
B.A. 2nd Year  Course Code: MATH202TH 

MATHEMATICS  Course Credit:06(DSC) 

  
 

 

 

 

 

 

Algebra 

 

UNITS:  1 to 20 

Dr. Aarti Manglesh 
 

 
 

Centre for Distance and Online Education (CDOE) 
Himachal Pradesh University, 

Summer Hill, Shimla - 171005 



SYLLABUS 
Course Code MATH202TH 
Credits= 6 L-5, T-1, P-0 
Name of the Course Algebra 
Type of the Course Core Course 
Continuous Comprehensive Assessment: Based on Assignment Max. Marks:30 
End Semester Examination Max Marks: 70 

Maximum Times: 3 hrs. 

Instructions 

Instructions for paper setter: The question paper will consist of two Sections A & B of 70 
marks. Section A will be Compulsory and will contain 8 questions of 16 marks (each of 2 marks) 
of short answer type having two questions from each Unit of the syllabus. Section B of the 
question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of 
the syllabus and the candidates are required to attempt one question from each of these units. 
Each question in Units I, II, III and IV shall be of 13.5 markseach. 

Instructions for Candidates: Candidates are required to attempt five questions in all. Section 
A is Compulsory and from Section B they are required to attempt one question from each of the 
Units I, II, III and IV of the question paper. 

Core 2.2 : Algebra 
Unit-I 

Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn 
of integers under addition modulo and the group U(n) of units under multiplication modul on. 
Cyclic groups from number systems, complex roots of unity. 

Unit-II 
Sub groups, cyclic subgroups, the concept of a subgroup generated by a subset and the 
commutator subgroup of group, examples of subgroups including the center of a group. Cosets, 
Index of subgroup, Lagrange's theorem, order of an element. 

Unit-III 
Normal subgroups: their definition, examples, and characterizations, Quotient groups 
Fundamental theorem of Homomorphism. 

Unit-IV 
Definition and examples of rings, examples of commutative and non-commutative rings: rings 
from number systems, Zn the ring of integers modul on. Rings of matrices, polynomial rings. 
Subrings and ideals, Definition of Integral domains and fields. 
Books Recommended 

1.  John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002. 
2.  M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011. 
3.  Joseph A Gallian, Contemporary Abstract Algebra, 4" Ed., Narosa, 1999. 
4.  George E Andrews, Number Theory, Hindustan Publishing Corporation, 1984. 

 



CONTENTS 

Sr. No. Name of Unit Page No 

1. Some Basic Concept 1-17 

2. Groups 18-47 

3. Some Special Groups-I 48-69 

4. Some Special Groups-II 70-89 

5. Cyclic Group 90-116 

6. Sub Groups  117-149 

7. Cosets and Lagrange's Theorem 150-175 

8. Normal Subgroups 176-193 

9. Quotient Group 194-201 

10. Special Subgroup 202-207 

11. Homomorphism and Isomorphism of Group 208-221 

12. Theorems on Homomorphism  222-231 

13. Ring 232-248 

14. Some Special Rings 249-268 

15. Integral Domains 269-275 

16. Division Ring and Field 276-291 

17. Properties of Ring Element 292-305 

18. Subring 306-318 

19. Ideal  319-337 

20. Types of Ideal 338-350 

 

 



1 
 

Unit - 1 

Some Basic Concepts 

Structure 

1.1 Introduction 

1.2 Learning Objectives  

1.3 Mathematical Logic 

 Self Check Exercise-1 

1.4 Set 

 Self Check Exercise-2 

1.5 Functions 

 Self Check Exercise-3 

1.6 Binary Operations 

 Self Check Exercise-4 

1.7 Summary 

1.8 Glossary 

1.9 Answers to self check exercises 

1.10 References/Suggested Readings 

1.11 Terminal Questions 

1.1 Introduction 

Dear student, in this unit we will study about some of basic concepts which will be useful 
throughout the course of Algebra. We are families with all these topic, we will only summarize 
them. In this unit we will discuss about logics, set, function, binary operation. 

1.2   Learning Objectives: 

 After studying this unit students will be able to  

 1. define mathematical logic and toutologies. 

 2. solve questions based on logic. 

 3. define set and basic operations on sets. 

 4. define function and solve questions based on them.  

 5. define binary operation and solve question based on them. 
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1.3 Mathematical Logic 

 In order to express our idea we use sentences. In mathematics we only deal with 
sentences which are either true or false but not both. Such sentences are of greater importance 
and a new term comes into existence i.e. 

Statement  

 A sentence which is either true or false but not both is known as statement for example,  

(1) Shimla is capital of Himachal Pradesh. This is a true sentences, so it is a 
statement. 

(2) 9 is smaller than 7, this is a false sentence, so it is a statement. 

(3) How are you? This is not a statement because it is neither true nor false. 

The statements are mathematically denoted by small letters p, q, r, s etc. If p is a 
statement then we use 'T' for true statement and 'F' for false statement. 'T' and 'F' are known as 
truth values of the statement. 

Some symbols and Notations 

 Following symbols are useful to express our ideas in mathematical form. 

1. The Symbol  : This symbol stand for "for all" or 'For every'. It is known as 
universal quantities.  

 for example real number x, we have x4> 0. 

2. The Symbol  : This symbol is used for "there exists". It is known as existential 
quantities. 

3. The Symbol I. :This symbol is used for "such that". Sometime ':' or 's.t.' are also 
useed for such that. 

4. The Symbol  : (Disjunction) : when two or more statement joined by the word 
'or', the compound statement is formed which is known as disjunction. The 
symbol 'V' is a connective which represents or. 

  So, p v q is statement which is read as 'p or q' 

  The statement p v q is true if 

  1. either p or q is true 

  2. both p and q are true  

  The statement p v q is false  

  1. both p and q are false  

5. The Symbol  or conjunction : When two or more statements are joined by word 
"and ". Then the compound statement so formed is known as a conjunction. The 
symbol '' is used for conjunction. So p  q is a statement which is read as 'p 
and q' 

  The statement p  q is true iff 
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  1. both p and q are true  

  The statement p  q is false if 

  1. p is false or q is false 

  2. both p and q are false 

6. The Symbol if  p and q are two statement such that the truth of p implies that of 
q then we write p  q , this is one way implication and we read it as 'p implies q'. 
For example 

  x = 2  x2 = 4 

The statement p  q is false if 

  1. p is true and q is false 

 or we can say a true statement can imply only a true statement while a 
false statement can imply a true or false statement.  

7. The symbol  :The symbol  is used for "if and only if" or "implies and is 
implied by". We also use 'iff' for this symbol. if the truth of the statement p implies 
that of q and also the truth of q implies that of p, then we write pq, this is both 
way implication.  

  For example x + 3 = 10  x = 7 

  The statement p  q is true only when p and q are either both true or both false. 

  The statement pq is false when one of the statement is true and other is false. 

8. The symbol ~ or negation :- opposite of a statement is known as negation of 
statement. The symbol '~' is used for negation. For example p is a statement 'x is 
10' then '~p' is a statement "x is not 10". 

  Negation of true statement is false and negation of false statement is true. 

 Tautologies : A statement is a tautologies if it is always true. 

Self Check Exercise - 1 

Q. 1 Show that the statement (pq)  p is a tautology. 

Q. 2 Show that the statement ~ (pq)  (U p V ~ q) is a tautology. 

1.4 Set  

 In day today life, we talked about thegroup of objects of a specifictype, such as, numbers 
on a dics, a handball team, girlsof height 5 feets in a school etc. In mathematics, we also come 
across collection, such as, collection of natural number, collection of prime numbers, collection 
of real number, collection of rational numbers number etc. Some other examples of such 
collections are,natural numbers greater than 10, the set of consonents, the root of quadratice 
equation x2-5x+6 = 0. In all of the preceding examples, we highlighted that each is  clearly 
defined set of items in which we can determine with certainty whether a particular item is a 
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member of the set or not.. For instance, 1, 2, 3, 4,….9are not the elements of the set of natural 
numbers more than 10 but 11, 12, 13, 14,…..  belong to this collection.  

 In mathematics, some other common examples of the sets that are used more frequently 
are : 

 N : the set of all natural numbers. 

 W : the set of whole numbers. 

 Z : the set of integers. 

 Q : the set of all rational numbers. 

 R : the set of real numbers. 

 Z+ : the set of positive integers. 

 Q+ : the set of positive rational numbers. 

 R+ : the set of positive real numbers.  

Definition : 

 “A set is a clearly defined group of items.” We use the synonymous words objects, 
elements and members while defining a set. Capital letters are mainly used to indicate setslike 
R, S, T, etc whereas small alphabets of English indicates the elemnentof the set like a, b, c, etc. 
If 'a' is a member of the set 'A', then  "a belongs to A" and mathematically we write it as a A, 
where '' is a greek symbol known as epsilon having meaning 'belongs to'. Also if b is not a 
member of the set A we write it as b  A, means "b does not belongs to A". 

Representation of Set 

 Set is mainly written by two methods:: 

 1. Tabular or Roster method 

 2. Set-builder method 

Tabular or Roster method:  

In tabular method, we make list of all the elements of the set andandseprate them by 
commas, also braces { } are used to write the members of the set. The set of all odd integers 
greater than zero and less than 10, in tabular method is written as  {1, 3, 5, 7, 9}. Also the set of 
all vowels in English alphabet is {a, e, i, o, u} is another example of a set in tabular method. 
While writtingthe set intabular method we should not write the repeated element i.e. every 
element is unique. Also the order in which elenents are written does not matter which means we 
can place element in any position. 

For example, the set of letter forming the word 'MATHEMATICS' is {M, A, T, H, E, M, A, 
T, I, C, S}. If can we written as {S, C,  I,  E, M, A, T, H}, where the sequence of  elements has no 
meaning 

Set-Builder method 
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 In set-builder method, every member of the set has a single common feature which is 
not satisfed by any member outside the set. For example, in the set {2, 3, 5, 7, 11}, all members 
are prime number less than 13, and no other number less than 13has this property. So in set-
builder methodwe can write it as, X = {a :a is prime number less than 13}. Here we use a (small 
letter) formember of the set, then we place symbol of colon ":"  after that we write that property 
which is satisfied by all the members of the set and then use braces for whole statement. 
Mathematically we read it as, "A is a set of all a such that a is a is prime number less than 13" 
Here "set of all" is given mathematically by the braces { }, and ' such that' is shown 
mathematically by colon ':'.  

 Consider a set X= {1, 4, 9, 16, 25, .....} in tabularmethod, in set-builder method it can be 
written as X = {a : a is the square of a natural number}. 

 To clarify what we have just said, consider the following examples : 

Example 1 : Write the set R = 
1 2 3 4 5 6

, , , , ,
2 3 4 5 6 7

 
 
 

 in the set-builder form. 

Solution : We observe that each member of the set has the numerator one less than the 
denominator. Also, the numerator begin  from 1 but less than 6. 

 Hence, in the set-builder form is it is written as 

 R = { a : a = 
1

n

n 
, where n is a natural number such that 1 <  n <} 

Example 2 : Write the roster form of X = {a : a is a letter of the word principal }. 

Solution :X= {P, R, I, N, C, A, L} is a roster form of given set X. 

Example 3 : Write the solution set of equation x2+x-2 = 0 in roster form. 

Solution : On factorization we can write this equation as (x-1) (x+2) = 0 so x = 1, -2. Therefore, 
the set of solutionof  given equation in roster form is {1, -2}. 

Now, you can try the following exercises -2  

Self Check Exercise - 2 

Q. 1 Write the following sets in the set-builder form. 

 (1) {3, 6, 9, 12 }   (2) {2, 4, 8, 16, 32} 

 (3) {5, 25, 125, 625}  (4) {2, 4, 6, ......} 

 (5) {1, 4, 9, ....... 100} 

Q. 2 Write in the roster form 

 (1) X = {a :a is an integer and -3 <a< 7} 

 (2) Y = {y :y is a natural number smaller than 6} 

 (3) Z = {z :z is a two-digit natural number such that sum of its digits is 8} 
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 (4) D = {The set of  letters in „school‟ word} 

 (5) X = {b :b is a prime divisor of 50}. 

Types of the Set 

The Null Set  

 “A set which does not contain any element is called the empty set or the null set or the 
void set. We represent the empty set by the symbol  or { }.” 

 For example, X = {a :a is prime number bigger than 2 and divisible by 2 }. Then the set X 
is an empty set because 2 is the only even prime number. 

 Also, Y = {b :b2 = 4, b is odd}, Here the set Y is empty because the equation b2 = 4 is not 
satisfied for any odd value of b. 

Finite And Infinite Sets  

 “A set which is empty or consists of a definite number of elements is called finite set 
otherwise the set is called infinite set.” 

 For example, let W be the set of days of the week. The W is a finite set. As a week has 
seven days, this set has 7 members. Mathematically we write it as n(W)=7.Also, the set of 
natural numbers, the set of even numbers, the set of integers, set of red numbers etc are all the 
examples of infinite set. 

Equal Set 

 “Two sets A and B are said to be equal if they have exactly the same elements and we 
write A = B. If two sets are not equal then we write A  B i.e. set A is not equal to set B.” 

 For example, A = {1, 2, 3, 4} and B = {4, 3, 2, 1} 

 Then the set A = B. 

 Also, A = {x : x - 5 = 0} and B = {x : x is an integral positive root of equation x2-2x-15 = 0}. 

 Since the roots of equation x2-2x-15 = 9 are x = 5 and x = -3 and the integral positive 
root is x-5 = 0. Which is same as the given set A. So the set A = B. 

 Also the set A = {1, 2, 3} and B = {2, 1, 3, 2, 3} are equal since each element of set A is 
in B and vide-versa. So a set does not change of one or more elements of the set are repeated. 

