REVISED

GENERAL INSTRUCTIONS

and

COURSE CURRICULUM

FOR

(PG Teaching Program in Biotechnology)

M.Sc. MICROBIOLOGY

(Effective from July, 2020)

DEPARTMENT OF BIOTECHNOLOGY

HIMACHAL PRADESH UNIVERSITY

(NAAC Accredited “A” Grade University)

SUMMERHILL – SHIMLA – 171005 (HP) – India

www.hpuniv.ac.in/biotech
Annexure-I

M.Sc. MICROBIOLOGY PROGRAMME

GENERAL INSTRUCTIONS/GUIDELINES FOR EXECUTION OF CURRICULUM

1. The M.Sc. Biotechnology program will be of two years duration spread over four semesters.

2. There will be sixteen (16) courses in M.Sc. Microbiology Programme. In the 1st, 2nd and 3rd semesters, there will be five courses each. However, in fourth semester there will be only research work. Course-401 will consist of Dissertation, Seminar and viva-voce.

3. The distribution of marks in each course for theory, practical and internal assessment will be as per details given in the OUTLINE OF COURSES FOR M.Sc.MICROBIOLOGY.

4. The split for internal assessment except Course 101 and Elective course MMB-EL-301-303 will be: i) Two internal assessment tests of 10 marks each (20 Multiple choice question, each question shall carry 0.5 mark in each test) in each course. Remaining 10 marks will include class seminar (5 marks) and class attendance 5 marks. The criteria to be followed shall be: i) up to 75% lectures including condonation of lectures as per ordinances: zero mark, ii) without condonation of lectures up to 75%: 1 mark; iii) 76-80% lectures: 2 marks, iv) 81-85% lectures: 3 marks; v) 86-90% lectures: 4 marks; vi) 91% and above lectures: 5 marks. However, for the Course-MMB 101 (2) (Mathematics and Statistics) and Elective courses (MMB-EL-301-303), the internal assessment will be of 20 marks. A total of two Internal Assessment tests of 7.5 marks each (15 MCQ, each question will carry 0.5 marks in each Internal Assessment test) will be held in a semester AND remaining 5 marks will be for the class attendance as per criterion mentioned above.

5. For internal assessment, the concerned teacher will examine the students in his/ her subject by giving multiple choice questions (MCQ of 0.5 mark each) covering the syllabus/ topics taught in the classes. The Chairman of the Department/ Coordinator of the programme will notify the date sheet for Internal Assessment test(s) at the beginning of semester/ academic calendar. In case a student is absent in the internal assessment test, the student will explain in writing the reason for absence to the Chairman of the Department/ Coordinator of the programme. Such case(s), if any will be discussed in the Departmental Council/ Staff Council and if it finds the reason given by the student valid, it will recommend to the Chairman/ Coordinator of the programme to allow the student to sit in such test separately.

6. The candidate who regularly attends teaching/ practical classes and maintains 75% attendance in each of the courses/ practicals shall be permitted to sit in the semester examinations.

7. Any candidate who intends to participate in intra-university or inter-university cultural/ sports/ extracurricular function(s) shall get her/ his name recommended by the Chairperson/ Coordinator Microbiology Programme for being considered for any such participation(s) and benefit(s) if any, thereof.

8. The project work will be in the specialized area of the Microbiology. The research/ dissertation work (Course MMB-401) will start from the 3rd semester. The students will submit the dissertation by the due date as fixed by the Examination Branch. The Departmental Council will evaluate the dissertation and will conduct seminar and viva-voce examination of the students. If the Coordinator of the programme feels, he may invite an External Expert for evaluation of the dissertations. The evaluation of the dissertation and seminar/ viva voce will be of 150 and 100 marks, respectively.

9. The admission to M.Sc. Microbiology programme of Himachal Pradesh University at campus as well as admission to M.Sc. Microbiology programme offered by institutions affiliated to Himachal Pradesh University will be through a Combined Entrance Examination conducted by Himachal Pradesh University Shimla or as decided by Himachal Pradesh University from time to time.

10. Eligibility for admission will be Bachelor Degree under 10+2+3 pattern of Education in Sciences with any of the subjects i.e. Microbiology, Biochemistry, Biotechnology, Genetics and Molecular Biology, Botany or Zoology or MBBS/ B.V.Sc from any Institute/ University recognized by the Himachal Pradesh University, Shimla/ University Grant Commission, New Delhi with at least 50% marks OR a Degree of a University recognized as equivalent by the Vice-Chancellor for the purpose.

