. DNA estimation by diphenylamine reagent/UV Spectrophotometry.
5. Study of DNA replication mechanisms through photographs (Rolling circle, Theta replication and semi-discontinuous replication).
6. Study of structures of prokaryotic RNA polymerase and eukaryotic RNA polymerase II through photographs.
7. Photographs establishing nucleic acid as genetic material (Messelson and Stahl’s, Avery et al, Griffith’s, Hershey & Chase’s and Fraenkel & Conrat’s experiments)
8. Study of the following through photographs: Assembly of Spliceosome machinery; Splicing mechanism in group I & group II introns; Ribozyme and Alternative splicing.

Suggested Readings
Core Course IX: Plant Ecology and Phytogeography
(BOTA(H)205TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Introduction
(4 lectures)
Basic concepts; Levels of organization. Inter-relationships between the living world and the environment, the components and dynamism, homeostasis.

Unit 2: Soil
(8 lectures)
Importance; Origin; Formation; Composition; Physical; Chemical and Biological components; Soil profile; Role of climate in soil development.

Unit 3: Water
(4 lectures)
Importance: States of water in the environment; Atmospheric moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological Cycle; Water in soil; Water table.

Unit 4: Light, temperature, wind and fire
(6 lectures)
Variations; adaptations of plants to their variation.

Unit 5: Biotic interactions
(2 lectures)
Trophic organization, basic source of energy, autotrophy, heterotrophy; symbiosis, commensalism, parasitism; food chains and webs; ecological pyramids; biomass, standing crop.

Unit 6: Population ecology
(4 lectures)
Characteristics and Dynamics .Ecological Speciation

Unit 7: Plant communities
(8 lectures)
Concept of ecological amplitude; Habitat and niche; Characters: analytical and synthetic; Ecotone and edge effect; Dynamics: succession – processes, types; climax concepts.

Unit 8: Ecosystems
(4 lectures)
Structure; Processes; Trophic organisation; Food chains and Food webs; Ecological pyramids.
Unit 9: Functional aspects of ecosystem
(8 lectures)

Principles and models of energy flow; Production and productivity; Ecological efficiencies; Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.

Unit 10: Phytogeography
(12 lectures)

Principles; Continental drift; Theory of tolerance; Endemism; Brief description of major terrestrial biomes (one each from tropical, temperate & tundra); Phytogeographical division of India; Local Vegetation.

Practical
(BOTA(H)205PR)

1. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter.
2. Determination of pH of various soil and water samples (pH meter, universal indicator/Lovibond comparator and pH paper)
3. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.
4. Determination of organic matter of different soil samples by Walkley & Black rapid titration method.
5. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.
6. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.
7. (a). Study of morphological adaptations of hydrophytes and xerophytes (four each).
 (b). Study of biotic interactions of the following: Stem parasite (Cuscuta), Root parasite (Orobanche) Epiphytes, Predation (Insectivorous plants).
8. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).
9. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer’s frequency distribution law.
10. Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.
10. Field visit to familiarise students with ecology of different sites.
Suggested Readings

Core Course X: Plant Systematics
(BOTA(H)206TH)

(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Significance of Plant systematics (12 lectures)
Introduction to systematics; Plant identification, Classification, Nomenclature. Evidences from palynology, cytology, phytochemistry and molecular data. Field inventory; Functions of Herbarium; Important herbaria and botanical gardens of the world and India; Virtual herbarium; E-flora; Documentation: Flora, Monographs, Journals; Keys: Single access and Multi-access.

Unit 2: Taxonomic hierarchy (6 lectures)
Concept of taxa (family, genus, species); Categories and taxonomic hierarchy; Species concept (taxonomic, biological, evolutionary).

Unit 3: Botanical nomenclature (10 lectures)
Principles and rules (ICN); Ranks and names; Typification, author citation, valid publication, rejection of names, principle of priority and its limitations; Names of hybrids.
Unit 4: Systems of classification (12 lectures)

Major contributions of Theophrastus, Bauhin, Tournefort, Linnaeus, Adanson, de Candolle, Bessey, Hutchinson, Takhtajan and Cronquist; Classification systems of Bentham and Hooker (upto series) and Engler and Prantl (upto series); Brief reference of Angiosperm Phylogeny Group (APG III) classification.

Unit 5: Biometrics, numerical taxonomy and cladistics (10 lectures)

Characters; Variations; OTUs, character weighting and coding; Cluster analysis; Phenograms, cladograms (definitions and differences).

Unit 6: Phylogeny of Angiosperms (12 lectures)

Terms and concepts (primitive and advanced, homology and analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly and clades). Origin and evolution of angiosperms; Co-evolution of angiosperms and animals; Methods of illustrating evolutionary relationship (phylogenetic tree, cladogram).

Practical (BOTA(H)206PR)

1. Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker’s system of classification):

- Ranunculaceae - Ranunculus, Delphinium
- Brassicaceae - Brassica, Alyssum / Iberis
- Myrtaceae - Eucalyptus, Callistemon
- Umbelliferae - Coriandrum / Anethum / Foeniculum
- Asteraceae - Sonchus / Launaea, Vernonia / Ageratum, Eclipta / Tridax
- Solanaceae - Solanum nigrum / Withania
- Lamiaceae - Salvia / Ocimum
- Euphorbiaceae - Euphorbia hirta / E. millii, Jatropha
- Liliaceae - Asphodelus / Lilium / Allium
- Poaceae - Triticum / Hordeum / Avena
2. Field visit (local) – Subject to grant of funds from the university.

3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book).

Suggested Readings

Core Course XI: Reproductive Biology of Angiosperms (BOTA(H)301TH)

(Credits: Theory-4, Practical-2)

THEORY Lectures: 60

Unit 1: Introduction (4 lectures)

Unit 2: Reproductive development (6 lectures)
Induction of flowering; flower as a modified determinate shoot. Flower development: genetic and molecular aspects.

Unit 3: Anther and pollen biology (10 lectures)
Anther wall: Structure and functions, microsporogenesis, callose deposition and its significance. Microgametogenesis; Pollen wall structure, MGU (male germ unit) structure, NPC system; Palynology and scope (a brief account); Pollen wall proteins; Pollen viability, storage and germination; Abnormal features: Pseudomonads, polyads, massulae, pollinia.

Unit 4: Ovule (10 lectures)
Structure; Types; Special structures–endothelium, obturator, aril, caruncle and hypostase; Female gametophyte– megasporogenesis (monosporic, bisporic and tetrasporic) and
megagametogenesis (details of Polygonum type); Organization and ultrastructure of mature embryo sac.

Unit 4: Pollination and fertilization (6 lectures)
Pollination types and significance; adaptations; structure of stigma and style; path of pollen tube in pistil; double fertilization.

Unit 5: Self incompatibility (10 lectures)
Basic concepts (interspecific, intraspecific, homomorphic, heteromorphic, GSI and SSI); Methods to overcome self- incompatibility: mixed pollination, bud pollination, stub pollination; Intra-ovarian and in vitro pollination; Modification of stigma surface, parasexual hybridization; Cybrids, in vitro fertilization.

Unit 6: Embryo, Endosperm and Seed (10 lectures)
Structure and types; General pattern of development of dicot and monocot embryo and endosperm; Suspensor: structure and functions; Embryo-endosperm relationship; Nutrition of embryo; Unusual features; Embryo development in Paeonia. Seed structure, importance and dispersal mechanisms

Units 7: Polyembryony and apomixis (6 lectures)
Introduction; Classification; Causes and applications.

Practical (BOTA(H)301PR)

1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular); MMC, spore tetrads, uninucleate, bicelled and dehisced anther stages through slides/micrographs, male germ unit (MGU) through photographs and schematic representation.

3. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs,fresh material), ultrastructure of pollen wall(micrograph); Pollen viability: Tetrazolium test, germination:

4. Calculation of percentage germination in different media using hanging drop method.

5. Ovule: Types-anatropous, orthotropous, amphiotropous/campylotropous, circinotropous, unitegmic, bitemic; Tenuinucellate and crassinucellate; Special structures: Endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/photographs).