Subset  

 “A set A is said to be a subset of a set B if every element of A is also an element of B. If 
A is a subset of B then we write it as A < B.” The symbol '<' stands for 'is a subset of' or is 
'contained in' 

 Also we can write A < B if a Aa B, means "A is a subset of B of a is an element of A 
implies that a is also an element of B." 

 In order to be a subset of B, A must have all of its elements in B. It is possible that not all 
of the elements in B are in A. If all elements of B are also in A, then B < A. then A and B are the 
same set, we have A<B & B<A A=B 
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Hence, every set A is a subset of itself, i.e. A < A. Also empty set  has not element, so  is a 
subset of every set.  

Some example of subset are 

 1. The set R of real numbers contains all the rational numbers, hence Q < R. 

 2. If X is the set of all divisions of 56 and Y is the set of all prime divisors of 56 than 
X = {1, 2, 4, 7, 8, 14, 28, 56} and Y = {1, 2, 7} so B < A. 

Operations on Set 

Union of Sets : 

 “Let A and B be any two sets. The union of A and B is the set which consists of all the 
elements of A and all the elements of B, the common elements being taken only once. The 
symbol 'U' is used to denote the union of two sets.” Mathematically we write AUB and read it as 
'A union B'. 

 

Shaded portion of the diagram shows AUB i.e. A union B. 

 “So, union of two sets A and B is the set C which consists of all those elements which 
are either in A or in B (including those which are in both).” 

 AUB = {x : x  A or x  B} 

Intersection of Sets : 

 “The intersection of sets A and B is the set of all elements which are common to both A 
and B. The symbol '∩' is used to denote the intersection. So, intersection of two sets A and B is 
a set c which contains all those elements which belongs to both A and B.” Mathematically 

 A∩B = {x : x < A and x  B} 
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Shaded portion of the diagram show A∩B i.e. A intersection B 

Disjoint Sets 

 If the intersection two set is empty means there is no common element in sets A and B 
then the sets are called disjoint sets. Mathematically for disjoint set A∩B =  

 
Difference of Sets 

 The difference of the sets A and B in this order, is the set of elements which belongs to 
A but not to B. Symbolically, we write A-B and read it as 'A minus B' mathematically A-B = {x : x 
 A and x  B} 

 

Shaded region shows the difference of Set A and B. 

Complement of a set  

 let U be the universal set and A is a subset of U, then the complement of A is the set of 
all elements of U which are not the elements of A. Symbolically we write A1 or Ac to denote 
complement of A with respect to U. Mathematically 

 A1 = Ac=  {x : x  U and x  A} 

 So A1 = U - A 

 

Shaded portion of the diagram shows A1 or Ac. 
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To clarify all above topics, consider the following examples. 

Example 4 : Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 3, 4} B = {2, 4, 6, 8} and C = {3, 4, 5, 6}. 
Find A', B', (AUC)', (AUB), (A'), (B-C)' 

Solution: A' = Ac = {6, 6, 7, 8, 9} 

 B' = Bc = {1, 3, 5, 7, 9} 

 AUC = {1, 2, 3, 4, 5, 6} 

 (AUC)' = {7, 8, 9} 

 AUB = {1, 2, 3, 4, 6, 8} 

 (AUB)' = {5, 7, 9} 

 (A')' = {1, 2, 3, 4} 

 B - C = {2, 8} 

 (B-C)' = (1, 3, 4, 5, 6, 7, 9)  

Example 5: Show that the set of letters needed to spell "CATARACT" and the set of letters 
needed to spell "TRACT" are equal. 

Solution: Let X be the set of letters in "CATARACT" then 

 X = {CATR} 

Let Y be the set of letters in 'TRACT' then 

 Y = {TRAC} 

 Since all the members of the set X and Y are same so X = Y. 

Example 6: Let U = {1, 2, 3, 4, 5, 6}, A = {2, 3} and B = {3, 4, 5} 

 Find A', B', A' ∩ B', AUB and hence show that (AUB)' = A'∩B' 

Solution: For the given set A, A' = {1, 4, 5, 6} 

 and for the set B, B' = {1, 2, 6} 

 Now A'∩ B' = {1, 6}  (1) 

 AUB = {2, 3, 4, 5} 

 Now (AUB)' = {1, 6}  (2) 

 ∴ Using (1) and (2) 

 (AUB)' = A' ∩ B' = {1, 6} 

Example 7: Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and A = {1, 3, 5, 7, 9} 

 Find A' and show that (A') = A 

Solution: Given A = {1, 3, 5, 7, 9} 

 then A' = {2, 4, 6, 8, 10} 
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 Now, (A') = {1, 3, 5, 7, 9} = A 

Cartesian Product of Two Sets 

Consider two sets A and B. Let a A and b B. Then (a, b) denotes the ordered pair. 
The object a is called first co-ordinate of ordered pair (a, b) and the object b is known as its 
second co-ordinate.  

Definition:  

“If A and B are sets, the set of all distinct ordered pairs whose first co-ordinate is an 
element of A and whose second coordinate is an element of B is called the Cartesian product of 
A and B and is denoted by AB” 

Mathematically 

 A  B = {(a, b) : a A and b  B}.  

For Example: Let A = {a, b, c} and B = {p, q} then AB = {(a, þ), (a, q), (b, þ), (b, q) (c, þ), (c, q)} 

 Similarly BA = {(þ, a) (þ, b), (þ, c), (q, a), (q, b), (q, c)}. 

For here we can see that AB B A 

Self Check Exercise - 2 

Q.3 If A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

 B = {2, 3, 4, 5} 

 C = {2, 4, 6, 8} 

 D = {4, 5, 6, 7} 

 Find BUC, B∩D and verify that (BUC) U (AUD) = A. 

1.5 Functions: 

 Let A = {a, b, c} and B = {x, y, z, t}. Let a is associated to x, b is associated to y and c is 
associated to z, by virtue of some rule we assign to each element of A, a unique element of B. 
Then the set  ( , ), ( , ), ( , )a x a y b z  of such assignment is called function from A to B. If we 

denotes. This function by f , then we write f : AB and read if as f is mapping or f  is a 
function from A to B.  

Definition:  

“Let A and B be two given non empty sets. Let a cossespondance  ' f ' which associates 
to each member of A a unique member of B.” Then This mapping is written as  

 f : A  B. 

Range And Domain of Function:  



11 
 

“Let f is a function from A to B i.e. f : A B, then the set A is called domain of function 

f  and the set B is called co-domain of function f .” Range of f  consist of those elements of B 
which are images of at least one element in A. 

Mathematically, We denote range of f : A  B by f (A)  

 So f (A) = { f (x); x  A} also f (A)  B. 

Transformations OR Operators:- 

If f : AB i.e. if the domain and codain of a function is same, then we call f  as an 
operator or transformation of A. 

Equality of two functions: Two functions f  and q of A  B are said to be equal iff f (c) = g(x)  

x  A and then we write f  = g. 

 If mappings, f  g, from A to B. then  at least one element x  A such that f (x)  g(x). 

Diagrammatic Representation of a function:  

Let f  : A  B where 

 A = {a, b, c, d} 

 B = {t, x, y, z} 

 defined as f (a) = y, f (b) = x, f (c) = z, f(d) = y. then, diagrammatically. 

 

 Then from definition of function, we have 

 1. every element of A is joined to some element in B 

 2. an element in A cannot be joined to two or more distinct elements in B. (unique 
image) 

 3. two or more element in A may be joined to same element in B. (two elements can 
have same image) 

 4. There are some element in B which are not joined to any element of A. 

Types of Functions:- 
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Into Function:- 

“If the function or mapping f : A B is such that there is at least one element in B which 

is not the f -image of any element in A. Then we say that f  is a mapping or function A 'into' B.” 
Diagrammatic representation of into function.    

 

 Here the range of F is a proper sub set of the co-domain of f i.e. f (A) CB, So in 'into' 

mapping at least one member of the co-domain B is left converged by the f -images of the 
domain A. 

Onto Function:  

“A mapping or function f : A  B is such that each element in B is the f image of at 
least one element in A, then the mapping is known as 'onto' mapping or function.” 

 

 Here the range of f is same as the co-domain of f  i.e. f (A) = B. So in 'onto' mapping 

the co-domain B is completely covered by the f -images of the domain A. 

One-One Function 

“A mapping or function f : A  B is said to be one-one if different elements in A have 

different f -images in B,” i.e. if  
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 f (x) - f (x')  x = x' 

 In one-one function an element in B has only one pre-image in A. 

Many-one Function 

“A function f : A  B is said to be many-one if two (or more than two) distinct elements 

in A have the same f -image in B” i.e.  

 f (x) = f (x') x x' 

 In many-one function some element in B have more than one pre-image in A. 

One-One On To Function 

“If f : A  B is one-one and onto B, then f  is called a one to one correspondence 
between A and B.“ 

 A mapping which is one-one and onto is a bijection mapping.  

Identity Function:  

“Let A be a non empty set. Let the function f : A A be defined as f (x) = x x A, that 

is each element of A be mapped on itself. Then f  is called the identity function or identity 
transformation on A.” 

 Identity function is always one-one and onto.  

Constant Function 

“A function f : A  B is called a constant function if the same element b B is assigned 

to each element of A.” or we can say f : A  B is a constant function if f (A) = range of f = b 
(only one element) 

Inverse Image of An Element):- 

“Let f  be a function of A to B i.e. f : A  B and let b B. then the inverse image of the 

element b under f  denoted by f '(b), and it consists of others elements in A which have b as 

their f -image” 

 Mathematically, if f : A  B 

 then f '(b) = {x: x  A and f (x) = b}. 

 f' is read as " f inverse" also. f' (b) is always a subset of A. 

Inverse Function:  
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“If f : A  B is a one-one and onto function then f ': B  A is known as inverse 

function of the function f , which associates to each element b B the element a A, such that 

f (a) = b.” 

 only one-one onto function can have inverse function. 

 If f : A  B is one-one and onto then f ': B  A is also one-one and onto 

 The inverse function of a function is unique.  

Self Check Exercise - 3 

Q.1 Let A = {-2, -1, 0, 1, 2} and f : A  R is defined by f (x) = x2 + 1. 

Find the range of f . 

Q.2 Find the range of f (x) = x3, f (x) = sin x, f (x) = x2 + 1. 

Q.3 Let f : Q Q defined as f (x) = 2x + 3, x  Q set of rational 

numbers. Show that f  is one-one and onto. Also drive the 
formula for inverse function.  

1.6 Binary Operations 

 In earlier classes, we studied various operations like addition, subtraction, multiplication 
and division of numbers along with union intersection of sets, and composition of function etc. In 
all these operations any two elements of given set are operated to get a unique element of the 
same set. Consider the operation of addition of natural number. When the addition '+' operates 
on any two natural numbers a, and b, it gives a unique natural number a+b. Or we can say that 
operation of addition '+' associates every ordered pair (a, b) of natural numbers a and b to a 
unique natural number a+b. 

Definition:  

“A binary operation '*' : AAA is called a binary operation on the set A. 

 If a set A is closed with respect to the composition '*' then we say that '*' is a binary 
operation on the set A.” 

For example:- 

 1. Addition is a binary operation on the set of natured number 

 2. Addition is binary operation on the set of even natural number. 

 3. Addition is not a binary operation on the set of odd natural number. ∴ 3.5  
odd natural number but 3 + 5 = even number.  

 4. Subtraction is not a binary operation n the set of natural number. 
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Types of Binary Operations 

 1. Commutative Operation:- A binary operation '*' or a set A is called commutative 
if 

  a * b = b * a  a, b  A 

 2. Associative Operation:- A binary operation '*' on a set A is called associative if   

  a* (b * c) = (a * b) * c  a, b, c,  A. 

 3. Distributive Operations:- Let A be a set on which two binary operations '*' and 
'0" are defined. Then a * (b 0 c) = (a * b) 0 (a * c) is fifth distributive (b 0 c) * a = 
(b * a) 0 (c * a) is right distributive w.r.t. 0. 

Identity And Inverse Element of Binary Operation 

Let * : AAA be a binary operation on A. then an element e  A is called an identity 
element for operation * if  

 e * a = a  e  a A. 

Also an element a of the set A has inverse or is inversible for a binary operation * with 
identity e if  b  A such that  

 a * b = e = b * a. 

 Then b is the inverse of a and is written as a'. 

Self Check Exercise - 4 

Q.1 What is additive identity for set of real number. 

Q.2 What is multiplicative identity for set of natural number. 

1.7 Summary 

Dear students in this unit we studied that  

 1. A sentence which is either true or false but not both is a statement. 

 2. A statement which is always true a  tautology.  

 3. A well defined collection of objects is a set. 

 4. Set can be presented in roster or set builder form.  

 5. If f : A  B be a mapping or function then A is domain and B is co-domain of f . 

 6. If f : A  B then f (A) = range of f ={ f (x):x  A}. 

 7. one-one-onto function is a bijective function.  

 8. one-one-onto function only can have inverses function. 

 9. Inverse function if exists then it is unique. 
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 10. If a set is closed with respect to composition '*' then '*' is a binary operation. 

1.8 Glossary 

 Power Set:- It is the set of all subset of S, where S is any set. 

 Relation:- A Relation R is the subset of the Cartesian product of the two non-
empty set AB. 

 Groupaid:- It is the set having one binary operations satisfying only closure. 