11. The tuition fee and other monthly/ annual charges will be as per University rules.
Course Curriculum – M. Sc. Microbiology (July 2020 onwards)

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title of Course</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
</tr>
<tr>
<td>Semester I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMB-101</td>
<td>Mathematics and Statistics</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-101(2))</td>
<td></td>
</tr>
<tr>
<td>MMB-102</td>
<td>Biochemistry</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-102)</td>
<td></td>
</tr>
<tr>
<td>MMB-103</td>
<td>Bacteriology</td>
<td>80</td>
</tr>
<tr>
<td>MMB-104</td>
<td>Cell and Molecular Biology</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-104)</td>
<td></td>
</tr>
<tr>
<td>MMB-105</td>
<td>Instrumental Methods of Analysis</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-105)</td>
<td></td>
</tr>
<tr>
<td>Total Marks in Semester I</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Semester II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMB-201</td>
<td>Recombinant DNA Technology</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-201)</td>
<td></td>
</tr>
<tr>
<td>MMB-202</td>
<td>Immunology and Immunotechnology</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-202)</td>
<td></td>
</tr>
<tr>
<td>MMB-203</td>
<td>Mycology and Phycology</td>
<td>80</td>
</tr>
<tr>
<td>MMB-204</td>
<td>Medical Microbiology</td>
<td>80</td>
</tr>
<tr>
<td>MMB-205</td>
<td>Virology</td>
<td>80</td>
</tr>
<tr>
<td>Total Marks in Semester II</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Semester III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMB-301</td>
<td>Environmental Microbiology and Biotechnology</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-301)</td>
<td></td>
</tr>
<tr>
<td>MMB-302</td>
<td>Industrial Microbiology</td>
<td>80</td>
</tr>
<tr>
<td>MMB-303</td>
<td>Computers & Bioinformatics</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-303)</td>
<td></td>
</tr>
<tr>
<td>MMB-304</td>
<td>Enzyme Technology</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-304)</td>
<td></td>
</tr>
<tr>
<td>Elective (any one)</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>MMB-EL-301</td>
<td>Metabolic Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-EL-301)</td>
<td></td>
</tr>
<tr>
<td>MMB-EL-302</td>
<td>Microbial Genomics & Proteomics</td>
<td></td>
</tr>
<tr>
<td>MMB-EL-303</td>
<td>Food Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Common with M. Sc. Biotechnology course: MMB-EL-303)</td>
<td></td>
</tr>
<tr>
<td>Total Marks in Semester III</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Semester IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMB-401</td>
<td>Dissertation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Seminar and Viva-Voce</td>
<td>-</td>
</tr>
<tr>
<td>Total Marks in Semester IV</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Grand Total (Semester I-IV)</td>
<td></td>
<td>1200</td>
</tr>
</tbody>
</table>

* The Departmental Council will evaluate the dissertation and will conduct seminar and viva-voce examination of the students.
COURSE No. : MMB-101
MATHEMATICS AND STATISTICS

<table>
<thead>
<tr>
<th>Maximum marks: 80</th>
<th>Teaching hours: 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks</td>
<td></td>
</tr>
</tbody>
</table>

UNIT I
16
Determinants: properties of determinants, Grammar rule. Matrices: types of matrices, addition, multiplication, inverse, solution of linear equation by matrix method. Integration: indefinite and definite integrals of functions of only one variable by method of substitution and integration by parts-simple cases.
Principles and practice of statistical methods of biological research, samples and populations; Measures of central tendencies: mean, mode, median and ogives; Measures of dispersion: range, standard deviation and variance

UNIT II
07
Linear correlations: product moment coefficient of correlations, Spearman’s rank difference correlation methods; Regression analysis: simple regression, regression lines, regression equations, regression equations in case of correlation tables.

UNIT III
12
Probability distribution: addition and multiplication theorems, Bayes theorem, Bionomial, Poisson, and normal distribution.
Parametric tests: F and T tests, X² test, X² test as a test of independence and goodness of test, experimental design.

UNIT IV
10
Statistical inference: hypothesis testing, significance level, two-tailed and one-tailed tests of hypothesis, Test of significance: concept and basic terminology of large and small sample, means, and difference between means.
Analysis of variance: assumptions, techniques of analysis of variance, analysis of variance in one-way techniques.

Suggested books [Latest edition]
COURSE No. : MMB-102 BIOCHEMISTRY
Maximum marks: 80 Teaching hours: 45

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT I

UNIT II

UNIT III

UNIT IV
Fatty acids as building blocks of most lipids, their structure, nomenclature and properties, classification of lipids, General structure and function of major lipid subclasses: Acylglycerols, phosphoglycerides, sphingolipids, glycosphingolipids, terpenes, steroids, Prostaglandins, catabolism of Fatty acids, β-, α-, ω- oxidation, oxidation of unsaturated fatty acids. Ketone Bodies: their formation and utilization. Biosynthesis of saturated and unsaturated fatty acids, triacylglycerol and cholesterol.

Suggested books [Latest edition]
2. Biochemistry: Lubert Stryer.
5. Outlines of Biochemistry: Conn and Stumpf
6. Practical Biochemistry: Plummer

List of practicals
1. Qualitative tests for proteins and amino acids.
2. Qualitative tests for carbohydrates.
5. Quantitative estimation of DNA by Diphenylamine method.
9. To study the U.V. absorption of nucleic acids.
10. To find the saponification number of a fat.
BACTERIOLOGY

<table>
<thead>
<tr>
<th>COURSE No. : MMB-103</th>
<th>BACTERIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum marks: 80</td>
<td>Teaching hours: 45</td>
</tr>
</tbody>
</table>

Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit I

Unit II

Unit III

Unit IV
Classification of microorganisms – introduction – Haeckel’s three kingdom concept – Whittaker’s five kingdom concept – three domain concept of Carl Woese, Basis of microbial classification, Classification and salient features of bacteria according to the Bergey’s manual of determinative bacteriology, cyanobacteria, prochlorons and cyanelles.

Suggested books [Latest edition]
3. General Microbiology, Macmillan Educational Ltd.