6. Female gametophyte through permanent slides/photographs: Types, ultrastructure of mature egg apparatus.
6. Intra-ovarian pollination; Test tube pollination through photographs.

7. Endosperm: Dissections of developing seeds for endosperm with free-nuclear haustoria.

8. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.

Suggested Readings

Core Course XII: Plant Physiology

(BOTA(H)502TH)

(Credits: Theory-4, Practical-2)

THEORY

Lectures: 60

Unit 1: Plant-water relations (10 lectures)

Unit 2: Mineral nutrition (8 lectures)

Essential and beneficial elements, macro and micronutrients, methods of study and use of nutrient solutions, criteria for essentiality, mineral deficiency symptoms, roles of essential elements, chelating agents.

Unit 3: Nutrient Uptake (8 lectures)

Soil as a nutrient reservoir, transport of ions across cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role
of ATP, carrier systems, proton ATPase pump and ion flux, uniport, co-transport, symport, antiport.

Unit 4: Translocation in the phloem

Experimental evidence in support of phloem as the site of sugar translocation. Pressure–Flow Model; Phloem loading and unloading; Source–sink relationship.

Unit 5: Plant growth regulators

Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene, Brassinosteroids and Jasmonic acid.

Unit 6: Physiology of flowering

Photoperiodism, flowering stimulus, florigen concept, vernalization, seed dormancy.

Unit 7: Phytochrome, crytochromes and phototropins

Discovery, chemical nature, role in photomorphogenesis, low energy responses (LER) and high irradiance responses (HIR), mode of action.

Practical (BOTA(H)502PR)

1. Determination of osmotic potential of plant cell sap by plasmolytic method.
2. Determination of water potential of given tissue (potato tuber) by weight method.
4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.

5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
6. To study the phenomenon of seed germination (effect of light).
7. To study the effect of different concentrations of IAA on *Avena* coleoptile elongation (IAA Bioassay).
8. To study the induction of amylase activity in germinating barley grains.

Demonstration experiments
1. To demonstrate suction due to transpiration.
2. Fruit ripening/Rooting from cuttings (Demonstration).
3. Bolting experiment/Avena coleoptile bioassay (demonstration).

Suggested Readings

Semester-VI

Core Course XIII: Plant Metabolism

(BOTA(H)601TH)

(Credits: Theory-4, Practical-2)

THEORY

Lectures: 60

Unit 1: Concept of metabolism

Introduction, anabolic and catabolic pathways, regulation of metabolism, role of regulatory enzymes (allosteric, covalent modulation and Isozymes).

Unit 2: Carbon assimilation

Historical background, photosynthetic pigments, role of photosynthetic pigments (chlorophylls and accessory pigments), antenna molecules and reaction centres, photochemical reactions, photosynthetic electron transport, PSI, PSII, Q cycle, CO₂ reduction, photorespiration, C₄ pathways; Crassulacean acid metabolism; Factors affecting CO₂ reduction.

Unit 3: Carbohydrate metabolism

(2 lectures)
Synthesis and catabolism of sucrose and starch.

Unit 4: Carbon Oxidation (10 lectures)
Glycolysis, fate of pyruvate, regulation of glycolysis, oxidative pentose phosphate pathway, oxidative decarboxylation of pyruvate, regulation of PDH, NADH shuttle; TCA cycle, amphibolic role, anaplerotic reactions, regulation of the cycle, mitochondrial electron transport, oxidative phosphorylation, cyanide-resistant respiration, factors affecting respiration.

Unit 5: ATP Synthesis (8 lectures)
Mechanism of ATP synthesis, substrate level phosphorylation, chemiosmotic mechanism (oxidative and photophosphorylation), ATP synthase, Boyers conformational model, Racker’s experiment, Jagendorf’s experiment; role of uncouplers.

Unit 6: Lipid metabolism (8 lectures)
Synthesis and breakdown of triglycerides, β-oxidation, glyoxylate cycle, gluconeogenesis and its role in mobilisation of lipids during seed germination, α oxidation.

Unit 7: Nitrogen metabolism (8 lectures)
Nitrate assimilation, biological nitrogen fixation (examples of legumes and non-legumes); Physiology and biochemistry of nitrogen fixation; Ammonia assimilation and transamination.

Unit 8: Mechanisms of signal transduction (4 lectures)
Receptor-ligand interactions; Second messenger concept, Calcium calmodulin, MAP kinase cascade.

Practical (BOTA(H)601PR)

1. Chemical separation of photosynthetic pigments.
2. Experimental demonstration of Hill’s reaction.
3. To study the effect of light intensity on the rate of photosynthesis.
4. Effect of carbon dioxide on the rate of photosynthesis.
5. To compare the rate of respiration in different parts of a plant.
6. To demonstrate activity of Nitrate reductase in germinating leaves of different plant sources.
7. To study the activity of lipases in germinating oilseeds and demonstrate mobilization of lipids during germination.
8. Demonstration of fluorescence by isolated chlorophyll pigments.

Suggested Readings

Core Course XIV: Plant Biotechnology (BOTA(H)602TH)

Credits: Theory-4, Practical-2)

THEORY

Lectures: 60

Unit 1: Plant Tissue Culture (16 lectures)

Historical perspective; Composition of media; Nutrient and hormone requirements (role of vitamins and hormones); Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation).

Unit 2: Recombinant DNA technology (12 lectures)

Restriction Endonucleases (History, Types I-IV, biological role and application); Restriction Mapping (Linear and Circular); Cloning Vectors: Prokaryotic (pUC 18 and pUC19, pBR322, Ti plasmid, BAC); Lambda phage, M13 phagemid, Cosmid, Shuttle vector; Eukaryotic Vectors (YAC).
Unit 3: Gene Cloning
(10 lectures)
Recombinant DNA, Bacterial Transformation and selection of recombinant clones, PCR-mediated gene cloning; Gene Construct; construction of genomic and cDNA libraries, screening DNA libraries to obtain gene of interest by genetic selection; complementation, colony hybridization; PCR

Unit 4: Methods of gene transfer
(8 lectures)
Agrobacterium-mediated, Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment; Selection of transgenics—selectable marker and reporter genes (Luciferase, GUS, GFP).

Unit 5: Applications of Biotechnology
(14 lectures)
Pest resistant (Bt-cotton); herbicide resistant plants (RoundUp Ready soybean); Transgenic crops with improved quality traits (Flavr Savr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug); edible vaccines; Industrial enzymes (Aspergillase, Protease, Lipase); Gently Engineered Products—Human Growth Hormone; Humulin; Biosafety concerns.

Practical
(BOTA(H)602PR)

1. (a) Preparation of MS medium.
 (b) Demonstration of in vitro sterilization and inoculation methods using leaf and nodal explants of tobacco, Datura, Brassica etc.
2. Study of anther, embryo and endosperm culture, micropropagation, somatic embryogenesis & artificial seeds through photographs.
3. Isolation of protoplasts.
4. Construction of restriction map of circular and linear DNA from the data provided.
5. Study of methods of gene transfer through photographs: Agrobacterium-mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment.
6. Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savr tomato through photographs.
7. Isolation of plasmid DNA.
8. Restriction digestion and gel electrophoresis of plasmid DNA.

Suggested Readings

Discipline Specific Elective Courses
Discipline Specific Elective Analytical Techniques in Plant Sciences

(BOTA(H)503TH)
(Credits: Theory-4, Practical-2)
THEORY
Lectures: 60

Unit 1: Imaging and related techniques
(15 lectures)
Principles of microscopy; Light microscopy; Fluorescence microscopy; Confocal microscopy; Use of fluorochromes: (a) Flow cytometry (FACS); (b) Applications of fluorescence microscopy: Chromosome banding, FISH, chromosome painting; Transmission and Scanning electron microscopy – sample preparation for electron microscopy, cryofixation, negative staining, shadow casting, freeze fracture, freeze etching.