1.9 Answers to Self Check Exercises 

Self Check Exercise - 1  

Q.1 p q pq pqþ 

  T T T T 

  T F F T 

  F T F T 

  F F F T 

Q.2 p q pq  (pq)   p  q  p q 

 T T T F  F F F 

 T F F T  F T T 

 F T F T  T T T 

 F F F T  T T T 

Self Check Exercise - 2 

Q.1 1 A = {x : x is a multiple of 3} 

 2 A = {2n; n = 1, 2, 3, 4, 5} 

 3 A = {2n, nn< 5, n  N} 

 4 A = {x ; x is an even integer > 2} 

 5 A = {x2; x  N x < 10} 

Q.2 1 X = {-3, -2, -1, 0, 1, 2, 3, 4, 5, 6} 

 2 Y = {1, 2, 3, 4, 5} 

 3 Z = {17, 80, 44, 62, 26, 35, 53, 71} 

 4 D = {S, C, H, O, L} 

 5 X = {2, 5,} 

Q.3 BUC = {2, 3, 4, 5, 6, 8} 

 B∩D = {4, 5} 

 AUO = {1, 2, 3, 4, 5, 6, 7, 8, 9} 
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Self Check Exercise - 3 

Q.1 f (A) = {5, 2, 1} 

Q.2 R, [-1, 1], [1, ∞] 

Q.3 Use definition of one-one and onto to prove this. Also f -1 (y) = 
3

2

y 
, y  Q is 

the formula for defining the inverse function f '  Q Q. 

1.10 References/Suggested Readings 

 1. Vijay k. Khanna and S.K. Bhaimbri, A course in Abstract Algebra. 

 2. Joseph A. Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayres Jr. Modern Algebra, Schaum's outline Series.  

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.  

1.11 Terminal Questions 

Q.1 X = ,2 2
  

 
 and  

  Y = {Y : Y  R and -1 < y < 1} Y = [-1, 1] 

show that the function f : X  Y defined by f (x) = sin x, x x, is one-one and 

onto Also find the inverse map f ': Y  X. 

Q.2 Let C be the set of complex number. Prove that f : C  R given by f (z) = |z|, z 

 C is neither one-one nor onto. 

Q.3 Define binary operation. Show that the relation * given by a*b = ab is a binary 
operation on the set of natural numbers. Also check for associative nature.  

***** 
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Unit - 2 

Group 
Structure 

2.1 Introduction 

2.2 Learning Objectives  

2.3 Group Paid, Semi Group And Monoid 

 Self Check Exercise-1 

2.4 Groups 

 Self Check Exercise-2 

2.5 Elementary Properties of Group 

 Self Check Exercise-3 

2.6 Summary 

2.7 Glossary 

2.8 Answers to self check exercises 

2.9 References/Suggested Readings 

2.10 Terminal Questions 

2.1 Introduction 

Dear student, in unit 1we revised the basic concepts of sets and binary operations. Here 
we shall study an algebraic system with a binary operation defined on its elements, which 
satisfies certain postulates, called group. 

The term group was used by Galois around 1830 to describe sets of one to-one 
functions on finite sets that could be grouped together to form a set closed under composition. 
As is the case with most fundamental concepts in mathematics, the modern definition of a group 
that follows is the outcome of a long evolutionary process. Although this definition was given by 
both Heinrich weber and wather von Dyck in 1882, it did not gain universal acceptance until the 
20th century.   

Groups have widespread applications in various branches of mathematics, including 
algebra, number theory, geometry, physics and chemistry. They provide a framework for 
studying symmetry, transformations and abstract algebraic structures. The study of groups, 
known as group theory, is a rich and important area of mathematics with numberous 
applications and connections to other fields.      

2.2 Objectives Learning 

 After studying this unit, students will be able to 

 Understand Grouoid, semigroup and monoid 



19 
 

 Understand the Group. 

 Define and prove different properties of group 

 Solve questions related to group.  

2.3 Groupoid, Semi Group And Monoid 

Groupoid 

A non-empty set G together with a binary operation '*' defined on it is called a groupoid if 
it satisfies the closure property only 

 a*b  G  a, b  G 

Semigroup 

A non-empty set G together with a binary operation '*' defined on it is called a semigroup 
if it satisfies, closure property and associative property i.e. 

 1. a*b  G,  a, b  G 

 2. a*(b*c) = (a*b)*c,  a, b, c  G. 

Monoid 

A non empty set G together with a binary operation " defined on it is called a monoid if it 
satisfies following properties 

 1. a*b  G  a, b  G 

 2. a*(b * c) = (a * b) * c  a, b, c  G 

 3.  an element e  G such that 

  a * e = a = e * a a G. 

Here 'e' is known as identity element of G with respect to binary operation '*'. 

In order to understand more about semi group and monold let us take following examples.  

Example 1: Show that the set of all natural numbers form a semi-group under the composition 
of addition.   

Solution: Let N = {1, 2, 3, 4, ......} be the set of natural numbers. 

 (i) Closure Property : Since n + m  N 

 ∴ N is closed under addition. 

 (ii) Associative Property : Since 

  (n + m) + p = n + (m + p),  n, m p  N. 

 ∴ Associative property hold in N under addition. 

 Hence N is semi-group under addition. 

Note: (N, +) is not a monoid, as (n, +) do not have identity (zero) element. 
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Example 2: Show that the set G = {
x y

x y

 
 
 

 : x, y  R, s.t. x + y  0} form a semi-group under 

the operation of matrix multiplication.  

Solution: The G satisfies the following under multiplication of matrices. 

 (i) Closure Property : Let A = 
1 1

1 1

x y

x y

 
 
 

, B = 
2 2

2 2

x y

x y

 
 
 

 be any two elements of G, 

where x1 + y1 0 and x2 + y2 0. 

  (x1 + y1) (x2 + y2) = x1 x2 + y1 x2 + x1 x2 + y1 y2 0 

 ∴ AB = 
1 1

1 1

x y

x y

 
 
 

2 2

2 2

x y

x y

 
 
 

 

  = 
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

x x y x x y y y

x x y x x y y y

  
 

  
 G 

 for x1 x2 + y1 x2 + x1 y2 + y1 y2 0. 

 ∴ G is closed under multiplication.  

 (ii) Associative Property : Since matrix multiplication is associative. 

 ∴ Associative property hold in G also. 

 Hence G form a semi-group under multiplication. 

Note: The above set do not form a monoid under multiplication. Since it has no identity element. 

Proof: Let E = 
a b

a b

 
 
 

 be the element of G such that  

 AE = A = EA,  = 
x y

x y

 
 
 

 G, where x + y  0. 

 i.e. 
x y

x y

 
 
 

a b

a b

 
 
 

 = 
x y

x y

 
 
 

 = 
a b

a b

 
 
 

x y

x y

 
 
 

 

 i.e. 
xa ya xb yb

xa ya xb yb

  
 

  
 = 

x y

x y

 
 
 

 = 
ax bx ay by

ax bx ay by

  
 

  
 

Taking first two, we get 

 (x + y) a = x  a = 
x

x y
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 (x + y) b = y  b = 
y

x y
 

Also, taking, last two, we get 

 (a + b) x = x  (a + b - 1) x = 0 

 (a + b) y = y  (a + b - 1) y = 0. on adding we get 

 (a + b - 1) (x + y) = 0, but x + y  0 

  a + b - 1 = 0 

  a + b = 1 

 Thus, the element E in G is not unique. 

 Hence the identity element in G donot exist. 

Example 3: Show that the set of natural numbers form a monoid under the composition of 
multiplication.     

Solution: Let N = {1, 2, 3, 4, ..........} be the set of natural numbers. 

 (i) Closure Property : Since m n N,  m, n N 

 ∴ N is closed under multiplication.  

 (ii) Associative Property : Since (m n) p = m (n p),  m, n, p  N 

 ∴ N is associative under multiplication. 

 (iii) Existence of identity : There exist 1  N such that  

  m . 1 = m = 1.m,  m  N, then 

 1 is the identity element of N under multiplication. 

 Hence (N, .) form a monoid. 

Example 4: Let X be any non-empty set, let P(X) denote the power set of X. Then show that  

 (a) P(X) form a monoid under the operation ∩, intersection of sets. 

 (b) P(X) form a monoid under the operation U, union of sets.  

Solution: (a) (i) Closure Property: For any elements A, B  P(X). 

  A, B are subsets of X ∴ A ∩ B is also subset of X. 

 i.e. A ∩ B  P(X) 

 ∴ Closure property hold in P(X) 

 (ii) Associative Property : Since associative law hold under intersection of sets. 

 ∴ In particular, it hold in P(X) also 
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 i.e. (A ∩ B) ∩ C = A ∩ (B ∩ C), , A, B, C  P(X). 

 (iii) Existence of identity : There exist an element X  P(X) such that  

  A ∩ X = A,  A  P(X) 

 ∴ X is the identity element of P(X). 

 Hence, (P(X), ∩) is a monoid. 

 (b) (i) Closure Property: For any element A, B  P(X) 

  A, B are subsets of X  ∴ AU B is also subset of X 

 i.e. A U B  P(X) 

 ∴ Closure property hold in P(X). 

 (ii) Associative Property : Since associative law hold under union of sets 

 ∴ in particular, it hold in P(X) also. 

 (iii) Existence of identity : There exist an element  P(X) such that  

  A U = A,  A  P(X) 

 Hence, (P(X), U) is a monoid. 

Example 5: Let M(X) be the set of all mapping of a non-empty set X into itself, then show that 
M(X) form a monoid under the composition of composite of mapping. 

Solution: Let M(X) = { f | f : X X is a mapping} 

 (i) Closure Property : Let f , g M(X) be any two elements, then  

  f o g : X X is also mapping. 

 ∴ f o g  M(X)  f , g  M(X). 

 ∴ M(X) is closed under the composite of mapping. 

h  M(X) be any elements. Then 

 (( f o g) oh) (x) = ( f o g) (h(x)) = f (g (h(x))) and 

 f o(g o h)) (x) = f ((g o h) (x)) = f (g (h(x))) 

 ∴ (( f o g) o h)) (x) = f ((g o h) (x)) = f (g (h (x))) 

  ( f o g) o h = f  o (g o h)  f , g, h  M(X) 

 ∴ Associative law hold in M(X). 



23 
 

 (iii) Existence of identity : There exist an element i : X X defined by i (x) = x,  x 
X such that  

  f o i = f = i of  f  M(X) 

 i is called the identity element of M(X) under composite of mapping. 

 Hence M(X) form a moniod. 

Example 6: Let M2(I) be the set of all 2  2 matrices over the set of integers. Show that the set 
M2(I) form a monoid under the composition of multiplication of matrices.   

Solution: Let M2(I) = {
a b

c d

 
 
 

 : where a, b, c, d  I} 

 (i) Closure Property : Let A = 
1 1

1 1

a b

c d

 
 
 

, B = 
2 2

2 2

a b

c d

 
 
 

 be any two elements of 

M2(I), where a1, a2, b1, b2, c1, c2, d1, d2 I 

 Now AB = 
1 1

1 1

a b

c d

 
 
 

2 2

2 2

a b

c d

 
 
 

= 
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

a a b c a b b d

c a d c c b d d

  
 

  
 

 Clearly, AB  M2(I)  A, B  M2(I) 

 ∴ M2(I) is closed under multiplication. 

 (ii) Associative Property : Since multiplication of matrices is associative. 

 ∴ in particular, associative law hold in M2(I) also 

 i.e. (AB) C = A (BC)  A, B, C  M2(I) 

Self Check Exercises - 1 

Q.1 Show that (n, +), (N, .), (Z, +) and (R, +) are semi groups.  

2.4 Group - Definition 

 A non-empty set 'G' togather with a binary operation '' on  

 G is sais to form a group if it satisfies following postulates: 

 1. Closure Property: for all a, b, in G, 

  a  b  G,  a, b  G. 

 2. Associative Property: For all a, b, c in G, 

  (ab) c = a(bc)  a, b, c  G. 

 3. Existence of identity: For all a  G,  an element e  G, such that, a  e = e  a = 
a a G. 
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  Here e  G is called Identity element of G. 

 4. Existence of Inverse: For all a  G,  a'  G (depending upon a), such that, a a' 
= a'  a = e. 

  Here 'a', is called an inverse of 'a', we write a' = a-1.  

 The algebraic structure ,*G  satisfying above properties is called a group. 

Note: A group is always a group paid or semi group or monoid, but the converse is not true.  

Finite and Infinite Groups  

 If the set G in the group ,*G is a finite set, then it is called a finite group otherwise it is 

called an infinite group. 

 ∴ Order of a Group 

 The order of a finite group < G, > is defined as the number of distinct elements in G. It 
is denoted by 0(G) of |G|. If a group G has n elements, then o(G) = n. 

Remark: The order of an infinite group is not defined or we say that the order is infinite. 

Abelian and Non-abelian Group 

 A group <G, *> is called an abelian group or commutative group 

 iff a  b = b  a,  a, b  G. 

 If a  b ba,  a, b  G, then the group <G, > is called a non-abelian group.  

Some Illustrative Examples of Groups 

Example 1: Let Z be the set of all integers and let * is the binary opration '+' then to prove that 
(Z, +) is a group. 

Solution: Here the non empty set is Z and the binary operation is ordinary addition. In order to 
prove that (Z, +) is a group, we have to prove all the four axioms of the group, as follows:  

1. Closure Property:- Let us take two numbers from the set of integers and apply 
the operation of addition on them, the result and number will be the integer. For 
example, Let 2, 5  Z and 2 + 5 = 7  Z Hence it satisfies the closure property. 
So we can say  a, b  Z, a +b Z (as sum of two integer is an integer).  

2. Associative Property:- Just like closure property, if we take three intger and 
apply the operation of addition on then, we get the number which is an integer. 
For example, let 2, 5, 7 are three integers than  

2+ (5+7) = 2+ (12) = 14 

and 

  (2 + 5) + 7 = 7 + 7 = 14 

  So 2+(5 + 7) = (2 + 5) + 7 = 14 

  Hence it satisfies the Associative Law.  
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Mathematically  a, b, c  Z, a+ (b+c) = (a+b)+c.  