List of practicals
1. Microscopy, Microscope and its operations, components, Microscope adjustments, Light sources, microscopic measurements, calibration: Types of microscope available, theory. Observation of various types of microbes under phase contrast, dark field and fluorescence.
2. Preparation of glassware, washing, sterilization techniques, wet heat, dry heat, filter types, laminar flow chamber types, CDC, safety levels.
4. Isolation and identification of bacteria and fungi.
5. Microbical growth measurements, cell count, turbidity measurements, percentage transmission, Optical density, serial dilution, standard plate count.
6. Morphological, nutritional and cultural characteristics of bacteria and identification of microbes: types of dyes, preparation, staining techniques, Gram, capsule, negative, flagella, spore and nuclear.

Course Curriculum – M. Sc. Microbiology (July 2020 onwards)
Course Curriculum – M. Sc. Microbiology
(July 2020 onwards)

UNIT I

Membrane structure and function. Structural organization and function of cell wall, nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, plastids, vacuoles, chloroplast, cytoskeleton. Structure and organization of DNA, genes, chromatin and chromosomes, superhelicity in DNA and its topological properties, DNA denaturation and renaturation, repetitive DNA, COT-curve, C-value paradox. Cell division and cell cycle (Mitosis and meiosis, their regulation, steps in cell cycle, regulation and control of cell cycle).

UNIT II

DNA replication (enzymes involved, replication origin and replication fork, fidelity of replication, DNA damage and repair mechanisms, genetic recombination (homologous and site-specific), transformation, conjugation and transduction. RNA synthesis and processing (transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination, RNA processing, RNA editing, splicing, and polyadenylation, structure and function of different types of RNA, RNA transport).

UNIT III

Basic features of the genetic code. Protein synthesis and processing (Ribosome, formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, aminoacylation of tRNA, tRNA-identity, aminoacyl (RNA synthetase, and translational proof-reading, translational inhibitors, Post- translational modification of proteins). Control of gene expression at transcription and translation level (regulating the expression of prokaryotic and eukaryotic genes, role of chromatin in gene expression and gene silencing). Operon concept, lac operon, tryptophan operon.

UNIT IV

Suggested books [Latest edition]

1. Molecular Biology of Cell: Bruce Albert et. al. (Tylor and Francis Inc.)
2. Lewin Genes XIII: Jones and Barlett Publisher, Inc.

List of practicals

1. UV-absorbance of nucleic acids (hyper and hypo chromic effect) and quantification of nucleic acids and proteins.
2. To determine the melting temperature of DNA.
3. To study different stages of mitosis by onion root tip squash method.
4. To study different stages of meiosis using permanent slides.
5. To study multiple alleles in human (Blood Groups).
6. To study multiple alleles in plants (Trifolium).
7. To study cytoplasmic and nuclear inheritance on the basis of phenotypic characters.
8. Isolation of DNA from *E. coli*.
9. Extraction of DNA from plants
10. Extraction of DNA from human blood.
11. Induction of β-galactosidase strain of *E. coli*.
INSTRUMENTAL METHODS OF ANALYSIS

Maximum marks: 80 Teaching hours: 45

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks

UNIT I
Centrifugation: Concept of centrifugation, sedimentation coefficient, differential, rate zonal and isopycnic centrifugation, Analytical and preparative ultracentrifuges, k and k’ factor, derating of rotor, special purpose rotors.
Chromatography: Paper, TLC, Gas chromatography, gel filtration, ion-exchange chromatography, reverse phase chromatography, hydrophobic interaction, affinity chromatography and HPLC.

UNIT II
Electrophoresis: Paper and gel electrophoresis, Ferguson plots, Immuno-electrophoresis, isoelectric focusing, two-dimensional electrophoresis, capillary electrophoresis, western blotting and pulse field gel electrophoresis.
Spectrophotometry: UV & Visible spectroscopy, spectro-fluorimetry, atomic absorption and atomic emission spectroscopy. ORD and Circular dichorism, Florescent activated cell sorter (FACS).

UNIT III

UNIT IV

Suggested books [Latest edition]
1. Principles and techniques of Practical biochemistry: Eds. K Wilson and J Walker
2. Fundamentals of Immunology: Paul Williams
3. Biophysical Chemistry: D Friefielder

List of practicals
1. Density gradient centrifugation for separation of bacterial and human (blood) cells.
2. To perform salting out and dialysis for partial purification of protein(s) in a given mixture.
3. To perform rapid dialysis using Sephadex G-15 gel permeation column.
4. To determine the void volume of gel permeation column.
5. To perform Native PAGE for a given protein mixture.
6. To perform SDS-PAGE for separation of proteins in a given sample.
7. To perform gel exclusion chromatography for the separation of serum proteins.
8. To perform DEAE anion exchange chromatography for the separation of human IgG.
9. To perform Protein-A affinity chromatography for the separation of human IgG.
10. To separate phospholipids/carbohydrates mixture by TLC.
11. Use of GLC for analysis of alcohols such as methanol and ethanol.
12. To perform micro titer ELISA using human serum
13. To perform DOT-ELISA using human serum
COURSE No. : MMB-201 RECOMBINANT DNA-TECHNOLOGY

<table>
<thead>
<tr>
<th>Maximum marks: 80</th>
<th>Teaching hours: 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: The Examiner will set a total of nine (9) questions covering all topics/ units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks</td>
<td></td>
</tr>
</tbody>
</table>

UNIT I

11 Introduction: History and scope of Recombinant DNA Technology

Enzymology of Recombinant DNA: enzymes that break, mend and synthesize DNA and RNA backbone bonds, remove phosphates at nucleic acid termini, and proteins which protect, coat, twist and untwist DNA.