Unit 2: Cell fractionation
(8 lectures)
Centrifugation: Differential and density gradient centrifugation, sucrose density gradient, CsCl2gradient, analytical centrifugation, ultracentrifugation, marker enzymes.

Unit 3: Radioisotopes
(4 lectures)
Use in biological research, auto-radiography, pulse chase experiment.

Unit 4: Spectrophotometry
(4 lectures)
Principle and its application in biological research.

Unit 5: Chromatography
(8 lectures)
Principle; Paper chromatography; Column chromatography, TLC, GLC, HPLC, Ion-exchange chromatography; Molecular sieve chromatography; Affinity chromatography.

Unit 6: Characterization of proteins and nucleic acids
(6 lectures)
Mass spectrometry; X-ray diffraction; X-ray crystallography; Characterization of proteins and nucleic acids; Electrophoresis: AGE, PAGE, SDS-PAGE
Unit 7: Biostatistics (15 lectures)
Statistics, data, population, samples, parameters; Representation of Data: Tabular, Graphical; Measures of central tendency: Arithmetic mean, mode, median; Measures of dispersion: Range, mean deviation, variation, standard deviation; Chi-square test for goodness of fit.

Practical (BOTA(H)503PR)

1. Study of Blotting techniques: Southern, Northern and Western, DNA fingerprinting, DNA sequencing, PCR through photographs.
2. Demonstration of ELISA.
3. To separate nitrogenous bases by paper chromatography.
4. To separate sugars by thin layer chromatography.
5. Isolation of chloroplasts by differential centrifugation.
6. To separate chloroplast pigments by column chromatography.
7. To estimate protein concentration through Lowry’s methods. 8. To separate proteins using PAGE.
9. To separation DNA (marker) using AGE.
10. Study of different microscopic techniques using photographs/micrographs (freeze fracture, freeze etching, negative staining, positive staining, fluorescence and FISH).
11. Preparation of permanent slides (double staining).

Suggested Readings

Discipline Specific Elective Bioinformatics

(BOTA(H)505TH)

(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1. Introduction to Bioinformatics (5 Lectures)
Introduction, Branches of Bioinformatics, Aim, Scope and Research areas of Bioinformatics.

Unit 2. Databases in Bioinformatics (5 Lectures)
Introduction, Biological Databases, Classification format of Biological Databases, Biological Database Retrieval System.

Unit 3. Biological Sequence Databases (25 Lectures)
National Center for Biotechnology Information (NCBI): Tools and Databases of NCBI, Database Retrieval Tool, Sequence Submission to NCBI, Basic local alignment search tool (BLAST), Nucleotide Database, Protein Database, Gene Expression Database.

EMBL Nucleotide Sequence Database (EMBL-Bank): Introduction, Sequence Retrieval, Sequence Submission to EMBL, Sequence analysis tools.
DNA Data Bank of Japan (DDBJ): Introduction, Resources at DDBJ, Data Submission at DDBJ.
Protein Information Resource (PIR): About PIR, Resources of PIR, Databases of PIR, Data Retrieval in PIR.

Swiss-Prot: Introduction and Salient Features.

Unit 4. Sequence Alignments (10 Lectures)
Introduction, Concept of Alignment, Multiple Sequence Alignment (MSA), MSA by CLUSTALW, Scoring Matrices, Percent Accepted Mutation (PAM), Blocks of Amino Acid Substitution Matrix (BLOSUM).
Unit 5. Molecular Phylogeny

Methods of Phylogeny, Software for Phylogenetic Analyses, Consistency of Molecular Phylogenetic Prediction.

Unit 6. Applications of Bioinformatics

Structural Bioinformatics in Drug Discovery, Quantitative structure-activity relationship (QSAR) techniques in Drug Design, Microbial genome applications, Crop improvement

Practical (BOTA(H)505PR)

1. Nucleic acid and protein databases.
2. Sequence retrieval from databases.
3. Sequence alignment.
4. Sequence homology and Gene annotation.

Suggested Readings

Discipline Specific Elective Stress Biology

(BOTA(H)506TH)

Credits: Theory 4, Practical 2 Lectures:60 Theory

Unit 1: Defining plant stress (2 lectures) Acclimation and adaptation.

Unit 2: Environmental factors (20 lectures)
Water stress; Salinity stress; High light stress; Temperature stress; Hypersensitive reaction; Pathogenesis– related (PR) proteins; Systemic acquired resistance; Mediation of insect and disease resistance by jasmonates.

Unit 3: Stress sensing mechanisms in plants (20 lectures)
Calcium modulation, Phospholipid signaling

Unit 2: Developmental and physiological mechanisms that protect plants against environmental stress (12 lectures)
Adaptation in plants; Changes in root: shoot ratio; Aerenchyna development; Osmotic adjustment; Compatible solute production.

Unit 3: Reactive oxygen species–Production and scavenging mechanisms. (6 lectures)

Practical (BOTA(H)506PR)

1. Quantitative estimation of peroxidase activity in the seedlings in the absence and presence of salt stress.
2. Superoxide activity in seedlings in the absence and presence of salt stress.
4. Zymographic analysis of superoxide dismutase activity.
5. Quantitative estimation and zymographic analysis of catalase.
6. Quantitative estimation and zymographic analysis of glutathione reductase.
7. Estimation of superoxide anions.
Suggested Readings

Discipline Specific Elective Plant Breeding
(BOTA(H)504TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Plant Breeding
(10 lectures)

Unit 2: Methods of crop improvement
(20 lectures)
Introduction: Centres of origin and domestication of crop plants, plant genetic resources; Acclimatization; Selection methods: For self pollinated, cross pollinated and vegetatively propagated plants; Hybridization: For self, cross and vegetatively propagated plants – Procedure, advantages and limitations.

Unit 3: Quantitative inheritance
(10 lectures)
Concept, mechanism, examples of inheritance of Kernel colour in wheat, Skin colour in human beings. Monogenic vs polygenic Inheritance.

Unit 4: Inbreeding depression and heterosis
(10 lectures)
History, genetic basis of inbreeding depression and heterosis; Applications.

Unit 5: Crop improvement and breeding
(10 lectures)
Role of mutations; Polyploidy; Distant hybridization and role of biotechnology in crop improvement.
Suggested Readings

Discipline Specific Elective Natural Resource Management
(BOTA(H)603TH)
(Credits: Theory-4, Practical-2)

THEORY

Lectures: 60 Unit 1: Natural resources (2 lectures)
Definition and types.

Unit 2: Sustainable utilization (8 lectures)
Concept, approaches (economic, ecological and socio-cultural).

Unit 3: Land (8 lectures)
Utilization (agricultural, pastoral, horticultural, silvicultural); Soil degradation and management.

Unit 4: Water (8 lectures)
Fresh water (rivers, lakes, groundwater, aquifers, watershed); Marine; Estuarine; Wetlands; Threats and management strategies.

Unit 5: Biological Resources (12 lectures)
Biodiversity-definition and types; Significance; Threats; Management strategies; Bioprospecting; IPR; CBD; National Biodiversity Action Plan).

Unit 6: Forests (6 lectures)
Definition, Cover and its significance (with special reference to India); Major and minor forestproducts; Depletion; Management.
Unit 7: Energy
Renewable and non-renewable sources of energy

(6 lectures)

Unit 8: Contemporary practices in resource management
EIA, GIS, Participatory Resource Appraisal, Ecological Footprint with emphasis on carbon footprint, Resource Accounting; Waste management.

(8 lectures)

Unit 9: National and international efforts in resource management and conservation

4 lectures)

Practical (BOTA(H)603PR)

1. Estimation of solid waste generated by a domestic system (biodegradable and nonbiodegradable) and its impact on land degradation.
2. Collection of data on forest cover of specific area.
3. Measurement of dominance of woody species by DBH (diameter at breast height) method.
4. Calculation and analysis of ecological footprint.
5. Ecological modeling.