3. Existence of identity: For the existence of identity in the set of integer under 
addition, we have to find an integer when added to an integer gives the same 
integer. As we know 0 is an integer and when we add 0 to any given integer we 
get the same integer. For example if we add 0 to 5, So '0' will act as identity 
element for 5. This '0' will act as identity element for the whole set of integer. So, 
mathematically we can write it as  0  Z,  0  Z, such that 

  a + 0 = a = 0 + a. 

Here '0' is identity element for the set of integers. 

4. Existence of Inverse:- For the existence of inverse, in the set of integer under 
addition, we have to find integer which when added, we have to find integer 
which when added to a given integer gives the identity element (which is zero in 
present case). As we know that set of integers contains negative, zero and 
positive numbers. When we add negative of an integer to itself we get zero which 
is identify element. As when we add (-5) to 5 i.e. 5+ (-5), we get '0' which is 
identity element, This is true for al integers. So, mathematically, we can write it 
as  

  a+ (-a) = 0 = (-a) +a 

Here (-a) is the additive inverse of a in Z. 

Since all the four properties are satisfied for the set of integer under addition, So 
algebraic stature (z, +) forms a group.   

Note: To prove (Z, +) is a commutative group or Abelian group. 

Commutative Property: 

When we add 2 and 5 we get 7 and also when we add 5 and 2 we get 7 i.e. 2+5 = 7 = 
5+2, and this result holds for every integer, mean commutative law hold for the set of integers. 
Mathematically, we can write it as; 

  a, b  Z, a + b = b + a 

 As (Z, +) hold commutative Property, so (Z, +) is an abelian group.  

Example 2: Let Q+ be the set of +ve rational numbers. Define * on Q+ as under: for a, b  Q+, 

a*b = 
3

ab
, verify that (Q+, ) is an abelian group. 

Solution: To prove (Q+, ), an abelian group will will prove five properties as: 

1. Closure Property: 

Let a, b  Q+,  a b  Q+ [because product of two positive rational numbers is a positive 
rational number] 

 
3

ab
 Q+ [  division of a positive rational number of 3 is a  
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positive rational number] 

 a  b  Q+ 

2. Associative Law: 

a, b  Q+ 

 (a  b)c = 
3

ab 
 
 

 c = 
3
3

ab
c 

 
  = 

 
3.3

ab c
= 

abc

a
 

 ∴ (a  b)  c = a * (b  c)  a, b, c  Q+ 

 Thus associative law holds.  

3. Existence of Identity: 

For each a  Q+, there must be an identity element e  Q+ such that  

 a * e = a = e * a  

 Now by defining a * e = 
ae

a
= a 

  ea = 3a 

  e = 3 

 Thus 3  Q+ is the identity element 

 Now, a  3 = 
( ) (3)

3

a
 = a 

 and 3  a = 
3

3

a
 = a 

Thus 33 = a = 3  a 

4. Existence of Inverse: 

For each a  Q+, there must exists a number a'  Q+ such that  

 a  a1 = e = 0 = a a 

 Now, a  a1= 3 

  
1

3

aa
 = 3 

  a1 = 9
a  
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 Now, a  a1 = a 
9

a
 = 

9. 9
3

a 
 
 
 

= 
9

3
 
 
 

 = 3 = e 

 ∴ 
9

a
 Q+ is the inverse of a  Q+. 

5. Commutative Law:  

For each a, b Q+, 

  a  b = b * a 

 ∴ a  b = 
3

ab
 

  and b  a = 
3

ba
= 

3

ab
 ,ab ba a b Q      

 ∴ a  b = b * a a, b  Q+ 

 Hence (Q+, ) is an abelian group. 

Example 3: Show that the set S = {-1, 1} under the operation of usual multiplication of integers, 
is an abelian finite group. 

Solution: We will prove all the five properties for both the elements of set S as follows: 

Closure Property: 

1, -1  S 

 1  -1 = -1  S, for 1, -1  S 

 -1  1 = -1  S, for -1, 1  S 

 1  1 = 1  S, for 1, 1  S 

 -1  -1 = 1  S, for -1, -1  S 

 Thus  a, b  S a  b  S 

 Hence closure property satisfied. 

Associative Law:  

Since 1, -1 are integers and multiplication of integer is associative so 

 (ab)c = a(bc)   a, b, c  S 

 Thus associative property holds in S. 

Existence of Identity:  
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Here we find the identity element for both the elements. Since 11 = 1 and -1  1 = -1 So 
it satisfies the property ae = a = ea, where 'e' is identity element. Hence in this given set 'I'  
act as identify element 

Existence of Inverse:  

Here we find the inverse of each element which also belongs to the set S. Since 11 = 1 
and -1-1 = 1, which holds the property aa1 = e = a1

 a. So 1 is inverse of 1 and -1 is inverse 
of -1. Therefore every element of S has an inverse which belongs to S. 

 

Commutative Property 

  1-1 = -1 

Since -1  1 = -1  1, -1  S 

which holds the property a b  = b  a, which shows that S is a commutative under 
multiplication. 

So, the given set S = {1, -1} is abedian group of finite order. 

Example 4 : Show that the set C of all complex numbers forms on infinite  abelian group under 
the addition of complex number. 

Solution : Given C is the set of complex number, so 

 C = {x : x = a + ib, a, b  R} 

Closure Property 

 Let x1 and x1 C then x1 = a1 + ib1 and  

 x2 = a2 +ib2 be any two complex numbers, where a11 b11 a21 b2 R 

 Then x1+x2 = (a1 + ib1) (a2 +ib2) 

   = (a1 + a2) (b1+b2) 

  x1+x2 C [ a11 b11 a21 b2 R and a1 + a2 R b1+b2 R] 

  C is closed under addition. 

Associative Property  

 Let z1 = a1 +ib1,  z2 = a2 +ib2 , z3 = a3 +ib3 be any three complex numbers, where a1, a2, 
a3, b1, b2, b3 R. 

 Then  (x1+x2) + x3 = (a1 + ib1) + (a2 + ib2)+ (a3 + ib3) 

    = (a1 + a2) +i (b1 + b2)+ (a3 + ib3) 

    = [(a1 + a2) +a3] + i [(b1 + b2)+ b3] 

    = [a1 + a2 +a3] + i [b1 + b2+ b3] 

    = [a1 + (a2 +a3)] + i [b1 + (b2+ b3)] 

    = (a1 + ib1) + (a2 +a3) + i (b2+ b3) 
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  (x1+x2) + x3 = x1+ (x2 + x3) 

 Therefore addition is associative in C.  

Existence of identity : 

 Since for all x = a + ib C there exist  

a complex number 0 = 0 + i-  C such that 

x+0  = (a+ib) +(a+ib) 

 = (a+0) +i(b+0) 

= a + ib 

 = x 

and 0+x   = (a+i0) + (a+ib) 

 = (a+a) + i(0+b) 

 = a + ib 

 = x  

Hence x+0 = x = 0+x 

Existence of inverse : 

 Since for all x = a+ib c, a, b  R, there exist a complex number -x = -a - ibc, -a, -
bR, such that, x+(-x) = (a+ib) + (-a-ib) 

  = [a+(-a)] +i [b+(-b)] 

  0+i0 

  = 0 [-identity of c] 

also -x+x = (-a-ib) + (a+ib) 

  = (-a-a) +i (-b+b) 

  = 0 [identity of c] 

Hence x+(-x) = 0 = -x+x 

Therefore c has inverse element -Z = -a-ib c. 

Commutative Property:  

Since for all x1 = a1+ib1 and x2 = a2+ib2, a1, a2, b1, b2 R, we have 

 x1 + x2 = (a1+ib1) + (a2+ib2) 

  = (a1+a2) + i (b1+b2) 

  = (a2+a1) + i (b2+b1) 

  = (a2+ib2) + (a1+ib1) = x2+x1 

Hence x1+x2 = x2+x1 
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Therefore, addition is commutative in C. 

Hence C is an abelian group under usual addition. 

Also as the set C of complex number is infinite set. So (C, +) is an infinite abelian group under 
addition. 

Examples:- Let Q denotes the set of all rational numbers except 1, then show that Q forms 
an infinite abelian group under the operation  defined by ab = a+b - ab Q. 

Solution: Given Q be the set of all rational numbers except 1, and the binary operation  on 
Q is defined as: 

 ab = a+b - ab, a, b,  Q 

To prove (Q, ) is a abelian group we have to prove five properties as follows: 

Closure Property: Let a, b  Q be two elements of Q Here to prove ab  Q, we will prove 
that a+b - ab  Q and a+b-ab 1.  a, b  Q*. 

Let a+b-ab = 1 

 a+b-ab-1 = 0 

 a(1-b) -1 (-1b) = 0 

 (a-1) (1-b) = 0 

 a-1 = 0  or 1-b = 0 

 a = 1 , b = 1,  which is not possible as a, b  Q. as Q is the set of  

all rational number except 1. 

Hence a+b-ab 1 and a+b-ab Q, therefore a+b-abQ 

therefore a, b  Q 

  ab = a+b-ab Q. 

 Hence closure property satisfied.  

Associative Property:  

Let a, b, c  Q be any three elements of Q. 

 then (ab) c = (a+b-ab) c 

  = a+b-ab+c - (a+b-ab) c 

  = a+b+c-ab- [ac+bc-abc] 

  = a+b+c-ab-ac-bc+abc. 

Also a(bc) = a  (b+c-bc) 

  = a+b+c-bc-a (b+c-bc) 

  = a+b+c-bc-ab-ac+abc 
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  = a+b+c-ab-ac-bc+abc 

Hence (ab)  c = a (bc) 

Thus associative property holds in Q. 

Existence of Identity:  

Let e Q, where e is identity element such that  

 ea = a = ae,  a  Q 

Now, ea = a = ae-aa. 

 ea = e+a-ea  (using the defining of ) 

 e-ea = 0 

 e(1-a) = 0 

 e = 0 or 1-a = 0 

 if 1-a = 0 

 then a = 1, but as a  Q, set of all rational numbers except 1, so a  1. 

Therefore, e =0  Q 

Now, a0 = a+0-a0 

  = 0 

 0a = 0+a-0.a 

  = a 

Therefore, e = 0  Q works as identity element for Q*. 

Existence of Inverse: 

Let aQ, be any element, Let  Q1
Q such that aa1 = e = a1

a. 

Now, aa1 = a+a1 = a+a1-a.a1 = 0 = a1+a-a1a [  e = 0] 

 a+a1-aa1 = 0 

 a+a1 (1-a) = 0 

 a1 (1-a) = -a 

 a1 = 
1

a

a




 = 

1

a

a 
, a-1  0 

Now aa1 = a
1

a

a 
 = a+

1

a

a 
 - a

1

a

a 
 

 = 
2( 1)

1

a a a a

a
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 = 
2 2

1

a a a a

a

     


= 

0

1a 
= 0 = e 

 Similarly a1
a = e 

Hence aa1 = e = a1
 a 

 a1 = 
1

a

a  Q works as inverse element of Q. 

Commutative Law:  

Let a, b  Q be any two elements then 

 a*b = a+b-ab 

  = b+a-ba 

  = ba. 

 ab = ba  a, b  Q 

Also since Q, set of all rational numbers except 1, is an infinite set, so Q form an. 
infinite abelian group under the given binary composition.  

Example 6: Show that the set of rational numbers does not form a group under multiplication.  

Solution: Let Q be the set of all rational numbers. 

Closure Property: 

Let a, b  Q 

 
a = 1

1

Þ

q
and b = 2

2

Þ

q
 for some Þ1, Þ2, q1q2

 Z and q1, q2
 0 

     [By using definition of rational numbers] 

then a. b = 1

1

Þ

q
. 2

2

Þ

q
= 1 2

1 2

Þ Þ

q q
 Q. [  set of integers is closed under multiplication.] 

Also as q1 0 = q2, So q1q2 0. 

  Closures property hold for Q under multiplication. 

Associative Property: Let a1 b1 c  Q, such that 0 = 1

1

Þ

q
, b = 2

2

Þ

q
 and  

 and c = 3

3

Þ

q
for Þ1, b2, b3, 91, 92, 93 Z and q1, q2, q3 0. 
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then (a. b). c = 1 2

1 2

.
Þ Þ

q q

 
 
 

. 3

3

Þ

q
 = 31 2

1 2 3

.
9 9

ÞÞ Þ

q
 = 1 2 3

1 2 3

Þ Þ Þ

q q q
 

  = 
 

 
1 2 3

1 2 3

.

.

Þ Þ Þ

q q q
 = 

 

 
2 3

1 2 39

Þ Þ Þ

q q
 = 1

19

b
 . 
 

 
2 3

2 3

Þ Þ

q q
 

Therefore, (a. b) . c = a. (b. c) [  set of integers is associative  

under multiplication.  

 

Existence of identity: 

For all a  Q, a = Þ

q
, Þ, q  Z and q  0, there must exist some e  Q such that  

 a. e = a = e. a. 

Since 1  Q such that 

 a. 1 = a = 1. a 

 Þ

q
. 1 = Þ

q
 = 1. Þ

q
 

Hence 1  Q, act here as identity element. 

Existence of Inverse:  

Since the set of rational number contain 0. and no element of Q satisfies 

 0. a1 = 1 = a1 . 0 

 Hence 0  Q has no multiplicative Inverse in Q. 

 Therefore (Q, .) is not a group.  

Example 7:Prove that the set G = : , 0
x y

x y R suchthat x y
x y

  
    

  
 form. a semi group 

under the operation of matrix multiplication.  