Isolation and Purification of nucleic acid: Basic techniques and considerations criteria of purity, isolation and purification of phage DNA plasmid, chromosomal DNA, RNA and mRNA.

UNIT II

12 Cloning and expression vectors: Characteristics of cloning and expression vectors; plasmid, phage and cosmid vectors, multipurpose cloning vectors, shuttle vectors; bacterial, yeast, plant and mammalian expression vectors.

Cloning and expression hosts: Characteristics of cloning and expression host, bacterial, yeast, plant and mammalian host systems for cloning and expression of genes.

DNA Cloning Strategies: Preparation of genomic and cDNA libraries, criteria for selection of cloning vectors - plasmid, bacteriophage and cosmid, transformation and transfection, electroporation, screening of gene library and selection of clone.

UNIT III

11 Nucleic acid Blotting and Hybridization: Southern and northern blotting and hybridization techniques, radioactive and non-radioactive labeling of probe, western blotting.

Expression of cloned genes: Expression of cloned genes in *E. coli, Bacillus subtilis, Streptomyces*, yeast and mammalian cells, detection and analysis of proteins expression from cloned genes.

Sequencing and other techniques: DNA, RNA and protein sequencing, DNA finger and foot printing, CRISPER technology, antisence RNA.

UNIT IV

11 Polymerase chain reaction and site directed mutagenesis: Principle and application of polymerase chain reaction, site-directed mutagenesis and protein engineering, molecular markers.

Impact of rDNA on human genetics: DNA based diagnosis, gene targeting, human genome project history and scope, ethical issues in relation to rDNA technology.

Applications of r-DNA technology: Application of genetic engineering in industry, agriculture, medicine, environment and forensic science

Suggested books [Latest edition]

1. Recombinant DNA principles and Methodologies: James J Greene
2. Molecular Biotechnology: Glick and Pasternak
3. Principles of Gene Manipulation: RW Old and SB Primrose
4. Genetic Engineering Fundamentals: Kammermeyer and Clark

List of practicals

1. Preparation and purification of pUCplasmid.
2. Preperation and purification of genomic DNA
3. Restriction digestion and ligation of plasmid and genomic DNA and gel electrophoresis.
4. Construction of restriction map
5. Cloning of DNA in plasmid
6. Transformation of *E. coli* cells with recombinant plasmid.
7. Southern blotting and hybridization with non-radioactive probes.
8. Amplification of DNA with PCR Temperature cycler.
9. Assay of activity of restriction endonuclease and topoisomerase I.
Course Curriculum – M. Sc. Microbiology (July 2020 onwards)

COURSE No. : MMB-202

IMMUNOLOGY AND IMMUNOTECHNOLOGY

<table>
<thead>
<tr>
<th>Maximum marks: 80</th>
<th>Teaching hours: 45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover the entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT I
11

Types of immunity: innate, acquired, active and passive, primary and secondary lymphoid organs, antigen-antibody interactions (physical aspects), elements of immune system: T-cells, B-cells, cell mediated subset of T-cells, helper and suppressor cells, markers, third population of lymphocytes, antigen presenting cells, cell mediated and humoral immunity, antibody dependent cell mediated cytotoxicity, natural killer cells.

UNIT II
12

Cellular and molecular aspects: nature of antigens, basic structure of antibodies, their function and diversity, antibody classes and biological activity, T-cell receptors, complement system, major histocompatibility complex (MHC), MHC molecules, exogenous and endogenous antigen presentation, lymphokines, regulation of immune response, immunological tolerance.

UNIT III
11

Agglutination, Precipitation, Single and double immuno diffusion, immunoelectrophoresis, ELISA and its various types, Western blotting, Fusion of myeloma cells with lymphocytes, concept of trioma, hybrid-hybridoma and thymoma, applications of monoclonal antibodies.

UNIT IV
11

Synthetic vaccines, autoimmunity, hyper-sensitivity, tumor immunity, concept of idiotypes and anti-idiotypes.

Suggested books [Latest edition]

1. Immunology: Janis Kuby
2. Essentials of Immunology: Ivan Roitt
3. Cellular and Molecular Immunology: Abul K Abbas, Andrew H Lichtman and S Jordan.
4. Immunology: An Introduction: Ian R Tizard
5. A Handbook of Practical Immunology: GP Talwar

List of practicals

1. To study the techniques of immunization and generation of antibodies.
2. To perform differential leukocyte count of human blood.
3. Isolation of IgG from human serum by affinity chromatography using protein A column.
4. To perform precipitation tests (a) ring test (b) slide test in solution given an antigen and antibody.
5. To perform precipitation reactions in gel by Ouchterlony Technique given an antigen and antibody (double immunodiffusion).
6. To perform single radial immunodiffusion (Mancini’s Technique) using an antigen and antibody.
7. To perform immunoelctrophoresis given an antigen and antibody.
8. To perform rocket immunoelectrophoresis on given antigen and antibody.
9. To perform ELISA.
10. To perform rapid Agglutination Test for detection of RA factor in serum.
COURSE No. : MMB-203