Suggested Readings

Discipline Specific Elective
Horticultural Practices and Post-Harvest Technology
(BOTA(H)605TH)

(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Introduction (4 lectures)
Scope and importance, Branches of horticulture; Role in rural economy and employment generation; Importance in food and nutritional security; Urban horticulture and ecotourism.

Unit 2: Ornamental plants (4 lectures)
Types, classification (annuals, perennials, climbers and trees); Identification and salient features of some ornamental plants [rose, marigold, gladiolus, carnations, orchids, poppies, gerberas, tuberose, sages, cacti and succulents (opuntia, agave and spurge)] Ornamental flowering trees (Indian laburnum, gulmohar, Jacaranda, Lagerstroemia, fishtail and areca palms, semul, coraltree).

Unit 3: Fruit and vegetable crops (4 lectures)
Production, origin and distribution; Description of plants and their economic products; Management and marketing of vegetable and fruit crops; Identification of some fruits and vegetable varieties (citrus, banana, mango, chillies and cucurbits).

Unit 4: Horticultural techniques (8 lectures)
Application of manure, fertilizers, nutrients and PGRs; Weed control; Biofertilizers, biopesticides; Irrigation methods (drip irrigation, surface irrigation, furrow and border irrigation); Hydroponics; Propagation Methods: asexual (grafting, cutting, layering, budding), sexual (seed propagation), Scope and limitations.

Unit 5: Landscaping and garden design (6 lectures)
Planning and layout (parks and avenues); gardening traditions - Ancient Indian, European, Mughal and Japanese Gardens; Urban forestry; policies and practices.
Unit 6: Floriculture (6 lectures)
Cut flowers, bonsai, commerce (market demand and supply); Importance of flower shows and exhibitions.

Unit 7: Post-harvest technology (10 lectures)
Importance of post harvest technology in horticultural crops; Evaluation of quality traits; Harvesting and handling of fruits, vegetables and cut flowers; Principles, methods of preservation and processing; Methods of minimizing loses during storage and transportation; Food irradiation - advantages and disadvantages; food safety.

Unit 8: Disease control and management (8 lectures)
Field and post-harvest diseases; Identification of deficiency symptoms; remedial measures and nutritional management practices; Crop sanitation; IPM strategies (genetic, biological and chemical methods for pest control); Quarantine practices; Identification of common diseases and pests of ornamentals, fruits and vegetable crops.

Unit 9: Horticultural crops - conservation and management (10 lectures)
Documentation and conservation of germplasm; Role of micropropagation and tissue culture techniques; Varieties and cultivars of various horticultural crops; IPR issues; National, international and professional societies and sources of information on horticulture.

Unit 10: Field trip
Field visits to gardens, standing crop sites, nurseries, vegetable gardens and horticultural fields at IARI or other suitable locations.

Suggested Readings

Discipline Specific Elective Research Methodology
(BOTA(H)604TH)

Credit: Theory 4; Practical 2 Lectures: 60

Theory

Unit 1: Basic concepts of research (10 lectures)
Research-definition and types of research (Descriptive vs analytical; applied vs fundamental; quantitative vs qualitative; conceptual vs empirical). Research methods vs methodology. Literature-review and its consolidation; Library research; field research; laboratory research.

Unit 2: General laboratory practices (12 lectures)

Unit 3: Data collection and documentation of observations (6 lectures)
Maintaining a laboratory record; Tabulation and generation of graphs. Imaging of tissuespecimens and application of scale bars. The art of field photography.

Unit 4: Overview of Biological Problems (6 lectures)
History; Key biology research areas, Model organisms in biology (A Brief overview): Genetics, Physiology, Biochemistry, Molecular Biology, Cell Biology, Genomics, Proteomics Transcriptional regulatory network.

Unit 5: Methods to study plant cell/tissue structure (6 lectures)
Whole mounts, peel mounts, squash preparations, clearing, maceration and sectioning; Tissue preparation: living vs fixed, physical vs chemical fixation, coagulating fixatives, non-coagulant fixatives; tissue dehydration using graded solvent series; Paraffin and plastic infiltration; Preparation of thin and ultrathin sections.

Unit 6: Plant microtechniques (12 lectures)
Staining procedures, classification and chemistry of stains. Staining equipment. Reactive dyes and fluorochromes (including genetically engineered protein labeling with GFP and other tags). Cytogenetic techniques with squashed plant materials.
Unit 7: The art of scientific writing and its presentation (8 lectures)

Numbers, units, abbreviations and nomenclature used in scientific writing. Writing references. Powerpoint presentation. Poster presentation. Scientific writing and ethics, Introduction to copyright-academic misconduct/plagiarism.

Practical (BOTA(H)604PR)

1. Experiments based on chemical calculations.
2. Plant microtechnique experiments.
3. The art of imaging of samples through microphotography and field photography.
4. Poster presentation on defined topics.
5. Technical writing on topics assigned.

Suggested Readings

Discipline Specific Elective Industrial and Environmental Microbiology
(BOTA(H)606TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Scope of microbes in industry and environment (6 lectures)

Unit 2: Bioreactors/Fermenters and fermentation processes (12 lectures)

Solid-state and liquid-state (stationary and submerged) fermentations; Batch and continuous fermentations. Components of a typical bioreactor, Types of bioreactors-laboratory, pilotscale and production fermenters; Constantly stirred tank fermenter, tower fermenter, fixed bed and fluidized bed bioreactors and air-lift fermenter.

A visit to any educational institute/ industry to see an industrial fermenter, and other downstream processing operations.
Unit 3: Microbial production of industrial products (12 lectures)
Microorganisms involved, media, fermentation conditions, downstream processing and uses; Filtration, centrifugation, cell disruption, solvent extraction, precipitation and ultrafiltration, lyophilization, spray drying; Hands on microbial fermentations for the production and estimation (qualitative and quantitative) of Enzyme: amylase or lipase activity, Organic acid (citric acid or glutamic acid), alcohol (Ethanol) and antibiotic (Penicillin).

Unit 4: Microbial enzymes of industrial interest and enzyme immobilization (8 lectures)
Microorganisms for industrial applications and hands on screening microorganisms for casein hydrolysis; starch hydrolysis; cellulose hydrolysis. Methods of immobilization, advantages and applications of immobilization, large scale applications of immobilized enzymes (glucose isomerase and penicillin acylase).

Unit 5: Microbes and quality of environment. (6 lectures)
Distribution of microbes in air; Isolation of microorganisms from soil, air and water.

Unit 6: Microbial flora of water. (8 lectures)
Water pollution, role of microbes in sewage and domestic waste water treatment systems. Determination of BOD, COD, TDS and TOC of water samples; Microorganisms as indicators of water quality, check coliform and fecal coliform in water samples.

Unit 7: Microbes in agriculture and remediation of contaminated soils. (8 lectures)
Biological fixation; Mycorrhizae; Bioremediation of contaminated soils. Isolation of root nodulating bacteria, arbuscular mycorrhizal colonization in plant roots.

Practical

1. Principles and functioning of instruments in microbiology laboratory
2. Hands on sterilization techniques and preparation of culture media.

Suggested Readings

Discipline Specific Elective Biostatistics
(BOTA(H)607TH)
(Credits: Theory-4, Practical-2)
THEORY
Lectures: 60

Unit 1: Biostatistics
Definition - statistical methods - basic principles. Variables - measurements, functions, limitations and uses of statistics.

Unit 2: Collection of data primary and secondary
Types and methods of data collection procedures - merits and demerits. Classification - tabulation and presentation of data - sampling methods.

Unit 3: Measures of central tendency
Mean, median, mode, geometric mean - merits & demerits. Measures of dispersion - range, standard deviation, mean deviation, quartile deviation - merits and demerits; Co-efficient of variations.

Unit 4: Correlation
Types and methods of correlation, regression, simple regression equation, fitting prediction, similarities and dissimilarities of correlation and regression.

Unit 5: Statistical inference
Hypothesis - simple hypothesis - student 't' test - chi square test.