Solution: The given set is G = : , . . 0
x y

x y R s t x y
x y

  
    

  
 

Closure Property: 

Let A = 1 1

1 1

x y

x y

 
 
 

, B = 2 2

2 2

x y

x y

 
 
 

 be any two element of G where x1+y1 0. x2+y2 0 

that (x1+y1) (x2+y2) = x1x2 + y1y2 + x1y2 + x2y1 0 
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Therefore A.B = 1 1

1 1

x y

x y

 
 
 

2 2

2 2

x y

x y

 
 
 

 

  = 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

x x y y x y y y

x x y y x y y y

  
 

  
 G, For x1x2 + y1y2 + x1y2 + x2y1 0 

 G is closed under multiplication. 

Associative Property:  

Since matrix multiplication is associative.  

Therefore Associative property holds in G also, as. 

Let A1 = 1 1

1 1

x y

x y

 
 
 

, B = 2 2

2 2

x y

x y

 
 
 

, C = 3 3

3 3

x y

x y

 
 
 

be any three elements of  

G where x1+y1 0, x2+y2 0 and x3+y3 0. 

Such that (x1+y1) (x2+y2) . (x3+y3) = (x1x2 + y1y2 + x1y2 + x2y1) (x3+y3) 

  = x1x2x3 + y1y2y3 + y1y2x3 + x1y2x3 + x2y1x3 + x1x2y3 + y1y2y3 

+ x1y2y3 + x2y1y3 0 

Now, (A.B).C = 1 1 2 2

1 1 2 2

x y x y

x y x y

    
    
    

3 3

3 3

x y

x y

 
 
 

 

 = 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

x x y x x y y y

x x y x x y y y

  
 

  

3 3

3 3

x y

x y

 
 
 

 

 = 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 1 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

x x x y x x x y x y y x x x x y x y x y y y y y

x x x y x x x y x y y x x x x y x y x y y y y y

      
 

      
 

Also A.(B.C) = 1 1

1 1

x y

x y

 
 
 

3 32 2

3 32 2

x yx y

x yx y

   
   
    

 

 =  1 1

1 1

x y

x y

 
 
 

2 3 2 3 2 3 2 3

2 3 2 3 2 3 2 3

x x y x x y y y

x x y x x y y y

  
 

  
 

 = 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

x x x x y x y x x y y x x x y x y y y x y y y y

x x x x y x y x x y y x x x y x y y y x y y y y

      
 

      
 

Therefore (AB) C = A. (BC) 

Hence G forms a semi-group under multiplication. 
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Example 8: The set of all 22 matrices over the set of integers i.e. M2(I) forms a monoid under 
matrix multiplication. 

Solution: Let M2(I) = 1 1 1:
a b

wherea b c d I
c d

  
  

  
 

Closure Property:  

Let A = 1 1

1 1

a b

c d

 
 
 

, B = 2 2

2 2

a b

c d

 
 
 

 be any two elements  

of M2(I), where a1, b1, c1, d1, a2, b2, c2, d2 I.  

Now, AB = 1 1

1 1

a b

c d

 
 
 

2 2

2 2

a b

c d

 
 
 

= 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

a a b c a b b d

c a d c c b d d

  
 

  
 

As integer are closed under addition and multiplication. So AB M2(I)  A, BM2(I) 

Hence M2(I) is closed under multiplication. 

Associative Property:  

Since multiplication of matrices is associative.  

Therefore associative law hold in M2(I) also. 

 (AB)C = A(BC)  A1B1 C  M2(I) 

Existence of Identity:  

There exist an element I = 
1 0

0 1

 
 
 

M2(I) such that 

 AI = 
a b

c d

 
 
 

1 0

0 1

 
 
 

 = 
0 0

0 0

a b

c d

  
 
  

 = 
a b

c d

 
 
 

 

 IA = 
1 0

0 1

 
 
 

a b

c d

 
 
 

 = 
0 0

0 0

a b

c d

  
 

  
 = 

a b

c d

 
 
 

 

 AI = A = IA  A  M2(I) 

 Here I 
1 0

0 1

 
 
 

 is the identity element of M2(I) under multiplication. 

 Hence M2(I) Forms a monoid under multiplication 

Example 9: Show that the set of all 22 non singular matrices over real forms on infinite non-
abelian group under the composition of matrix multiplication. 
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Solution: Let G = 
a b

c d

  
  
  

where a1 b1 c1 d,  R such  

that ad - bc 0 and as matrix is non singular. 

Closure Property:  

Let A =  1 1

1 1

a b

c d

 
 
 

, B = 2 2

2 2

a b

c d

 
 
 

where  

a1, b1, c1, d1, a2, b2, c2, d2 R and a1d1 - b1c1 0 and a2d2 - c2b2 0 

Then AB = 1 1

1 1

a b

c d

 
 
 

2 2

2 2

a b

c d

 
 
 

= 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

a a b c a b b d

c a d c c b d d

  
 

  
 M. 

as |AB| = |A| |B|  0. 

Hence G is closed under multiplication. 

Associative Property:  

For A, B, C  M we have 

 (AB) C = A(BC) as metric multiplication is associative.  

Existence of Identity:  

For all A  M, there exist I  M such that 

 AI = 
a b

c d

 
 
 

1 0

0 1

 
 
 

= 
a b

c d

 
 
 

 

 AI = A = IA 

So I = 
1 0

0 1

 
 
 

act as identity element of M. 

Existence of Inverse:  

Since for all A  M we have |A|  0.  

Therefore A-1 exist in M such that 

 AA-1 = I = A-1 A. 

So A-1 is the inverse of A. 

Commutative Property:  

Let A = 
1 1

1 0

 
 
 

 such that |A|  0 
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and B = 
0 1

1 0

 
 
 

such that }B}  0 

then AB = 
1 1

1 0

 
 
 

1 0

0 1

 
 
 

= 
0 1 1 0

0 1

  
 
 

= 
1 1

0 1

 
 
 

 

 BA = 
1 0

0 1

 
 
 

1 1

1 0

 
 
 

= 
0 1 0 0

1 0 1 0

  
 
  

= 
1 0

1 1

 
 
 

 

So that AB  BA 

Hence commutative does not holds 

So G , 0
a b

ab cb
c d

  
   

  
forms a non-abelian group under matrix multiplication.  

Self Check Exercise - 2 

Try the following exercises: 

E 1. Show that (Z, -) is not a group, where Z is the set of integers. 

E 2. Show that the set of all non zero rational numbers is commutative group 

form with operation  defined by ab = 
2

ab
 

E 3. Show that the set E of all even integers does not form a group under 
binary operation ab = 2a+2b. 

E 4. Show that the set R of real number form an infinite abelian group under 
usual addition of real number and also . 

E 5. Show that usual multiplication of real number. It does not forms a group 
show that the set R of all non zero real numbers forms an infinite abelian 
group under usual multiplication of real number. 

E 6. Show that set C of all complex number does not form a group under 
usual multiplication of complex number. 

E 7. Let Q denotes the set of all rational number except - 1. Show that Q 
forms an infinite abelian group under the operation  defined by a&b = 
a+b+ab,  a, b  Q. 

E 8. Show that the set of all non-zero rational numbers forms a group under 
multiplication. 

E 9. The set C of all non-zero complex numbers forms an infinite abelian 
group under the operation of multiplication of complex number.  

E 10. Does the set E of all even integers forms a group under usual addition? 
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E 11. Show that the set G of all mnmatrias over Z forms an infinite abelian 
group under addition of matrix.  

2.5 Elementary Properties of Group 

 Let < G, > be a group under the operation . Then G has the following elementary 
properties.  

Proof I.Uniqueness of identity element 

 The identity element of a group is unique. 

Proof: If possible, suppose that e1 - e2 are two identity elements of a group. 

  e1 e2 = e2 (Since e1 is identity element) .....(1) 

 also e1 e2 = e1 (Since e2 is identity element) ....(2) 

 Thus e1 = e2  [From (1) and (2)] 

  the identity element of a group is unique. 

Prop II. Uniqueness of inverse element 

 The inverse of each element of a group is unique. 

Proof: Let e be the identity element of the group (G, ) and a  G be an arbitrary element.  

 If possible, let b1, b2 G, be two inverses of a 

  a  b1 = e = b1 a (  b1 is inverse of a)  ....(1) 

 and a  b2 = e = b2 a  (  b2 is inverse of a)  ....(2) 

Now b1 = b1 e  (Since e is identity of G) 

 = b1 (a  b2)   [  of (2)] 

 = (b1 a)  b2  (By associatively in G) 

 = e  b2   [  or (1)] 

 = b2 

  b1 = b2 

 Hence each element of a group has unique inverse.  

Prop III. Cancellation laws hold in a group 

 For a, b, c  G, we have 

  a  b = a  c   b = c {Left cancellation law) 

  b  a = c  a   b = c (Right cancellation law) 

Proof: Let a, b, c  G so a-1
 G such that  

  a-1
 a = e = a  a-1  ....(1) 
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 Now suppose that a  b = a  c 

  a-1
 (a  b) = a-1

 (a c

  (a-1
 a) b = (a-1

a) c, (By associative law in G.) 

  e b = e c 

  b = c 

  a b = a c  b = c 

Similarly, we can prove that  

 b a = c a  b c.  

Prop IV. For every a  G, (a-1)-1 = a., where a-1 stands for inverse of a  

Proof: a  G   a-1
 G, 

 then a a-1 = e = a-1 a 

  inverse of a is a-1 

 Again a-1 a = e = a a-1 

  inverse of a-1 is a  

 i.e. (a-1)-1 = a. 

Proof V. Reversal law for inverse of the product/Socks-Shoes Property 

  (a  b)-1 = b-1
 a-1  a, b  G. 

Proof. Since a, b  G   a  b  G 

  c  G where c = a  b  ....(1) 

 Also b, a  G  b-1, a-1
 G  b-1

 a-1
 G 

  d  G where d = b-1
 a-1.  .....(2) 

 Consider c  d = (a  b)  d  [  of (1)] 

  = a  (b  d)  (Associative law in G) 

  = a  (b  (b-1
 a-1))  [  of (2)] 

  = a  ((b  b-1)  a-1),  (By associatively in G) 

  = a  (e  a-1) = a  a-1 = e. 

  c  d = e. 

 Now consider d  c = (b-1
 a-1)  c  [  of (2)] 

  = b-1
 (a-1

 c)  (Associative law in G) 

  = b-1
 (a-1

 (a  b))  [  of (2)] 

  = b-1
 ((a-1

 a)  b)  (Associative law in G) 



40 
 

  = b-1
 (e  b) = b-1

 b = e 

  d  c = e 

  c  d = e = d  c 

  c-1 = d 

  (a + b)-1 = b-1
 a-1. 

Prop VI. If a, b  G be any elements. Then the equations a  x = b and y  a = b have unique 
solution in G. 

Proof. We first prove that the equation a  x = b has a solution in G. 

 Since a  G, so  a-1
 G such that  

  a  a-1 = e = a-1
 a 

 Since a-1, b  G  so a-1
 b  G 

 Take x = a-1
 b  x  G 

 Now a  x = a  (a-1
 b) 

  = (a  a-1)  b  (Associative law in G) 

  = e  b 

  = b 

  the equation a  x = b has a solution in G. 

Uniqueness. 

Let x1, x2 be two solutions of the equation a  x = b in G.  

  a  x1 = b  and a  x2 = b 

  a  x1 = a  x2   x1 = x2  (By left cancellation law in a group). 

 Hence the equation a  x = b has a unique solution in G. 

 Similarly, we can prove that the equation y  a = b has a unique solution in G.  
          (Solution is b  a-1) 

Prop VII. Left identity and right identity are the same in a group 

 Let e and e' be the left identity and right identity in the group (G, ). 

Then  

 e e' = e'  (Here e is the left identity) 

also e e' = e  (Here e' is the right identity) 

Thus e' = e. 

Hence left identity and right identity in a group are same. 
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Prop VIII. Left inverse and right inverse of every element in a group is same 

 Let e be the identity of the group (G, ) and let b and c be the left and right inverse of the 
element a  G respectively. Then 

 b  a = e and a  c = e 

Now b = b  e 

 = b  (a  c) = (b  a)  c 

 = e  c 

 = c. 

Hence the left inverse and the right inverse of every element in a group is same. 

Theorem Based on Elementary Properties of Group. 

Theorem I. Let G be a non-empty set together with a binary operation such that closure 
property and associative law hold in g. Then the existence of left identity and left inverse in G 
implies the existence of same right identity and same right inverse in G. 

Proof. Let e be the left identity and a-1 be the left inverse of a in G. 

 i.e. e  a = a,  a  G and a-1
 = e. 

 We first show that left cancellation law holds in G. 

 i.e. if a  b = a  c  then b = c 

 Now  a  * b = a  c 

  a-1
 (a  b) = a-1 (a  c) 

  (a-1
 a)  b = (a-1

 a)  c 

  e  b = e  c 

  b = c. 

 Next, we show that e is also the right identity in G. 

 i.e. a  e = a,  a  G. 

 Now a-1
 (a  e) = (a-1

 a)  e 

   = e e = e 

   = a-1
 a. 

  By left cancellation law, we have a  e = a. 

 Secondly, we show that a-1 is also the right inverse of a in G. 

 i.e. a  a-1 = e. 

 Now a-1
 (a * a-1) = (a-1

 a)  a-1 

   = e  a-1 = a-1 = a-1
 e 
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  By left cancellation law, we have a  a-1 = e. 

Definition of a Group based on Left axioms 

 Let G be a non-empty set together with a binary operation  defined on it, then the 
algebraic structure G, > is a group if it satisfies the following axioms. 