MYCOLOGY AND PHYCOLOGY

Maximum marks: 80 Teaching hours: 45

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit 1 12
Classification of fungi. General features, structure and cell differentiation (Hyphae and non-motile unicells, motile cells, spores, dormancy, growth of population and colonies). Life cycle of Aspergillus, Penicillium, Yeasts. Salient characteristics, nutrition, reproduction and significance of Myxomycotina (Plasmodiophomycetes, Myxomycetes); Mastigomycotina (Chytridiales, Peronosporales; Zygomycotina (Zygomycetes, Entomophthorales); Ascomycotina (Hemiascomycetes, Laboulberiomycetes); Basidiomycotina (Teliomycetes, Hymenomycetes); Deuteromycotina (Hypomycetes, Blastomycetes).

Unit 2 11

Unit 3 12
Principles, criteria (pigments, flagellation, food reserve and eye spots) and systems of classification of algae. Cyanophyta: cell structure, heterocyst and akinete development, chromatic adaptation, thallus organization and reproduction. A brief account of thallus organization and reproduction in Chlorophyta, Phaeophyta and Rhodophyta; alternation of generation in Phaeophyta and post-fertilization development and site of meiosis in Rhodophyta. A brief account of Xanthophyta, Chrysophyta, Bacillariophyta, Pyrophyta, Euglenophyta, Eustigmatophyta, Prasinophyta and Prochlorophyta.

Unit 4 10

Suggested books [Latest edition]
5. Fundamentals of the fungi: E Moore – Landeekeer, Publisher: Prentice Hall.

List of practicals
1. Isolation of fungi by baiting method.
2. Culturing and morphological study of some common molds: Rhizopus, Mucor, Penicillium, Alternaria, Trichiderma
3. Identification of plant diseases: Apple scab, Citrus canker, Late blight of potato, Rust of wheat, Red rot of sugarcane, Green ear disease of Bajra, Leaf curl disease of peach
5. Study of mycorrhiza.
7. Isolation of algae from soil and water.
8. Cultivation of Spirulina.

Course Curriculum – M. Sc. Microbiology (July 2020 onwards)
COURSE No. : MMB-204

MEDICAL MICROBIOLOGY

<table>
<thead>
<tr>
<th>Maximum marks: 80</th>
<th>Teaching hours: 45</th>
</tr>
</thead>
</table>

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit I
Early discovery of pathogenic microorganisms, development of bacteriology as scientific discipline; contributions made by eminent scientists. Classification of medically important microorganisms; Normal microbial flora of human body; role of resident flora; normal flora and the human host. Establishment, spreading, tissue damage and anti-phagocytic factors; mechanism of bacterial adhesion, colonization and invasion of mucous membranes of respiratory, enteric and urogenital tracts. Role of aggressins, depolymerising enzymes, organotropisms, variation and virulence.

Unit II
Classification of pathogenic bacteria: *Staphylococcus*, *Streptococcus*, *Pneumococcus*, *Neisseria*, *Cornebacterium*, *Bacillus*, *Clostridium*, Non sporing anaerobes, organisms belonging to *Enterobacteriacea*, Vibrios, Non fermenting Gram negative bacilli *Yersinia*, *Haemophilus*, *Bordetella*, *Brucella*, *Mycobacteria*, *Spirochaetes*, *Actinomycetes*, *Rickettsiae*, *Chlamidiae*.

Unit III
Brief account of protozoa (*Entamoeba*, *Giardia*, *Leishmania*, *Trypanosoma*, *Plasmodium*) and helminths parasites (*Schistosoma*, *Taenia*, *Ascaris*, *Hookworms*, *Wuchereria*) of man and their diseases, Immunity to amoebasis, trypanosomiasis, leishmaniasis, malaria, filarasis, hookworm and ascariasis.

Unit IV
Laboratory control of antimicrobial therapy; various methods of drug susceptibility testing, antibiotic assay in body fluids. Brief account on available vaccines and schedules; passive prophylactic measures; nosocomial infections, common types of hospital infections, their diagnosis and control.

Suggested books [Latest edition]

List of practicals
1. Fixation of smears for microscopy by different staining techniques
 - Simple (Loeffler’s polychrome methylene blue and Negative staining)
 - Gram’s staining
 - Ziehl-Neelson method for AFB
 - Fluorochrome staining
 - Leishman’s staining
 - Giemsa’s staining
 - Special staining methods to demonstrate granules, capsules and spores
2. Isolation of pure cultures of normal flora of skin and their identification
3. Establishment of haemolytic activity of isolated bacteria
4. Testing of antimicrobial activity of skin on bacteria
5. Determination of dental caries susceptibility
6. Drug susceptibility testing by various methods
COURSE No. : MMB-205

VIROLOGY

Maximum marks: 80 Teaching hours: 45

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit I 12
General Virology: Brief outline on discovery of viruses, nomenclature and classification of viruses; distinctive properties of viruses; morphology and ultrastructure; capsids and their arrangements; types of envelopes and their composition-viral genome, their types and structures; virus related agents (viroids).