Practical
(BOTA(H)607PR)
1) Calculation of mean, standard deviation and standard error
2) Calculation of correlation coefficient values and finding out the probability
3) Calculation of ‘F’ value and finding out the probability value for the F value.

Suggested Readings
5. The Principles of scientific research, Freedman, P. New York, Pergamon Press.
Generic Elective Courses
Generic Elective Biodiversity (Microbes, Algae, Fungi and Archegoniate)
(BOTA(H)103TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Microbes
Viruses – Discovery, general structure, replication (general account), DNA virus (T-phage); Lytic and lysogenic cycle, RNA virus (TMV); Economic importance; Bacteria – Discovery, General characteristics and cell structure; Reproduction – vegetative, asexual and recombination (conjugation, transformation and transduction); Economic importance.

Unit 2: Algae
General characteristics; Ecology and distribution; Range of thallus organization and reproduction; Classification of algae; Morphology and life-cycles of the following: Nostoc, Chlamydomonas, Oedogonium, Vaucheria, Ectocarpus, Polysiphonia. Economic importance of algae.

Unit 3: Fungi
Introduction- General characteristics, ecology and significance, range of thallus organization, cell wall composition, nutrition, reproduction and classification; General characteristics and life cycle of Phytophthora, Rhizopus (Zygomycota) Penicillium, Venturia (Ascomycota), Puccinia, Agaricus (Basidiomycota); Symbiotic Associations-Lichens: General account, reproduction and significance; Mycorrhiza: ectomycorrhiza and endomycorrhiza and their significance.

Unit 4: Introduction to Archegoniate
Unifying features of archegoniates, Transition to land habit, Alternation of generations.

Unit 5: Bryophytes
General characteristics, adaptations to land habit, Classification, Range of thallus organization. Classification (up to family), morphology, anatomy and reproduction of Marchantia and Funaria. (Developmental details not to be included). Ecology and economic importance of bryophytes with special mention of Sphagnum.

Unit 6: Pteridophytes
General characteristics, classification, Early land plants (Cooksonia and Rhynia). Classification (up to family), morphology, anatomy and reproduction of Selaginella, Equisetum and Adiantum (Developmental details not to be included). Heterospory and seed habit, stelar evolution. Ecological and economical importance of Pteridophytes.
Unit 7: Gymnosperms

General characteristics; Classification (up to family), morphology, anatomy and reproduction of *Cycas* and *Pinus* (Developmental details not to be included). Ecological and economical importance.

Practical (BOTA(H)103PR)

1. EMs/Models of viruses – T-Phage and TMV, Line drawing/Photograph of Lytic and Lysogenic Cycle.
2. Types of Bacteria from temporary/permanent slides/photographs; EM bacterium; Binary Fission; Conjugation; Structure of root nodule.
3. Gram staining

4. Study of vegetative and reproductive structures of *Nostoc, Chlamydomonas* (electron micrographs), *Oedogonium, Vaucheria, Fucus* and *Polysiphonia* through temporary preparations and permanent slides. (*Fucus* - Specimen and permanent slides)
5. *Rhizopus and Penicillium*: Asexual stage from temporary mounts and sexual structure through permanent slides.
7. *Puccinia*: Herbarium specimens of Black Stem Rust of Wheat and infected Barberry leaves; section/tease mounts of spores on Wheat and permanent slides of both the hosts.
8. *Agaricus*: Specimens of button stage and full grown mushroom; Sectioning of gills of *Agaricus*.
9. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose)
10. Mycorrhiza: ecto mycorrhiza and endo mycorrhiza (Photographs)

11. *Marchantia*: morphology of thallus, w.m. rhizoids and scales, v.s. thallus through gemma cup, w.m. gemmae (all temporary slides), v.s. antheridiophore, archegoniophore, l.s. sporophyte (all permanent slides).
12. *Funaria*: morphology, w.m. leaf, rhizoids, operculum, peristome, annulus, spores(temporary slides); permanent slides showing antheridial and archegonial heads, l.s. capsule and protonema.
13. *Selaginella*: morphology, w.m. leaf with ligule, t.s. stem, w.m. strobilus, w.m.microsporophyll and megasporophyll (temporary slides), l.s. strobilus (permanent slide).
14. *Equisetum*: morphology, t.s. internode, l.s. strobilus, t.s. strobilus, w.m. sporangiophore, w.m. spores (wet and dry)(temporary slides); t.s rhizome (permanent slide).
15. **Pteris**- morphology, t.s. rachis, v.s. sporophyll, w.m. sporangium, w.m. spores (temporary slides), t.s. rhizome, w.m. prothallus with sex organs and young sporophyte (permanent slide).

16. **Cycas**- morphology (coralloid roots, bulbil, leaf), t.s. coralloid root, t.s. rachis, v.s. leaflet, v.s. microsporophyll, w.m. spores (temporary slides), l.s. ovule, t.s. root (permanent slide).

17. **Pinus**- morphology (long and dwarf shoots, w.m. dwarf shoot, male and female), w.m. dwarf shoot, t.s. needle, t.s. stem, l.s./t.s. male cone, w.m. microsporophyll, w.m. microspores (temporary slides), l.s. female cone, t.l.s. & r.l.s. stem (permanent slide).

Suggested Readings

Generic Elective
Plant Ecology and Taxonomy
(BOTA(H)203TH)
(Credits: Theory-4, Practical-2)
THEORY
Lectures: 60

Unit 1: Introduction (2 lectures)

Unit 2: Ecological factors (10 lectures)

Unit 3: Plant communities (6 lectures)
Characters; Ecotone and edge effect; Succession; Processes and types

Unit 4: Ecosystem (8 lectures)
Structure; energy flow trophic organisation; Food chains and food webs, Ecological pyramids production and productivity; Biogeochemical cycling; Cycling of carbon, nitrogen and Phosphorous

Unit 5: Phytogeography (4 lectures)
Principle biogeographical zones; Endemism

Unit 6 Introduction to plant taxonomy (2 lectures)
Identification, Classification, Nomenclature.

Unit 7 Identification (4 lectures)
Functions of Herbarium, important herbaria and botanical gardens of the world and India; Documentation: Flora, Keys: single access and multi-access

Unit 8 Taxonomic evidences from palynology, cytology, phytochemistry and molecular data. (6 lectures)

Unit 9 Taxonomic hierarchy (2 lectures)
Ranks, categories and taxonomic groups

Unit 10 Botanical nomenclature (6 lectures)
Principles and rules (ICN); ranks and names; binominal system, typification, author citation, valid publication, rejection of names, principle of priority and its limitations.

Unit 11 Classification (6 lectures)
Types of classification-artificial, natural and phylogenetic. Bentham and Hooker (upto series), Engler and Prantl (upto series).
Unit 12 Biometrics, numerical taxonomy and cladistics (4 lectures)
Characters; variations; OTUs, character weighting and coding; cluster analysis; phenograms, cladograms (definitions and differences).

Practical (BOTA(H)203PR)

1. Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer/hygrometer, rain gauge and lux meter.
2. Determination of pH, and analysis of two soil samples for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency by rapid field test.
3. Comparison of bulk density, porosity and rate of infiltration of water in soil of three habitats.
4. (a) Study of morphological adaptations of hydrophytes and xerophytes (four each).
 (b) Study of biotic interactions of the following: Stem parasite (Cuscuta), Root parasite (Orobanche), Epiphytes, Predation (Insectivorous plants)
5. Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus by species area curve method. (species to be listed)
6. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer’s frequency distribution law
7. Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker’s system of classification): Brassicaceae - Brassica, Alyssum / Iberis; Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax; Solanaceae - Solanum nigrum, Withania; Lamiaceae - Salvia, Ocimum; Liliaceae - Asphodelus / Lilium / Allium.
8. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book).