 (i) a  b  G,  a, b  G   (Closure Property) 

 (ii) (a  b)  c = a  (b  c),  a, b, c  G (Associative Property) 

 (iii)  an element e  G such that 

   e  a = a,  a  G   (Existence of left identity) 

 (iv) For all a  G,  an element b  G such that  

   b  a = e.   (Existence of left inverse) 

Definition of a Group based on Right axioms 

 Let G be a non-empty set together with a binary operation  defined on it, then the algebraic 
structure G, > is a group if it satisfies the following axioms 

 (i) a  b  G,  a, b  G   (Closure Property) 

 (ii) (a  b)  c = a  (b  c),  a, b, c  G (Associative Property) 

 (iii)  an element e  G such that  

   a  e = a,  a  G  (Existence of right identity) 

 (iv) For all a  G,  an element b  G such that  

   a  b = e   (Existence of right inverse) 

Note: If < G, > be an algebraic system in which closure property, associative property holds. Then G 
need not be a group if left identity and right inverse exist in G (or right identity and left inverse exist in G). 

 For example : Let G be any set containing atleast two elements.  

 Define a binary operation  on G by a  b = b,  a, b  G. 

 Clearly, closure property, associative law holds in G. 

 Also the element e  G be the left identity in G for e  a = a,  a  G. 

 Moreover, a  e = e  e is the right inverse of a. 

 But <G, > is not a group, for if a, b be two distinct elements of G then a  b = b also b b 
= b so a  b = b b  a = b (by right cancellation law), a contradiction.  

Theorem 2. A semi-group in which both the equations a x = b and y a = b have a unique 
solution, is a group. Prove it. 

(It is also called a definition of a group) 

Or 
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 Let G be a set with binary operation which is associative. Assume that for all elements a 
and b in G, the equations a x = b and y a = b have unique solution in G, then prove that G is a 
group.  

Proof. Let G be a semi-group under an operation denoted multiplicatively in which both the 
equations 

  a x = b  ....(1) and y a = b 

 have a unique solution. 

 To show that G be a group. For this we show that  

 (i) identity element exists in G. and 

 (ii) inverse of each element exists in G. 

 For (i) By condition (1). For any element a  G, we have 

  ax = a, has a unique solution in G. 

   an element e  G such that a e = a 

 Let b  G be any element of g. Then by condition (2) 

  y a = b i.e. b = y a 

 Now be = (ya) e = y (ae) = ya = b 

  b e = b 

  e is the right identity of G. 

 Similarly, by condition (2), for any element a  G, we ahve 

  y a = a, has a unique solution in G. 

   an element f  G such that f a = a and f b = b 

 i.e. f is the left identity of G. 

Now, f e = f   [  e is the right identity] 

and f e = e  [ f is the left identity] 

 e = f  

 e is the identity element in G. 

For (ii) Let a  G be any element and e be the identity element of G. Then by condition 
(1) and (2)  a', a''  G such that  

 aa' = e and a'' a = e 
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Now a' ' = a' ' e = a' ' (a a') = (a' ' a) a' = e a' = a' 

Thus inverse of each element in G exists and is unique. 

Hence G is a group. 

Note: If in a semi-group G only one of the equation has a solution. Then G may not be a 
group.  

Theorem 3. Prove that any finite semi-group iff both the cancellation laws hold. 

 (It is also called a definition of a group, but for finite sets) 

Proof: Let G be a semi-group under an operation denoted multiplicatively. 

 Let G be a group, then both the cancellation laws hold. 

(already proved in 1.2 (III)) 

 Conversely, let both the cancellation laws hold. 

 To prove G is a group 

 Since G is finite. Let G = {a1, a2, ......., an} be different elements of G. 

  O(G) = n. 

  a  G, consider S = {a1a, a2a, ......., ana} 

 Due to closed property in G, S  G 

 Further all the elements of S are different. 

 For it, let aia = aja, i j i.e. aiaj G. 

 Using Right cancellation law, we get. 

  ai = aj, which is absurd.  

  all the elements of S are different. 

   O(S) = n = O(G)  S = G 

   a, b  G but G = S    b  S 

 let b = a1a 

 i.e. a1 is a solution of the equation y a = b,  a, b  G. 

 Consider another set T = {aa1, aa2, ....., aan}. 

 T  G and all the elements of T are different. 

 For it let aai = aaj, i j i.e. aiaj G. 

 Using left cancellation law, we get 



45 
 

   ai = aj, which is absurd. 

  all the elements of T are different 

 i.e. O(T) = n = O(G)  T = G. 

   a, b  G, b  G but G = T  b  T 

 Let b = aak 

  ak is a solution of the equation ax = b,  a, b  G. 

 Thus both the equation a x = b and y a = b  a, b  G have solutions in G. 

 Hence G is a group. 

Note: If one cancellation law holds, then the system may not be a group. 

 For example: Let G be any set containing at least two elements. Define a binary 
operation  on G by a  b = b,  a, b  G. 

 Clearly closed property and associative law holds 

 i.e. G is a semi group. 

 Here  a, b, c  G, a  b = b and a  c = c. 

  a  b = a  c  b = c  i.e. left cancellation law holds. 

 But G is not a group under . 

 Here right cancellation law does not hold.  

Self Check Exercise = 3 

Q.1 Give example of semi-group where cancellation Law may not hold. 

Q.2 Give example of semi group, which are not group, but they satisfy 
cancellation law.  

2.6 Summary 

 We conclude this unit by summarizing what we have covered in it: 

 1. Concept of groupsid, semi group and monoid. 

 2. Group set,  

 3. Finite and infinite groups 

 4. Abeliane and non-abelian groups 

 5. Examples of different types of groups. 

2.7 Glossary 
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 1. Group: A mathematical structure consisting of a set of elements and an 
operation that combines any two elements in the set, satisfying four properties : 
Closures, associatively, identity and invariability.   

 2. Element: An object that belongs to a group 

 3. Operation: A binary operation defined on the elements of a group. 

 4. Closures: A property of a group in which the result of performing the group 
operation on any two elements is always another element in the group. 

 5. Associatively: A property of a group in which the order of performing the group 
operation on three elements does not effect the final result. 

 6. Identity Element: An element of a group that, when combined with any other 
element, leaver the other element unchanged. It is denoted by the symbol e.  

 7. Inverse Element: For each element in a group, there exist another element such 
that their combination results in the identity element. The inverse of element 'a' is 
denoted by a'. 

 8. Commutatively: A property of a group in which the order of performing the 
group operation on two elements does not affect the final result. If a group 
satisfies this property, it is called an abelian group.  

2.7 Answers to Self Check Exercise 

Self Check Exercise - 2 

Q.1 Does not hold associative property. 

Q.2 Identity element is 2 and the inverse is 
4

a
for the element a. 

Q.3 Does not hold associative property. 

Q.4 Identity element is 0 and the inverse for on element a is -a. [For usual addition of 
real number] But for usual multiplication, for the element 0, there is no 
multiplicative inverse. 

Q.5 Identity Element is 1 and the inverse of an element a is 
1

a
. 

Q.6 For the element 0 + i0 C, there does not exists in inverse. 

Q.7 Identity element is 0 and a' = 
1

a

a




 act as inverse for a  Q. 

Q.8 Identity element is 1, and for a = 
Þ

q
, 01 = 

q

Þ
which act as inverse element. 

Q.9 Here identity element is 1 + i 0 = 1  C. 
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  and for Z = a + ib C, 
1

Z
= 2 2

a

a b
 + i 2 2

b

a b

 
 

 
 will act at inverse of Z. 

Q.10 Yes. 

Self Check Exercise - 3 

Q.1 S = Set of 22 metrics over integers.  

  Then S is a semi group under multiplication 

  If  A = 
1 0

0 0

 
 
 

, B = 
0 0

1 0

 
 
 

and C = 
0 0

0 1

 
 
 

 then AB = Ac But B  C. 

Q.2 Set of natural number is a semi group under multiplication which hold both 
celellation law but is not a group.  

2.7 References/Suggested Readings 

 1. Vijay k. Khanna and S.K. Bhaimbri, A course in Abstract Algebra. 

 2. Joseph A. Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayres Jr. Modern Algebra, Schaum's outline Series.  

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.  

2.10 Terminal Questions 

 1. Show that the set of all natural numbers form a semi group under addition. 

 2. Show that the set of all natural number form a monoid under multiplication 

 3. Show that the set of positive integers does not form a group under addition and 
multiplication. 

 4. Check whether the set O of all odd integers Forms a group under addition. 

 5. Prove that the set of complex number Z, such that |Z| = 1, forms a group under 
multiplication of complex numbers. 

 6. Show that the set of all rational numbers of the form 
2

Þ

q
 is a group under addition. 

 7. Show that the set G = , , , , . . 1
a b

where a b c d R s t ad bc
c d

  
    

  
 forms a non-

abelian group.  

***** 
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Unit - 3 

Some Special Group 

Structure 

3.1 Introduction 

3.2 Learning Objectives  

3.3 The composition Table 

 Self Check Exercise-1 

3.4 The Group of Integers Under Addition Modulo N 

 Self Check Exercise-2 

3.5 The Group of Units Under Multiplication Modulo N 

 Self Check Exercise-3 

3.6 The Group of Complex Root of Unity 

 Self Check Exercise-4 

3.7 Summary 

3.8 Glossary 

3.9 Answers to self check exercises 

3.10 References/Suggested Readings 

3.11 Terminal Questions 

3.1 Introduction 

Dear student, in this unit we will studied about some special types of groups, like group 
of integers under addition modulo n, the group of units under multiplication modulo n the group 
of complex root of unit. These groups has several practical applications in various field like 
cryptography, computer graphics and image processing, network addressing, game 
development and simulation. The group of root of unity has its application in signal processing 
and polynomial inter potation etc.  

But before studying about these group, we will study about the composition table and 
know how we can use this table, to prove given set is a group under certain binary operation. 

3.2 Objectives Learning 

 After studying this unit, students will be able to 

 understand the concept of composition table 

 understand to write composition table for a given set under defined binary 
operation. 
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 able to understand the group of addition modulo n and multiplication modulo n. 

 solve the question relate to groups of addition modulo n and multiplication 
modulo n. 

 understand group of complex root of unity and solve questions related to its. 

3.3 The Composition Table 

A binary operation on finite set can be completely described by means of a table known 
as a composition table. A composition table provides a systematic way of listing all possible 
combinations of the group's elements on applying the group operation on them. It is a square 
array which indicates all the possible product in the system. 

Composition table is also known as Cayley table, which is named after the 19th century 
British Mathematician Arthur Cayley. While writing the composition table, we write the elements 
of a finite set S in the top horizontal row and the left vertical column in the same order, and 
apply the rule. 

(ij)th entry in table = (ith entry on the left) . (jth entry on the top). 

To understand and write a composition table let us take a simple set S = {1, -1} under 
ordinary multiplication. 

Multiplication  x 1 -1 Elements of given set 

Elements of given set 

1 11=1 1-1=1  

-1 -11 = -1 -1-1 = 1  

 We can check closure property, commutative property, identity element and inverse 
element by using the composition table, as 

1. Closure property : If all the entries of the table are elements of the given set 
and each element of S appears once and only once in each row and in each 
column, then the set S is closed under the given binary operation. 

2. Commutative property : If the entries in the table are symmetric with respect to 
the diagonal (which starts at the upper left corner of the table and terminates at 
the lower right corner) then the given set S is commutative with respect to given 
binary operation. 

3. Existence of Identity Element : If any row is same as the first row in the 
composition table then the extrem left element in the 2nd row is the left identity of 
S. Similarly, if any column is same as the first column. Then the element at the 
top of 2nd column is the right identity of S. 

4. Existence of inverse : If each row except the topmost row or each column 
except the left most column contains the identity element then every element of S 
is invertible with respect to the binary operation. To find the inverse of an 
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element, we consider that row (or column) in which the element is present and 
determine the position of identity element 'e' in that row (or column). The 
corresponding Column (or row) in which e appear act as inverse of that particular 
element. 

 To clarify what we have just said, consider the following examples : 

Example 1 : The set G = {1, w, w2} i.e. three roots of unity form a finite abelion group with 
respect to multiplication by using composition table.  

Solution : Here the given set is  G = {1, w, w2} and the binary operation is multiplication  

also w3 = 1. 

 Write all elements of the set in row and column and given operation (x) on the corner 
and multiply the elements of column with row element one by one and write it in the row, as 
follow : 

x 1 w w2 

1 11=1 1w=w 1w2=w2 

w w1=w ww=w2 ww2=w3 

w2 w2
1=w2 w2

w=w3 w2
w2=w4 

 Using the property w3=1, w4=w3.w=w, above table can be written as  

x 1 w w2 

1 1 w w2 

w w w2 1 

w2 w2 1 w 

(1) Closure Property: Since all the elements in the composition table are elements 
of the set G, so G is closed under multiplication. 

(2) Associative Property: Since element of, G are complex numbers and 
multiplication of complex numbers is associative, so multiplication is associative 
in G also. 

(3) Existence of Identity: Since 2nd row is same as Ist row. Therefore 1 (extreme 
left element in 2nd row) is the left identity element of G. Also 2nd column is same 
as Ist column. Therefore 1 is the right identity element of G. 

(4) Existence of Inverse: Here each raw (Column) of the composition table 
contains identity element '1' once and only once. 
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x 1 w w2 

1 1 w w2 

w w w2 1 

w2 w2 1 w 

From the table inverse of 1 is 1, inverse of w is w2 and inverse of w2 is w. as 
11=e, ww2=1= e, and w2

w = 1 Hence every element of G has its inverse in G. 

(5) Commutative Property: Since the entries in the composition table are 
symmetrical about the principal diagonal so the commutative property holds. 

 As G is a finite set. So G is a finite abelian group under multiplication.  

Example 2: Prove that four roots of unity form a finite abelian group under multiplication using 
composition table.  