Unit II 10
Bacterial Viruses: Bacteriophage structural organization; life cycle; one step growth curve; transcription; DNA replication; eclipse phase; production; burst size; lysogenic cycle; bacteriophage typing; application in bacterial genetics; brief details on M13, Mu, T3, T4 and Lambda P1.

Unit III 12
General Methods of Diagnosis and Serology: Cultivation of viruses in embryonated eggs, experimental animals, and cell cultures; primary and secondary cell cultures; suspension cell cultures and monolayer cell cultures, Virus isolation, purification and virus titration, Quantification of cytopathic effect(s).

Unit IV 11
Animal Viruses: Infectivity assay (plaque method, end point method), virus titration by Reed and Muench method Classification and nomenclature of animal human viruses; epidemiology, lifecycle, pathogenicity, diagnosis, prevention and treatment of RNA viruses: Picorna, Orthomyxo, Paramyxo, Toga and other arthropod viruses, Rhabdo, Rota, HIV and other Oncogenic viruses; DNA viruses; Pox, Herpes, Adeno, SV 40 and Hepatitis viruses. Interferons and antiviral drugs.

Suggested books [latest edition]
5. Diagnostic procedures for Viral and Rickettsial diseases: Lennetter, EH, American Public Health Association, NY.

List of practicals
1. Preparation of tissue culture media and concept of sterilization in animal cell culture.
2. Sub-culturing and maintenance of continuous cell lines [any one such as myeloma, Hep-2, Vero and HeLa cells].
3. Propagation of animal viruses using cell lines.
5. Propagation of animal viruses using egg inoculation techniques.
7. Staining of smear and tissue sections for viruses and their effects.
8. Isolation and propagation of λ phage.
9. Detection of plant viruses with indicator hosts.
11. Infectivity assay of plant viruses.
COURSE No. : MMB-301 ENVIRONMENTAL MICROBIOLOGY & BIOTECHNOLOGY

Maximum marks: 80 Teaching hours: 45

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT I

UNIT II
Solid Waste treatment: Wastes–types, characterization, solid waste treatment, saccharification, gasification, composting, utilization of solid wastes, foods (SCP, mushroom, yeast); fuel (ethanol, methane) and , Biofertilizers, compost, vermicompost.

UNIT III

UNIT IV

Suggested books [Latest edition]

List of practicals
1. Estimation of total solids in sewage samples.
2. Estimation of volatile matter and fixed residues in sewage samples.
4. Determination of dissolved oxygen in waste water samples.
5. Determination of BOD of waste water samples.
6. Determination of COD of waste water samples.
8. Determination of moisture content of soil sample.
10. Determination of hardness of given water sample.
11. Transformation of waste in to valuable products.
COURSE No. : MMB-302
INDUSTRIAL MICROBIOLOGY

<table>
<thead>
<tr>
<th>Maximum marks: 80</th>
<th>Teaching hours: 45</th>
</tr>
</thead>
</table>

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit I
Overview of industrial microbiology, Biotechnological innovations in the chemical industry, Industrial strains-Strategies for isolation, screening & selection, maintenance & preservation of industrially important microorganisms, approaches for the genetic improvement of industrial organisms, microbial growth kinetics, measurement of growth (cell number, direct and indirect methods), efficiency of growth and product formation, effect of environmental factors on growth, maintenance energy requirement and maximum biomass, growth yield, metabolite overproduction and growth efficiency.

Unit II
Media formulation. Sterilization, kinetics of thermal death of microorganisms, batch and continuous sterilization. Basic design and operation of fermenter, stirred tank, airlift fermenter, batch, fed batch, continuous and immobilized cell reactors. Aeration and agitation, power requirement, oxygen transfer kinetics, concepts of fluids-types and properties.

Unit III
Metabolic pathways and metabolic control mechanism, biocatalyst in organic chemical synthesis, industrial production of citric acid, enzymes, ethanol, biofuels, acetic acid, fermented food/beverages, Biopolymers. Bio-process technology for the production of recombinant vaccines, therapeutic proteins, antibiotics and diagnostics.

Unit IV

Suggested books [Latest edition]
1. Biotechnological innovations in chemical synthesis: BIOTOL. Publisher.
2. Industrial microbiology: G Reed, CBS Publishers.
5. Fermentation: A practical approach. IRL.

List of practicals
1. Design and operation of a laboratory fermenter.
2. Determination of viability of cells in a yeast culture by Methylene Blue staining, plate count and Haemocytometer methods.
3. Preparation of microbial growth curve in a batch culture.
5. Determination of $K_{l,a}$ by sulphite oxidation method.
6. Determination of thermal death rate constant and decimal reduction time for *E. coli*.
7. Disruption of microbial cells (Baker's yeast) for the release of the intracellular protein.
8. Production of Ethanol by simple/complex carbohydrate sources (media) using *Saccharomyces cerevisiae*.
10. Production of wine from Apple / Grape juices by *Saccharomyces cerevisiae*.