Suggested Readings

Generic Elective
Plant Anatomy and Embryology
(BOTA(H)308TH)

(Credits: Theory-4, Practical-2)
THEORY Lectures: 60

Unit 1: Meristematic and permanent tissues (8 lectures)
Root and shoot apical meristems; Simple and complex tissues

Unit 2: Organs (4 lectures)
Structure of dicot and monocot root stem and leaf.

Unit 3: Secondary Growth (8 lectures)
Vascular cambium – structure and function, seasonal activity. Secondary growth in root and stem, Wood (heartwood and sapwood)

Unit 4: Adaptive and protective systems (8 lectures)
Epidermis, cuticle, stomata; General account of adaptations in xerophytes and hydrophytes.

Unit 5: Structural organization of flower (8 lectures)
Structure of anther and pollen; Structure and types of ovules; Types of embryo sacs, organization and ultrastructure of mature embryo sac.

Unit 6: Pollination and fertilization (8 lectures)
Pollination mechanisms and adaptations; Double fertilization; Seed-structure appendages and dispersal mechanisms.

Unit 7: Embryo and endosperm (8 lectures)
Endosperm types, structure and functions; Dicot and monocot embryo; Embryo-endosperm relationship

Unit 8: Apomixis and polyembryony (8 lectures)
Definition, types and Practical applications

Practical (BOTA(H)308PR)

1. Study of meristems through permanent slides and photographs.
2. Tissues (parenchyma, collenchyma and sclerenchyma); Macerated xylary elements, Phloem (Permanent slides, photographs)

5. Leaf: Dicot and Monocot leaf (only Permanent slides).

6. Adaptive anatomy: Xerophyte (*Nerium* leaf); Hydrophyte (*Hydrilla* stem).

7. Structure of anther (young and mature), tapetum (amoeboid and secretory) (Permanent slides).

8. Types of ovules: anatropous, orthotropous, circinotropous, amphitropous/campylotropous.

10. Ultrastructure of mature egg apparatus cells through electron micrographs.

11. Pollination types and seed dispersal mechanisms (including appendages, aril, caruncle) (Photographs and specimens).

12. Dissection of embryo/endosperm from developing seeds.

13. Calculation of percentage of germinated pollen in a given medium.

Suggested Readings

Generic Elective
Plant Physiology and Metabolism
(BOTA(H)309TH)

(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Plant-water relations (8 lectures)
Importance of water, water potential and its components; Transpiration and its significance; Factors affecting transpiration; Root pressure and guttation.

Unit 2: Mineral nutrition (8 lectures)
Essential elements, macro and micronutrients; Criteria of essentiality of elements; Role of essential elements; Transport of ions across cell membrane, active and passive transport, carriers, channels and pumps.

Unit 3: Translocation in phloem (6 lectures)
Composition of phloem sap, girdling experiment; Pressure flow model; Phloem loading and unloading.

Unit 4: Photosynthesis (12 lectures)
Photosynthetic Pigments (Chl a, b, xanthophylls, carotene); Photosystem I and II, reaction center, antenna molecules; Electron transport and mechanism of ATP synthesis; C3, C4 and CAM pathways of carbon fixation; Photorespiration.

Unit 5: Respiration (6 lectures)
Glycolysis, anaerobic respiration, TCA cycle; Oxidative phosphorylation, Glyoxylate, Oxidative Pentose Phosphate Pathway.

Unit 6: Enzymes (4 lectures)
Structure and properties; Mechanism of enzyme catalysis and enzyme inhibition.

Unit 7: Nitrogen metabolism (4 lectures)
Biological nitrogen fixation; Nitrate and ammonia assimilation.

Unit 8: Plant growth regulators (6 lectures)
Discovery and physiological roles of auxins, gibberellins, cytokinins, ABA, ethylene.

Unit 9: Plant response to light and temperature (6 lectures)
Photoperiodism (SDP, LDP, Day neutral plants); Phytochrome (discovery and structure), red and far red light responses on photomorphogenesis; Vernalization.

Practical (BOTA(H)309PR)

1. Determination of osmotic potential of plant cell sap by plasmolytic method.
2. To study the effect of two environmental factors (light and wind) on transpiration by excised twig.
3. Calculation of stomatal index and stomatal frequency of a mesophyte and a xerophyte.
4. Demonstration of Hill reaction.
5. Demonstrate the activity of catalase and study the effect of pH and enzyme concentration.
6. To study the effect of light intensity and bicarbonate concentration on O2 evolution in photosynthesis.
7. Comparison of the rate of respiration in any two parts of a plant.
8. Separation of amino acids by paper chromatography.

Demonstration experiments (any four)

1. Bolting.
2. Effect of auxins on rooting.
3. Suction due to transpiration.
4. R.Q.
5. Respiration in roots.

Suggested Readings

Generic Elective
Economic Botany and Plant Biotechnology
(BOTA(H)409TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Cultivated Plants (4 Lectures)
Introduction, Research centres, Concept of centres of origin, their importance with reference to
Vavilov’s work

Unit 2: Cereals (6 Lectures)
Wheat and Rice -Origin, morphology, uses

Unit 3: Pulses & Vegetables (4 Lectures)
General account with special reference to Gram, soybean and
Potato

Unit 4: Spices (3 Lectures)
General account with special reference to clove, black pepper, cinnamon, Ginger and Turmeric
(Botanical name, family, part used, morphology and uses)

Unit 5: Beverages (4 Lectures)
Tea and Coffee (morphology, processing, uses)

Unit 6: Oils and Sugar (4 Lectures)
General description with special reference to groundnut and sugarcane

Unit 7: Fibre Yielding Plants (4 Lectures)
General description with special reference to Cotton (Botanical name, family, part used,
morphology and uses)

Unit 8: Medicinal Plants
Brief account of Ocimum, Tinospora, Aloe, Rauvolfia, Emblica and Catharanthus (3 Lecture)

Unit 9: Introduction to Biotechnology (10 Lectures)
Tissue culture techniques, Micropropagation; haploid production through androgenesis and
gynogenesis; brief account of embryo & endosperm culture; Applications of plant tissue culture in
agriculture, horticulture and forestry.

Unit 10: Biotechnological Techniques
Introduction to r-DNA, Cloning vehicles, Gene transfer
techniques in plants, Transgenic plants, Agarose electrophoresis, Blotting techniques: Northern,
Southern and Western Blotting, DNA Fingerprinting; Molecular DNA markers i.e. RAPD, RFLP,
SNPs; DNA sequencing, PCR and Reverse Transcriptase-PCR. ELISA. (18 Lectures)
Practical (BOTA(H)409PR)

1. Study of economically important plants: Wheat, Gram, Soybean, Black pepper, Clove Tea, Cotton, Groundnut through specimens, sections and microchemical tests. Familiarization with basic equipments in tissue culture.
2. Study through photographs: Anther culture, somatic embryogenesis, endosperm and embryo culture; micropropagation.
3. Study of molecular techniques: PCR, Blotting techniques, AGE and PAGE.

Suggested Readings

Generic Elective

Environmental Biotechnology (BOTA(H)410TH)
(Credits: Theory-4, Practical-2)

THEORY
Lectures: 60

Unit 1: Environment
(4 lectures)

Basic concepts and issues, global environmental problems - ozone depletion, UV-B, greenhouse effect and acid rain due to anthropogenic activities, their impact and biotechnological approaches for management.

Unit 2: Environmental problems
(6 lectures)

Environmental pollution - types of pollution, sources of pollution, measurement of pollution, methods of measurement of pollution, fate of pollutants in the environment, Bioconcentration, bio/geomagnification.

Unit 3: Microbiology of waste water treatment
(8 lectures)

Aerobic process - activated sludge, oxidation ponds, trickling filter, towers, rotating discs, rotating drums, oxidation ditch. Anaerobic process - anaerobic digestion,
anaerobic filters, up-flow anaerobic sludge blanket reactors. Treatment schemes for waste waters of dairy, distillery, tannery, sugar and antibiotic industries.