Solution: The set of four roots of unity is G =  1, 1, i i  , here the binary operation is 

multiplication. So the composition table, after using the property i2 = -1, -12 = 1  

x 1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i i 

i i -i i2=1 -i2=1 

-i -i i 1 -1 

Closure Property: 

Since all the element in the composition table are elements of the set G, So G is closed 
under multiplication. 

Associative Property: 

Since element of G are complex number and multiplication of complex numbers is 
associative. So multiplication is associative in G also. 

(3) Existence of Identity: Since 2nd row is same as Ist row, and 2nd column is same 
as Ist column, so 1 is the identity element of the given set G. 

(4) Existence of Inverse: Since each row (column) of the composition table contain 
identity element once and only once. 
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 Therefore inverse of 1 is 1, inverse of -1 is -1, inverse of i is -i and inverse of -i is i, as  

 11 = 1 = e 

 -1-1 = 1 = e 

 i-i = -i2 = -(-1) = 1 = e 

 -ii = -i2 = - (-1) = 1 = e 

 So each element of G has its inverse in G. 

(5) Commutative Property: Since the entries in the composition table are 
symmetrical about the principal diagonal, so commutative property holds. 

 Hence G =  1, 1, i i   four roots of unity, a finite set, is a finite abelian group under 

multiplication. 

Self Check Exercise - 1 

Q.1 Consider the binary operation  and 0 defined by the following tables on set 
S =  , , ,a b c d forms a group? 

(i)  

 a b c d 

a a b c d 

b b a d c 

c c d a b 

d d c b a 

(ii) 

0 a b c d 

a a b c d 

b b c d a 

c c d a b 

d d a b c 

Check that both binary operation are commutative.  
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Q.2 Let a set G  , , ,e a b c under the composition defined as below by the 

composition table. 

 e a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 

Is G is a group? If it is, whether abelian or not?  G =  , , ,e a b c  is known 

as Klein's four group.  

3.4 Group of Integers under Addition Modulo n (Zn).  

 The group of integers under addition modulo n is a mathematical structure that consists 
of positive integers modulo n under addition (n). Before studying about this group, let us study 
about addition modulo n.  

Addition Modulo n 

 Let n be a positive integer greater than 1 and a, b  Zn, where Zn = 

 0,1 2,3......., ( 1)i n . Then we define addition modulo n i.e. n as follows: 

 a n b = least non negative remainder when a+b is divided by n. 

For example, 

 1. 11 7 9 = (Least non-negative remainder when 11+9=20 is divided by 7) = 6  

 2. 8 5 7 = (Least non-negative remainder when 8+7=15 is divided by 5) = 0, as 15 
is divided by 5 and remainder is zero. 

 3. 8 10 6 = (Least non-negative remainder when 8+6=14 is divided by 10) = 4. 

Note: When a and b are integers such that a-b is divisible by n (a fixed positive integer), 
then we write it as a  b (mod n) and read it as a is congruent to b modulo n.  

For example,  

17  2 (mod 5), as 17-2 = 15, and 15 is divisible by 5. 

 16  1 (mod 3), as 16-1 = 15, 15 is divisible by 3 

 20  0 (mod 4), as 20-0 = 20 is divisible by 4, addition modulo n.  

Now, we will study about group of integers under addition modul n. If a set - 
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 Zn =  0,1,2,......., ( 1)n n > 1, n  Z forms a finite abelian group under the composition 

of addition modulo n, then it is known as group of integers under addition modulo n, or additive 
group of integers modulo n.  

Example 1: Show that Zn =  0,1,2,......., ( 1)n , n be a positive integer greater than 1, forms a 

finite abelian group under the composition of addition modulo n.  

Solution: Given Zn =  0,1,2,3,......., 1n , n > 1, n  Z. Also the composition defined here is 

addition modulo n.  

 ∴  a, b  ]n, a n b = least non-negative remainder 'r', when a+b is divided by n.  

 i.e. a n b = r  a+b-r is divisible by n 

  a+b r (mod n) 

 In order to prove above set Zn is a group under addition modulo n, we have to satisfy 
properties of group, as follows: 

(1) Closure Property: 

 a, b  Zn, 0 < a, b < n 

  a+b r (mod n)  where 0 < r < n. 

 As r  Zn, therefore the closure property holds.  

(2) Associative property: 

 a, b, c  ]n, the least non-negative remainder remains the same if  

 (a+b)+c or a+(b+c) are divided by n as addition of positive integers is associative.  

  a(nb+nc) = (anb) n c 

 Thus associative property holds in Zn. 

(3) Existence of Identity: 

 a  Zn, 0 < a < n, we have 0  Zn such that a n 0 = the least non negative remainder  

when (a+0) is divided by n = a 

  a n 0 = a = 0 n a 

 Hence 0  Zn is the identity element.  

(4) Existence of Inverse: 

For 0  Zn, 0 n 0 = 0, so 0 is inverse of 0. 

 Also  a  Zn, a  0, n-a  Zn such that 
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 a+ (n-a)  0 (mod n) 

and (n-a) + a  0 (mod n) 

i.e. a n (n-a) = 0 = (n-a) n a 

 Thus n-a act as inverse of a.  

(5) Commutative Property: 

 a, b  Zn,  

 a n b = b n a, the least positive remainder remains the same as a+b or b+a is divided 
by n. So commutative property holds. 

 As the set Zn is finite. So Zn is a finite abelian group under addition modulo n. This group 
is known as additive group of integers modulo n.  

 In the above example, we studies how to prove Zn. to be a group by using the definition 
of group, under addition modulo n. Now, we will do the same task by using the composition 
table, in the next examples.  

Example 2: Show that the set Z5 0,1,2,3,4 is a finite abelian group of order 5 under addition 

modulo 5. 

Solution: Here the given set is Z5 =  0,1,2,3,4  and the binary operation is addition modulo 5 

i.e. 

 a 5 b = Least non-negative remainder when a+b is divided by 5. 

 0 5 b = (remainder when 0+1=1 is divided by 5) 1 +5 2 = (remainder when 1+2=3 is 
divided by 5) and so n. Therefore the composition table is as follows:  

 0 1 2 3 4 

0 0 0
0

5


  

0 

0 1

5


 

1 

0 2

5


 

2 

0 3

5


 

3 

0 4

5


 

4 

0 0 0

5


 

1 

1 1

5


 

2 

1 2

5


 

3 

1 3

5


 

4 

1 4 5

5 5


  

0 

2 2 0

5


 

2 

2 1

5


 

3 

2 2

5


 

4 

2 3 5

5 5


  

0 

2 4 6

5 5


  

1 
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3 3 0

5


 

3 

3 1

5


 

4 

3 2 5

5 5


  

0 

3 3 6

5 5


  

1 

3 4 7

5 5


  

2 

4 4 0

5


 

4 

4 1

5


 

0 

4 2 6

5 5


  

1 

4 3 7

5 5


  

2 

4 4 8

5 5


  

3 

i.e.  

 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

 We observe following points from the composition table. 

(1) Closure Property: 

Since all the elements in the composition table are element of Z5, So Z5 is closed under 
addition modulo 5. 

(2) Associative Property: 

Let 1, 3, 4  Z5 

 then (1 +5 3) +5 4 = 4 +5 4 = 3 {Least positive remainder when 8 is divided by 5} 

 and 1 +5 (3 +5 4) = 1 +5 7 = 3 

 Hence (1 +5 3) +5 4 = 1 +5 (3 +5 4) 

 Similarly, it can be verified for other elements of Z5 also. 

 So Addition modulo 5 is associative on Z5. 

(3) Existence of Identity:  

 Let a  Z5 be any element Also 0  Z5, such that a +5 0 = a = 0 +5 9, Hence 0 is identity 
element of Z5. 
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(4) Existence of Inverse:  

Each row and column consist of the identity element 0. so, every element of Z5 is 
invertible.  

Also 0 +5 0 = 0  0 is inverse of itself 

 1 +5 4 = 0  4 is inverse of 1 

 2 +5 3 = 0  3 is inverse of 2 

 3 +5 2 = 0  2 is inverse of 3 

 4 +5 1 = 0  1 is inverse of 4 

(5) Commutative Property:  

Since the composition table is symmetrical with respect to the principal diagonal.  

 Therefore, +5 is a commutative binary operation on Z5. As Z5 has finite number of 
elements Hence order of Z5 is 5.  

 Hence Z5 =  0,1,2,3,4  is a finite abelian group of order 5 under addition modulo 5. 

Example 3: Show that the set G =  0,1,2,3,4,5 is a finite abelian group of order 6 under 

addition modulo 6. 

Solution: The given set is G =  0,1,2,3,4,5  and the binary operation here is addition modulo 

6. i.e. a +6 b = a+b (mod 6) = Remainder when a+b is divided by 6.  

The composition table of G =  0,1,2,3,4,5 under addition modulo 6 is  

 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

(1) Closure Property: Since all the elements in the composition table are element of Z, So 
G is closed under the composition of addition modulo 6. 
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(2) Associative Property:Associative property can be cheeked by using any three 
elements of the set G  

Let 1, 2, 3G 

 then (1 +62) +63 = 3 +63 = 0  {Remainder when 6 is divided by 6} 

 again 1 +6 (2 +63) = 1 +65 = 0 

 So Associative property holds in G 

(3) Existence of Identity: Let a G be any element, also 0 G, then a +6 0 = a = 0 +6a 

  0 is the identity element of the group. 

(4) Existence of Inverse:From the composition table, we find that each row and column 
consists of the identity element 0. So, every element of G is invertible.  

Also 0 +6 0 = 0  0 is inverse of 0 

 1 +65 = 0  5 is inverse of 1 

 2 +64 = 0  4 is inverse of 2 

 3 +63 = 0  3 is inverse of 3 

 4 +62 = 0  2 is inverse of 4 

 5 +6 1 = 0  7 is inverse of 5 

(5) Commutative Property: Since the composition table is symmetrical with respect to the 
principal diagonal.  

 Therefore, +6 is a commutative binary operation on G. Since G is a finite set satisfying 
commutative property. Hence G is a finite abelian group under addition modulo 6. 

Self Check Exercise - 2 

Q.1 Show that the set G =  0,1,2,3,4,5,6 is a finite abelian group of order 6 

under the composition of addition modulo 7. 

Q.2 Show that the set G =  0,1,2,3 forms a group 6 under addition modulo 

4.  

3.5 The Group of Units under Multiplication Modulo n. (Un) 

 The group Zn consists of the elements  0,1,2,3,........., ( 1)n with addition modulo n as 

the operation. When we multiply the element of Zn, we did not get a group, as the element 0 
does not have a multiplicative inverse. However, if we take only that elements of Zn, which have 
multiplicative inverse, called units, we get a group under multiplication modulo n (Xn) It is 
denoted by Un and is called group of units in Zn. Before studying about this group, Let us study 
about multiplication modulo n.  



59 
 

Multiplication Modulo n 

 Let n be a positive integer greater than 1 and a, b  Zn where Zn = 

 0,1,2,3,........., ( 1)n then, we define multiplication modulo n i.e. Xn as follows:  

 a n b = Least non-negative remainder when ab is divided by n.  

For example:  

 1. 4 5 3 = Least non-negative remainder when 43 = 12 is divided by 5 = 2 

 2. 4 8 6 = Least not-negative remainder when 46 = 24 is divided by 8 = 0  

 3. 7 12 8 = Least non-negative remainder when 78 = 56 is divided by 12 = 8 

 As we said earlier that the set Un consists of only those elements of Zn which have 
multiplicative inverse. An integer 'a' has a multiplicative inverse modulo n if and only if a and n 
are co-prime or relative prime.  

 For n = 10 

 Zn =  0,1,2,3,4,5,6,7,8,9)  

 But for Un we have to select only those element of Zn which has multiplicative inverse 
and only those element has multiplicative inverse which are co-prime to 10 and those elements 
are 1, 3, 5, 7, 9 

 Therefore for n = 10 

  Un =  1,3,7,9  

 Now, to prove that set Un forms a group. 

Example 1: Prove that Un =  ;( , ) 1,1x Z x n x h     is a group under multiplication modulo 

n.  

Solution: 

Closure Property: 

Let a, b  Un and the binary operation is multiplication modulo n. i.e. a n b = r i.e least 
non-negative remainder when ab is divided by n. 

 Mathematically ab = (q) n+r, 0 < r < n-1. 

 as a, b  Un so (a, n) = 1 and (b, n) = 1 

     [  a and b are co-prime to n.  

So gcd of a and n will be 1 and bond n] 

 As a n b = r, to prove r  Un, we have to prove 

  (1) r  0 

  (2) (r, n) = 1  
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 Let r = 0  ab = an  n/ab / . , ( , ) /
a

a b c a b d c
d

 
  

 
 

 and (n.a) = 1  
1

n
|b  n/b  (b, n)  1 which is a 

contradiction as b  Un and (b, n) = 1. 

 So r  0 

(2) Now, to prove (r, n) = 1 

 If (r, n)  1   ( , ) 1, / /a b prime Þ suchthat Þ a and Þ b   

  prime no Þs.t.Þ/r and Þ/n 

Now, Þ/n  Þ/qn 

and Þ/r   

 Þ/qn+r  Þ/ab 

 either Þ/a or Þ/b 

 If Þ/n and Þ/a  Þ = 1 which is a contradiction 

again Þ/n and Þ/b  Þ = 1 which is a contradiction  

  (r, n) = 1, r  0 

 Hence r U(n) 

  Closure property is satisfied under multiplication modulo n.  

(2) Associative Property: 

 a, b, c  Un 

 The least non-negative remainder remains the same if (ab) c or a(bc) is divided by n. 

 (a n b) n c = a n (b n c) 

 Thus associatively holds in Un.  