Course Curriculum – M. Sc. Microbiology (July 2020 onwards)
COURSE No. : MMB-303

COMPUTER AND BIOINFORMATICS

<table>
<thead>
<tr>
<th>Maximum marks: 80</th>
<th>Teaching hours: 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks</td>
<td></td>
</tr>
</tbody>
</table>

UNIT I

14

Computer basics. Concept of Operating systems: Windows and UNIX. Hardware, software, Introduction to programming languages (machine level, assembly level and high level language), Computer Network concepts. Word processing using MS-Word, formatting the document, tables, mail merge and spell check. Spreadsheets basics with MS Excel, numerical and formula entries, basic mathematical and statistical functions, graphical representation of data.

UNIT II

11

UNIT III

10

PubMed, Sequence information sources (Structure and use on web): EMBL, GENBANK, Entrez, and Unigene. Protein information sources (Structure and use on web): PDB, SwissProt and TrEMBL; Sequence and phylogeny analysis: Detection of open reading frames (ORF’s), gene identification and prediction, method of gene family identification and outline of sequence assembly.

UNIT IV

10

Mutation matrices, pairwise alignments, introduction to BLAST (using it on web and interpreting results), multiple sequence alignment, phylogenetic analysis. Molecular modeling: introduction, dynamic simulation, conformational search, molecular modeling packages (Chem3D, Hyperchem), protein modeling, structure prediction and molecular docking.

Suggested books [Latest edition]

3. Molecular Evolution: A phylogenetic approach: ROM and Holmas EC, Blackwell science

List of practicals

1. Word processing commands using MS-Word.
4. Creation of Data tables in MS Access and simple queries with SQL.
5. Online Bibliographic and patent search.
7. Sequence information resource
8. Understanding and using on web: Embl, GEnbank, Entrez, Unigene
9. Protein information resource
10. Understanding and using on web: PDB, Swissprot, TrEMBL using BLAST and interpretation of results, multiple sequence alignment using Clustal-W.
Course Curriculum – M. Sc. Microbiology (July 2020 onwards)

<table>
<thead>
<tr>
<th>COURSE No. : MMB-304 ENZYME TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum marks: 80</td>
</tr>
<tr>
<td>Teaching hours: 45</td>
</tr>
</tbody>
</table>

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT I
Introduction to enzyme and enzyme technology: History and scope of enzymes and enzyme technology, nomenclature of enzymes, enzyme activity units.
Enzyme Kinetics: Activation Energy & Transition State concept. Mechanism of enzyme catalysis, simple kinetics of enzyme action, factors affecting enzyme activity, reversible reaction, enzyme inhibition, determination of Vmax and Km values.
Sources and preparation of enzymes: Sources of enzymes, screening strategies for novel enzymes, media for enzyme production, methods of purification and concentration of intracellular and extracellular enzymes, factors affecting enzyme stability, preparation of enzymes for sale, customer service, safety and regulatory aspects of enzyme use, enzyme business, major manufacturers of enzymes in India and World

UNIT II
Large Scale use of enzymes in solution: Use of enzymes in detergents, food industry, fruit juice, wine, brewing and distilling industries, textile industries, waste treatment, diagnostics, pharmaceutical and chemical industries, application of enzymes in medicine

UNIT III
Immobilized enzymes and their use, Enzyme reactors, stirred tank reactors, plug flow reactors, continuous flow stirred tank fluidized bed reactor, Membrane/hollow fiber reactors, selection of reactors, productivity and performance of various types of reactors, immobilized enzyme processes - production of high fructose corn syrups, production of antibiotics, production of acrylamide and use of immobilized invertase, lactase, raffinase.
Biosensors: Use of enzymes in analysis, biosensors- calorimetric, potentiometric, amperometric, optical, piezoelectric biosensors and immuno-sensors.

UNIT IV
Advanced topics in enzyme technology: Enzyme reactions in biphasic liquid systems; proteases, glycosidases and lipases in synthetic reactions, interesterification of lipids, artificial enzymes, un-natural substrates, enzyme engineering, extremophilic enzymes, hybrid enzymes, high throughput screening and assay techniques

Suggested books [Latest edition]
1. Enzyme Technology: MF Chaplin and DC Bucks
2. Industrial Enzymology: Godfrey and West
3. Enzyme: Copeland
4. Enzymes in Industry: W Gerhardt

List of practicals
1. Assay of some common enzymes (amylase, protease, pectinase, lipase etc.)
2. Microbial production of an enzyme.
3. Purification of enzyme, determination of Vmax and Km values.
4. Effect of temperature, pH, ionic strength, inhibitors and metal ions.
5. Immobilization of enzymes/ cells by adsorption, covalent linkage, entrapment methods.
7. Applications of enzymes in detergents, chemical production, juice clarification and bioprocessing.
ELECTIVE PAPER(S)

<table>
<thead>
<tr>
<th>COURSE No. : MMB-EL-301</th>
<th>METABOLIC ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum marks: 80</td>
<td>Teaching hours: 45</td>
</tr>
</tbody>
</table>

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

UNIT I

10

Introduction to metabolic engineering and regulation of metabolic pathways: Concept and importance of metabolic engineering, improvement of microbial strain and fermentation processes by metabolic engineering, tools of metabolic engineering. Regulation of enzyme activity, regulation of enzyme concentration, regulation of metabolic network.

UNIT II

15

Metabolic engineering in practice: Enhancement of productivity, extension of substrate range, extension of product spectrum and novel products, improvement of cellular properties, intervention in health and diseases, xenobiotics degradation.