Unit 4: Xenobiotic compounds (10 lectures)

Organic (chlorinated hydrocarbons, substituted simple aromatic compounds, polyaromatic hydrocarbons, pesticides, surfactants) and inorganic (metals, radionuclides, phosphates, nitrates). Bioremediation of xenobiotics in environment - ecological consideration, decay behavior and degradative plasmids, molecular techniques in bioremediation.

Unit 5: Role of immobilized cells/enzymes in treatment of toxic compounds (6 lectures)

Biopesticides, bioreactors, bioleaching, biomining, biosensors, biotechniques for air pollution abatement and odour control.

Unit 6: Sustainable Development (8 lectures)

Economics and Environment: Economic growth, Gross National Productivity and the quality of life, Tragedy of Commons, Economics of Pollution control, Cost-benefit and cost effectiveness analysis, WTO and Environment, Corporate Social Responsibility, Environmental awareness and Education; Environmental Ethics.

Unit 7: International Legislations, Policies for Environmental Protection (6 lectures)

Unit 8: National Legislations, Policies for Pollution Management (6 lectures)

Unit 9: Public Participation for Environmental Protection (6 lectures)

Environmental movement and people’s participation with special references to Gandhamardan, Chilika and Narmada Bachao Andolan, Chipko and Silent valley Movement; Women and Environmental Protection, Role of NGO in bringing environmental awareness and education in the society.
Practical (BOTA(H)410PR)

1. Water/Soil analysis - DO, salinity, pH, chloride, total hardness, alkalinity, acidity, nitrate, calcium, Magnesium and phosphorus.
2. Gravimetric analysis - Total solid, dissolved solid, suspended solid in an effluent.
3. Microbial assessment of air (open plate and air sample) and water.

Suggested Readings

3. Introduction to Biodeterioration, D.Allsopp and K.J. Seal, ELBS / Edward Arnold.
7. Environmental Protection and Laws by Jadhav and Bhosale, V.M.Himalaya publ.

House 13. Biodiversity Assessment and Conservation by PC Trivedi, Agrobios publ.
Skill Enhancement Courses

Skill Enhancement Course
Biofertilizers
(BOTA(H)304)
(Credits 4; 3 Theory + 1 Tutorial)

Lectures: 45
Unit 1: General account about the microbes used as biofertilizer – *Rhizobium* – isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis.

(6 Lectures)

Unit 2: *Azospirillum* – isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms. *Azotobacter*: classification, characteristics – crop response to *Azotobacter* inoculum, maintenance and mass multiplication. (12 Lectures)

Unit 3: Cyanobacteria (blue green algae), *Azolla* and *Anabaena azollae* association, nitrogen fixation, factors affecting growth, blue green algae and *Azolla* in rice cultivation.

(6 Lectures)

(12 Lectures)

Unit 5: Organic farming – Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes – biocompost making methods, types and method of vermicomposting – field Application. (9 Lectures)

Suggested Readings

Skill Enhancement Course

Herbal Technology

(BOTA(H)305)

(Credits 4; 3 Theory + 1 Tutorial)

Lectures: 45

Unit 1: Herbal medicines: history and scope - definition of medical terms - role of medicinal plants in Siddha systems of medicine; cultivation - harvesting - processing - storage - marketing and utilization of medicinal plants. (9 Lectures)

Unit 2: Pharmacognosy - systematic position medicinal uses of the following herbs in curing various ailments; Tulsi, Ginger, Fenugreek, Indian Goose berry and Ashoka. (9 Lectures)

Unit 3: Phytochemistry - active principles and methods of their testing - identification and utilization of the medicinal herbs; *Catharanthus roseus* (cardiotonic), *Withania somnifera* (drugs acting on nervous system), *Clerodendron phlomoides* (anti-rheumatic) and *Centella asiatica* (memory booster). (9 Lectures)
Unit 4: Analytical pharmacognosy: Drug adulteration - types, methods of drug evaluation - Biological testing of herbal drugs - Phytochemical screening tests for secondary metabolites (alkaloids, flavonoids, steroids, triterpenoids, phenolic compounds) (12 Lectures)

Unit 5: Medicinal plant banks micro propagation of important species (Withania somnifera, neem and tulsi- Herbal foods-future of pharmacognosy) (6 Lectures)

Suggested Readings

Skill Enhancement Course

Nursery and Gardening

(BOTA(H)306)

(Credits 4; 3 Theory + 1 Tutorial)

Lectures: 45

Unit 1: Nursery: definition, objectives and scope and building up of infrastructure for nursery, planning and seasonal activities - Planting - direct seeding and transplants. (8 Lectures)

Unit 2: Seed: Structure and types - Seed dormancy; causes and methods of breaking dormancy - Seed storage: Seed banks, factors affecting seed viability, genetic erosion - Seed production technology - seed testing and certification. (9 Lectures)

Unit 3: Vegetative propagation: air-layering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings - Hardening of plants - green house - mist chamber, shed root, shade house and glass house. (9 Lectures)

Unit 4: Gardening: definition, objectives and scope - different types of gardening - landscape and home gardening - parks and its components - plant materials and design - computer applications in landscaping - Gardening operations: soil laying, manuring, watering, management of pests and diseases and harvesting. (12 Lectures)

Unit 5: Sowing/raising of seeds and seedlings - Transplanting of seedlings - Study of cultivation of different vegetables: cabbage, brinjal, lady’s finger, onion, garlic, tomatoes,
and carrots - Storage and marketing procedures

Suggested Readings

Skill Enhancement Course
Floriculture
(BOTA(H)307)

(Credits 4; 3 Theory + 1 Tutorial)

Lectures: 45

Unit 1: Introduction: History of gardening; Importance and scope of floriculture and landscape gardening. (2 Lectures)

Unit 2: Nursery Management and Routine Garden Operations: Sexual and vegetative methods of propagation; Soil sterilization; Seed sowing; Pricking; Planting and transplanting; Shading; Stopping or pinching; Defoliation; Wintering; Mulching; Topiary; Role of plant growth regulators. (8 Lectures)

Unit 3: Ornamental Plants: Flowering annuals; Herbaceous perennials; Divine vines; Shade and ornamental trees; Ornamental bulbous and foliage plants; Cacti and succulents; Palms and Cycads; Ferns and Selaginellas; Cultivation of plants in pots; Indoor gardening; Bonsai. (14 Lectures)

Unit 4: Principles of Garden Designs: English, Italian, French, Persian, Mughal and Japanese gardens; Features of a garden (Garden wall, Fencing, Steps, Hedge, Edging, Lawn, Flower beds, Shrubbery, Borders, Water garden. Some Famous gardens of India. (6 Lectures)

Unit 5: Landscaping Places of Public Importance: Landscaping highways and Educational institutions. (4 Lectures)

Unit 6: Commercial Floriculture: Factors affecting flower production; Production and packaging of cut flowers; Flower arrangements; Methods to prolong vase life; Cultivation of Important cut flowers (Carnation, Aster, Chrysanthemum, Dahlia, Gerbera, Gladiolous, Marigold, Rose, Lilium, Orchids). (8 Lectures)
Unit 7: Diseases and Pests of Ornamental Plants. (3 Lectures)

Suggested Readings

Skill Enhancement Course

Medicinal Botany
(BOTA(H)404)
(Credits 4; 3 Theory + 1 Tutorial)

Lectures: 45

Unit 2: Conservation of endangered and endemic medicinal plants. Definition: endemic and endangered medicinal plants, Red list criteria; In situ conservation: Biosphere reserves, sacred groves, National Parks; Ex situ conservation: Botanic Gardens, Ethnomedicinal plant Gardens. Propagation of Medicinal Plants: Objectives of the nursery, its classification, important components of a nursery, sowing, pricking, use of green house for nursery production, propagation through cuttings, layering, grafting and budding. (15 Lectures)

Unit 3: Ethnobotany and Folk medicines. Definition; Ethnobotany in India: Methods to study ethnobotany; Applications of Ethnobotany: National interacts, Palaeo-ethnobotany, folk medicines of ethnobotany, ethnomedicine, ethnoecology, ethnic communities of India. Application of natural products to certain diseases- Jaundice, cardiac, infertility, diabetics, Blood pressure and skin diseases. (15 Lectures)

