Himachal Pradesh University, Summer Hill, Shimla-5 Centre for Distance and Online Education Department of Economics

MA (Economics) I Semester Paper: Elementary Mathematics for Economics Course Code-ECON112 (DSC)

Important Instruction: All the students are required to prepare all three assignments separately. These assignments are compulsory and submit them in a time bound manner, otherwise admit card for the exams will not be generated. A sample of the title page is also attached.

Assignment- I

Maximum Marks – 7

Note: Attempt any two questions out of following:

Q1. State and explain the properties of determinants.

Q2. Solve the following equations using Cramer's rule:

$$\begin{array}{l} X+Y+Z \;= 6 \\ 2X+5Y+5Z = 27 \\ 2X+5Y+11Z = 45 \end{array}$$

Q3. If the law of demand is $q = \frac{20}{n+1}$, find the price elasticity of demand when p = 3

Q4. If the utility function is $U = Q_1^{1/2} Q_2^{1/2}$, what will be the slope of indifference curve when $Q_1 = 20$ and $Q_2 = 40$.

3.5× 2=7

Assignment- II

Maximum Marks – 7

Note: Attempt any two questions out of following:

- Q1. State and explain the Euler's Theorem. What is its utility?
- Q2. If the production function is $q=2L^{3/4}$ K^{1/4} then find marginal productivity of labour and capital
- Q3. Show that $4(x^2 + y^2) + 12ax 6ay -a^2 = 0$ represents a circle. Hence find its center and radius.

Q3. Evaluate
$$\int \frac{3x+2}{(x+1)^2 (x-2)}$$

3.5×2=7

Assignment- III

Note: Attempt any two questions out of following:

- Q1. Explain the assumptions, technological coefficient matrix, and the differences between closed and open input-output models in economic analysis.
- Q2. (a) If the demand function is $p=25-3X-3X^2$ then find the consumer's surplus when p=7

(b) Explain the Hawkins-Simon Condition. Are these condition satisfied for $A = \begin{bmatrix} 0.7 & 0.2 \\ 0.4 & 0.9 \end{bmatrix}$

- Q3. Discuss the uses of Linear Programming Problem (LPP) in the planning models.
- Q4. Solve the following LPP by simplex method

Maximize z = 3x + 2ySubject to $2x + y \le 40$ $x + y \le 24$ $2x + 3y \le 60$ and $x, y \ge 0$

3×2=6

Himachal Pradesh University, Summer Hill, Shimla Centre for Distance and Online Learning

MA (Economics)Semester

Session.....

Assignment Subject:
Course Code:
Assignment No

Submitted by:
Name:
Registration No
Roll No
Address
Email id
Contact No
Date:
Signature