UNIT III

10

Metabolic flux analysis: Theory, detection of elementary flux modes in biochemical network, metabolic flux distribution in *Corynebacterium glutamicum* during growth and lysine overproduction.

UNIT IV

10

Application of metabolic flux analysis: Calculation of theoretical yield, amino acid production by glutamic acid bacteria, metabolic flux in mammalian cell culture, metabolic engineering of lactic acid bacteria, riboflavin production by *Bacillus subtilis*, metabolic engineering of *Saccharomyces cerevisiae*.

Suggested books [Latest edition]

1. Metabolic Engineering: S Y Lee and E P Popoutsakis (Eds), Marcel Dekker, New York, USA.
Microbial Genomics & Proteomics

COURSE No.: MMB-EL-302

Maximum marks: 80
Teaching hours: 45

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit I
Whole genome analysis, preparation of ordered cosmid libraries, bacterial artificial chromosome libraries, shotgun libraries and sequencing, conventional sequencing (Sanger, Maxam and Gilbert methods), automated sequencing.

Unit II
Sequence analysis: computational methods, homology algorithms (BLAST) for proteins and nucleic acids, open reading frames, annotations of genes, conserved protein motifs related structure/function (PROSITE, PFAM, ProfileScan), DNA analysis for repeats (direct and inverted), palindromes, folding programmes. Use of Internet, public domain databases for nucleic acid and protein sequences (EMBL, GenBank), database for protein structures (PDB).

Unit III
DNA microarray, printing or oligonucleotides and PCR products on glass slides, nitrocellulose paper. Whole genome analysis for global patterns of gene expression using fluorescent labeled cDNA or end labeled RNA probes. Analysis of single nucleotide polymorphisms using DNA chips.

Unit IV
Proteome analysis: Two-dimensional separation of total cellular proteins, isolation and sequence analysis of individual protein spots by mass spectroscopy. Protein microarray. Advantages and disadvantages of DNA and protein microarrays.

Suggested books [Latest edition]

2. DNA microarrays - A practical approach: Edited by Mark Schena.
COURSE No. : MMB-EL-303

FOOD TECHNOLOGY

Maximum marks: 80
Teaching hours: 45

Note: The Examiner will set a total of nine (9) questions covering all topics/units of the prescribed course by setting at least two questions from each unit. Out of the nine questions, one question containing eight (8) short-answer type questions that will cover entire course will be compulsory. The candidate will attempt a total of five questions (one from each unit) including the compulsory question. All questions will carry equal marks.

Unit I
Introduction and history of food microbiology, General characteristics, classification and importance of microorganisms important in food microbiology, Principles of food preservation. Asepsis – Removal of microorganisms, (anaerobic conditions, high temperatures, low temperatures, drying, canning, food irradiation). Factors influencing microbial growth in food – Extrinsic and intrinsic factors; Chemical preservatives.

Unit II
Contamination and spoilage: Cereals, sugar products, vegetables, fruits, meat and meat products, Milk and Milk products, Fish and sea foods, poultry food, spoilage of canned foods. Detection of spoilage and characterization. Food-borne infections and intoxications: Bacterial and nonbacterial toxins with examples of infective and toxic types – Brucella, Bacillus, Clostridium, Escherichia, Salmonella, Shigella, Staphylococcus, Vibrio, Yersinia, Nematodes, protozoa, algae, fungi and viruses.

Unit III
Food fermentations: Industrial production method for microbial starters, bread, cheese, vinegar, fermented vegetables, fermented dairy products; fermented foods, microbial cells as food (single cell proteins, mushrooms), fermented beverages: beer and wine. Amino acid production: glutamic acid and lysine. Production of probiotics and prebiotics, nutraceuticals, low calorie sweetener, food coloring and naturally occurring flavor modifiers.

Unit IV
Food quality standards, Monitoring and control, Food Adulteration, R&D innovations in food microbiology, Genetically modified foods, Need and requirements of food packaging; Containers for packaging, Dispensing devices, Food Regulations/Safety & Quality Standards & Food Laws

Suggested books [Latest edition]

List of practicals
1. Microbiological examination of foods
2. Detection of number of bacteria in milk by standard plate count (SPC).
3. Determination of quality of milk sample by methylene blue reduction test
4. Microbiological assay of toxins
5. Detection of nicotinic acid by bioassay
6. Role of yeast in bread making
7. Production of wine from Apple / Grape juices by Sachcharomyces cerevisiae.
8. Bio-transformation of sucrose into high fructose syrup by immobilized cell of Saccharomyces cerevisiae.
Course Curriculum – M. Sc. Microbiology (July 2020 onwards)

COURSE No. : MMB-401

<table>
<thead>
<tr>
<th>DISSERTATION</th>
<th>Full Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Marks : 250 (150 + 100)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Each candidate will carry out the project work assigned to him/her. The candidate will submit three bound copies of the Report of Research Project work performed by him/her duly certified by the guide/supervisor. The project report should cover the summary, introduction, materials and methods, results and discussion and references. The references will be arranged alphabetically under the format given below:

- **Refereed Journal**

- **Books**

- **Theses**

- **Website**
 - www.elsevier.com

* The Departmental Council will evaluate the dissertation and will conduct seminar and viva-voce examination of the student(s). The dissertation and viva-voce will carry 250 marks.