Suggested Readings

Skill Enhancement Course
Plant Diversity and Human Welfare
(BOTA(H)405)
(Credits 4; 3 Theory + 1 Tutorial)

Lectures: 45

Unit 1: Plant diversity and its scope- Genetic diversity, Species diversity, Plant diversity at the ecosystem level, Agrobiodiversity and cultivated plant taxa, wild taxa. Values and uses of Biodiversity: Ethical and aesthetic values, Precautionary principle, Methodologies for valuation, Uses of plants, Uses of microbes. (12 Lectures)

Unit 3: Conservation of Biodiversity: Conservation of genetic diversity, species diversity and ecosystem diversity, In situ and ex situ conservation, Social approaches to conservation, Biodiversity awareness programmes, Sustainable development. (12 Lectures)

Unit 4: Role of plants in relation to Human Welfare: a) Importance of forestry their utilization and commercial aspects b) Avenue trees, c) Ornamental plants of India. d) Alcoholic beverages through ages. Fruits and nuts: Important fruit crops their commercial importance. Wood and its uses. (9 Lectures)

Suggested Readings

Skill Enhancement Course
Ethnobotany
(BOTA(H)406)
(Credits 4; 3 Theory + 1 Tutorial

Lectures: 45

Unit 1: Ethnobotany
Introduction, concept, scope and objectives; Ethnobotany as an interdisciplinary science.
The relevance of ethnobotany in the present context; Major and minor ethnic groups or Tribals of India, and their life styles. Plants used by the tribals: a) Food plants b) intoxicants and beverages c) Resins and oils and miscellaneous uses. (9 Lectures)

Unit 2: Methodology of Ethnobotanical studies
a) Field work b) Herbarium c) Ancient Literature d) Archaeological findings e) temples and sacred places. (9 Lectures)

Unit 3: Role of ethnobotany in modern Medicine
Medico-ethnobotanical sources in India; Significance of the following plants in ethno-botanical practices (along with their habitat and morphology) a) Azadiractha indica b) Ocimum sanctum c) Vitex negundo. d) Gloriosa superba e) Tribulus terrestris f) Pongamia pinnata g) Cassia auriculata h) Indigofera tinctoria. Role of ethnobotany in modern medicine with special example Rauwolfia sepentina, Trichopus zeylanicus, Artemisia, Withania.
Role of ethnic groups in conservation of plant genetic resources. Endangered taxa and forest management (participatory forest management). (15 Lectures)

Unit 4: Ethnobotany and legal aspects
Ethnobotany as a tool to protect interests of ethnic groups. Sharing of wealth concept with few examples from India. Biopiracy, Intellectual Property Rights and Traditional Knowledge. (12 Lectures)

Suggested Readings

Skill Enhancement Course
Mushroom Cultivation Technology
(BOTA(H)407)

(Credits 4; 3 Theory + 1 Tutorial)

Lectures: 45

Unit 1: Introduction, history. Nutritional and medicinal value of edible mushrooms; Nutrition and nutraceuticals – Proteins, amino acids, mineral elements nutrition, carbohydrates, crude fibre content, vitamins; Poisonous mushrooms. (5 Lectures)

Unit 2: Cultivation Technology: Infrastructure: substrates (locally available) Polythene bag, vessels, Inoculation hook, inoculation loop, low cost stove, sieves, culture rack, mushroom unit
(Thatched house) water sprayer, tray, small polythene bag. Pure culture: Medium, sterilization, preparation of spawn, multiplication. **(12 Lectures)**

Unit 3: Cultivation practices of *Agaricus bisporus*, *Pleurotus* sp. and *Volvoriella volvacea*. Composting technology in mushroom production, Low cost technology, Mushroom bed preparation - paddy straw, sugarcane trash, maize straw, banana leaves. Factors affecting the mushroom bed preparation. **(12 Lectures)**

Unit 4: Storage: Short-term storage (Refrigeration - upto 24 hours) Long term Storage (canning, pickels, papads), drying, storage in salt solutions. **(6 Lectures)**

Unit 5: Food Preparation: Types of foods prepared from mushroom. Research Centres - National level and Regional level. Cost benefit ratio - Marketing in India and abroad, Export Value **(5 Lectures)**

Unit 6 Diseases and pests of mushrooms **(5 Lectures)**

Suggested Readings

Skill Enhancement Course

Intellectual Property Rights

(BOTA(H)408)

(Credits 4; 3 Theory +Tutorial)

Lectures: 45

Unit 1: Introduction to intellectual property right (IPR) (3 lectures)

Concept and kinds. Economic importance. IPR in India and world: Genesis and scope, some important examples. IPR and WTO (TRIPS, WIPO).

Unit 2: Patents (5 Lectures)

Unit 3: Copyrights (4 Lectures)

Introduction, Works protected under copyright law, Rights, Transfer of Copyright, Infringement.

Unit 4: Trademarks (5 Lectures)

Objectives, Types, Rights, Protection of goodwill, Infringement, Passing off, Defences, Domain name.
Unit 5: Geographical Indications (4 Lectures)
Objectives, Justification, International Position, Multilateral Treaties, National Level, Indian Position.

Unit 6: Protection of Traditional Knowledge (6 Lectures)
Objective, Concept of Traditional Knowledge, Holders, Issues concerning, Bio-Prospecting and Bio-Piracy, Alternative ways, Protectability, need for a Sui-Generis regime, Traditional Knowledge on the International Arena, at WTO, at National level, Traditional Knowledge Digital Library.

Unit 7: Industrial Designs (3 Lectures)
Objectives, Rights, Assignments, Infringements, Defences of Design Infringement

Unit 8: Protection of Plant Varieties (3 Lectures)

Unit 9: Information Technology Related Intellectual Property Rights (6 Lectures)
Computer Software and Intellectual Property, Database and Data Protection, Protection of Semi-conductor chips, Domain Name Protection

Unit 10: Biotechnology and Intellectual Property Rights (6 Lectures)
Patenting Biotech Inventions: Objective, Applications, Concept of Novelty, Concept of inventive step, Microorganisms, Moral Issues in Patenting Biotechnological inventions.

Suggested Readings

END SEMESTER EXAMINATION (ESE) OF BOTANY HONOURS IN B.Sc. PROGRAMME
THEORY EXAMINATION
SCHEME OF EXAMINATION

1. English shall be the medium of instruction and examination.
2. Examinations shall be conducted at the end of each semester as per the Academic Calendar notified by Himachal Pradesh University.
3. Each course will carry **100 marks** and will have following components

1. **Theory Paper End-Semester examination** 50 marks
2. **Practicals** 20 marks
3. **Internal Assessment** 30 Marks

Theory Paper + Practicals + Internal Assessment (50+20+30) =100 Marks

Distribution of Internal Assessment /CCA:

(i) Class Attendance = 5 Marks
(ii) Class test to be taken on completion of 40% syllabus by the class teacher = 5 Marks
(iii) House test to be taken on completion of 75% of Syllabus = 10 Marks
(iv) Assignment, tutorials, general behavior of students = 10 Marks

Marks for Class attendance

- 75% but < 80% 1 marks
- 80% but <85% 2 marks
- 85 but <90% 3 marks
- 90% but < 95% 4 marks
- 95% To 100% 5 marks

Scheme of Examination for every course (Core Course, Discipline Specific Elective Course, Generic Elective Course):

<table>
<thead>
<tr>
<th>Course</th>
<th>Marks</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Semester Examination</td>
<td>50</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Practical for every course</td>
<td>20</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Internal Assessment</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Skill Enhancement Course & Ability Enhancement Compulsory Course: 100 Marks

1. Skill Enhancement Course = 100 Marks. Ability Enhancement Compulsory Course 1. Environment Science = 100 Marks
2. English/Hindi/SKT = 100 Marks (Theory 70 + CCA 30)