(3) Existence of Identity: 

Since for a  Un. 

 a n 1 = 1 n a = a and 1  Un as  

a.1 and 1.a leaves the same remainder when divided by n.  

 So 1  Un act as identity element of Un.  

(4) Existence of Inverse: 

Let a  Un so (a, n) = 1 
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  integer l, m  Z such that   [  (a, b) = 1,  l, mZ such that l(a) + m(b) = 1] 

 la + mn = 1 

 l = q(n) + r, 0 < r < n-1 

 We claim that r is the inverse of a we have to prove.  

 (1) a n r = 1 

 (2) r  Un  r  0 and (r, n) = 1  

 (qn + r) a + mn = 1 

 qna + mn + ra = 1 

 
1

.( ) 1

( )n

n qa m ar

ar qa m 

  

  
 

  a n r = 1 

Now to prove r  Un, r  0 

 Let r = 0 

 (qa + m) n + 0 = 1 

 (qa + m) n = 1, which is not possible for n>2 

  r  0 

Now to prove (r, n) = 1 

 Let (r, n) = d 

  d/r and d/n 

  d/ar and d/(qa+m) n 

  d/ar + (qa+m) n 

  d/1 and 1/d 

  d = 1 

  (r, n) = 1 

 as r  0 and (r, n) = 1  

 Therefore a n r = 1 

  a-1 = r  Un. 

(5) Commutative Property: a, b  Un, the least non-negative remained remains the same 
if ab or ba is divided by n.  

 i.e. a n b = b n a 

 Thus commutative property holds in Un.  
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 Thus Un is an abelian group. Under multiplication modulo n. This completer the result.  

 Now we will prove the group Un be an abelian group using composition table.  

Example 2: Prove that group of unit U10 forms a group under multiplication modulo 10 using 
composition table.  

Solution: Since the elements of U10 will be the elements of Zn =  0,1,2,3,4,5,6,7,8,9 which are 

co-prime to 10. 

  Un =  1,3,7,9  

 To prove U10 =  1,3,7,9  is a group under multiplication modulo 10  

i.e. a 10 b = least non negative remainder when ab is divided by 10 

 3 10 7 = Least non negative remainder when 3 7 = 21 is divided by 10 = 1 

 9 10 7 = Least non negative remainder when 9  7 = 63 is divided by 10 = 13 

The composition table is: 

 1 3 7 9 

1 1 3 7 9 

3 3 9 1 7 

7 7 1 9 3 

9 9 7 3 1 

(1) Closure Property: Since all the elements in composition table are element of 
U10, so U10 is closed under multiplication modulo 10. 

(2) Associative Property: Since the least non-negative remainder remains the 
same if (ab)c or a(bc) is divided by n. 

   (a 10 b) 10 c = a 10 (b 10 c) 

  So associativity holds in U10. 

(3) Existence of identity: For any a  U10 1  U10 such that a 10 1 = a = 1 10 a, 
Hence 1 is the identity element of U10. 

(4) Existence of Inverse: Since each row and column consist of identity element 1 
once and only once, so every element of U10 is invertible.  

 Also 1 10 1 = 1 1 is inverse of 1 

  3 10 7 = 1  7 is inverse of 3 
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  7 10 3 = 1  3 is inverse of 7 

  9 10 9 =1  9 is inverse of 9 

(5) Commutative Property: Since the composition table is symmetrical with respect 
to the principal diagonal. 

  Therefore X10 is a commutative binary operation on U10. 

  Since U10 has 4 elements, so U10 is finite abelian group of order 4. 

Example 3: Prove that U6 forms a group under multiplication modulo 6 using composition table.  

Solution: Since U6 =  1,5 , so the composition table will be. 

  

 1 5 

1 1 5 

5 5 1 

 5 6 5 = Least non negative  

remainder when 5  5 = 25 is divided by 6 = 1  

(1) Closure Property: Since all the elements in the composition table are elements of U6, 
so U6 is closed under multiplication modulo 6 

(2) Associative Property: Since the least non-negative remainder remarks the same if (ab) 
c or a (bc) divided by 6. 

  (a 6 b) 6 c = a 6 (b 6 c) 

 So associativity holds in U6 

(3) Existence of Identity: For a  U6 1  U6 such that a 6 1 = a = 1 6 a. Hence 1 is the 
identity element of U6 

(4) Existence of Inverse: Since each row and column contains the identity element 1, so 
every element of U6 is invertible.  

 Also 1 6 1 = 1 so 1 is inverse of 1 

  5 6 5 = 1 so 5 is inverse of 5 

(5) Commutative Property: Since the composition table is symmetrical with respect to the 
principal diagonal. Therefore 6 is a commutative binary operation on U6.  

 Since U6 has 2 element. Hence U6 is a finite abelian group of order 2 
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Example 4: Show that the set G =  0,1,2,3,4,5,6 is a finite abelian group of order 6 under the 

composition, multiplication modulo 7. 

Solution: The composition table of G =  0,1,2,3,4,5,6 under the operation multiplication 

modulo 7 i.e. a 7 b = least non negative remainder when ab is divided by 7 

 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 1 3 5 

3 3 6 2 5 1 4 

4 4 1 5 2 6 3 

5 5 3 1 6 4 2 

6 6 5 4 3 2 1 

1. Closure Property: Since all the elements in the composition table are elements of G. 
So G is closed under multiplication 

2. Associative Property: Since the least non-negative remainder remains the same if 
(ab)c or a(bc) is divided by 7 

 i.e. (a 7 b) 7 c = a 7 (b 7 c) 

 So associatively holds in G 

3. Existence of Identity: For all a  G,   1  G such that a 7 1 = a = 1 7 a. Hence 1 is 
the identity element of G 

4. Existence of Inverse: Since each row and column contains the identity element 
1, so every element of G is invertible. 

 Also 1 7 1 = 1  1 is inverse of 1 

  2 7 4 = 1  4 is inverse of 2 

  3 7 5 = 1  5 is inverse of 3 

  4 7 2 =1  2 is inverse of 4 

  5 7 3 = 1  3 is inverse of 5 

  6 7 6 = 1  6 is inverse of 6 

5. Commutative Property: Since the composition table is symmetrical with respect tothe 
principal diagonal. Therefore, 7 is a commutative binary operation on G. 
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 Since G has 6 element, so G is finite abelian group of order 6. 

Note: Above result can be generalised as. 

 The set Jp=  1,2,3,.......( 1)p  where Þ is a prime number, forms a finite abelian groupof 

order (Þ-1), under the composition of multiplication modulo Þ.  

Self Check Exercise - 3 

Q.1 Prove that group of units U12 forms a group under multiplication 
modulo 12 using composition table. 

Q.2 Prove that G =  0,1,2,3,4,5,6,7,8,9,10  forms a group under 

multiplication modulo 11 

Q.3 Prove that U17 forms a group under multiplication modulo 17 

Q.4 prove that U18 forms a group under multiplication modulo 18 

Q.5 U11 is an abelian group under multiplication modulo 11. 

3.6 Group of Complex  

 Roots of Unity 

 A complex number is just a pair z = (a, b) real numbers. We usually write this pair in the 
form z = a+ib. The number a is called real part of z, write b is called imaginary part of z, and we 
denote set of complex number by C. Also for every complex number z, we have i.z = z.1 = 
z./Addition and multiplication of complex number obeys commutative, distributive and 
associative laws and they also have additive and multiplicative identity. 

 Also i2 = -1, for complex number. In polar form complex number z is written as  

 z = r cox  = r (cox  + 1 sin ) = rei 

 If we multiply a complex number by itself repeatedly, then by De Moiner's Formula we 
have  

    ( sin sin
n nr cox i r coxn i n       

 This formula can be use to find nth root of any complex number. There are n-1 different 
nth root of any complex number. 

Primitive nth Root of Unity: 

The primitive nth root of unity is the complex number w = 
2 i

e
n


. All other nth roots of 

unity are powers of w. So the n nth root of unity are  

 1 = w0, w1, w2,..........wn-1.  

Proof: Since,  
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11

1 (1 0)nn i   = 
1

( 0 sin 0) ncox i  

  =  
1

(2 0) (2 0) ncox k i s in k      [  period of sin and cox is 2 ] 

  =  
1

2 2 ncox k i sin k   

  =  
2 2

sin , 0,1,2,....... 1]
k k

cox k n
n n

 
    

  
1

1 n  = 
2 i

e
n


 

 k = 0 = cox 0 + i sin 0 = 1 + i 0 = 1 
0

02 2
sin 1

k k
cox w

n n

  
   

 
 

 k = 1 = 
2 2

sincox
n n

 
 = w 

 k = 2  = 
4 4 2 2

sin 2 sin 2cox i cox i
n n n n

      
     

   
 

  = 
2 2

sincox i
n n

  
 

 
 [By demoives Theorem] 

  = w2 

 k = 3 = cox 
6

n


+ i sin 

6

n


 = cox 3

2

n

 
 
 

+ i sin 3
2

n

 
 
 

 

  = 
3

2 2
3cox i sin

n n

     
    

    
 

  = w2 

 k = n - 1 we get  wn-1 

 k = n = 
2 2

n

cox i sin
n n

     
    

    
= (cox 2  + i sin 2 ) = 1 + i0 = 1 = w0  

  G = {w0, w1, w2, ................wn-1} 

  = {1, w, w2, ................wn-1} 

 Therefore the set G = {w0, w1, w2, ................wn-1} is the set of nth root of unity. 
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Example 1: Prove that the set G = {1, w, w2, ................wn-1}, set of nth root of unity is a finite 
abelian group w.r.t. multiplication.  

Solution: Since the given set is G = {1, w, w2, ................wn-1} This set has n element so set is 
finite set of order n. 

Closure Property: 

Let wi, wj, 0 <i, j < n-1  G 

 Now wi.wj = wi+j 

 Three cases are there 

 case i, when i+j<n 

 then wi, wj G are as G = {1, w, w2, ................wn-1} 

 Case ii; when i + j = n 

 then wi, wj = wi+j = wn 

  = 
2 2

n

cox i sin
n n

  
 

 
 

  = cox 2  + i sin 2  

  = 1 + i 0 

  = 1  G 

 Case (iii) when i+j> n 

 then i+j = nq+t, 0 < + < n-1 

  wi. wj = wi+j = wnq+t = wnq.wt 

  = (wn)q. wt 

  = 1q. wt  as wn = 1 

  = 1. wt  as t < n-1 

 wi, wj = wt
 G 

 Therefore for wi, wj
 G wi.wj

 G. 

 So the set of nth not of unity is closed under multiplication.  

Associative Property: 

Since multiplication is associative in complex number, so Associative property holds in 
G, as G is a set of complex number. 

Existence of identity: 

Since 1  G works as identity element for the set G. 

  1. rwi = rwi =wi,i wi
 G 
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Existence of Inverse: 

Since rwi
 G  wn-1

 G such that wi,wn-i = wn-i,wi = wn-i+i = wn = 1  G so for wi
 G wn-i 

works as inverse element so every element of a has a inverse element.  

Commutative Property: 

Since complex number holds mutative property under multiplication, so the set G also 
obeys commutative property. 

 Hence the set G =  0 1 2 1, , ,.......... nw w w w   form a finite abelian group under 

multiplication.  

Self Check Exercise - 4 

Q.1 Show that the set G =  0 1 2 3 4 5, , , , ,w w w w w w 6th root of unity form an 

abelian group.  

Q.2 Show that the set of cube root of unity forms a group under multiplication, 
also check the property of commutatively.  

Note: Properties of nth root of unity 

 1. nth root of unity form a GP with common ratio 
2i

e
n


. 

 2. Sum of nth root of unity is always 0. 

 3. Sum of nth power of nth root of unity is zero, if p is a multiple of n.  

 4. Sum of pth power of nth root of unity is zero if p is not a multiple of n.  

3.7 Summary 

 We conclude this unit by summarizing what we have studied in it: 

 1. Group of addition modulo n. 

 2. Group of addition modulo n. 

 3. Group of units under multiplication modulo n. 

 4. Group of complex root of unity. 

 5. Questions related to these special types of group.  

3.8 Glossary: 

 Composition Table :- A composition table is a square matrix that describes the 
group operation for a finite group. 

 nth Roots of Unity:- The nth roots of unity refer to the solution of the equation zn 
= 1. In the complex number system, where n is a positive integer. 

 Addition under Modulonn:- It involves performing the usual arithmetic addition 
operation but then taking the remainder when divide by n.  
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3.9 Answer to Self Check Exercise  

Self Check Exercise - 1 

Q.1 Yes 

Q.2 Yes 

Self Check Exercise - 2 

Q.1 Solve it same as in example 3. 

Q.2 Solve it same as in example 3. 

Self Check Exercise - 3 

Q.1 Solve it same as in example 4. 

Q.2 Solve it same as in example 4. 

Q.3 Solve it same as in example 4. 

Q.4 Solve it same as in example 4. 

Q.5 Solve it same as in example 4. 

Self Check Exercise - 4 

Q.1 Solve it same as in example 1 

Q.2 Solve it same as in example 2 

3.10 References/Suggested Reading  

 1. Vijak k. Khanna and S.K. Bhambri, A course in Abstract Algebra, 5th Edition  

 2. Joseph A. Gallian, Contemporary Abstract Algebra, 8th Edition. 

 3. Frank Ayrer Jr, Modern Algebra, Schaum's Outline Series.  

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media. 

3.11 Terminal Questions 

1. Let G =  1,2  and define  on G by ab = |a-b|. Is the given set under given 

binary operation is a group or not.  

***** 
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Unit - 4 

Some Special Groups-II 

Structure 

4.1 Introduction 

4.2 Learning Objectives  

4.3 Permutation Group 

 Self Check Exercise-1 

4.4 Dihedral Group 

 Self Check Exercise-2 

4.5 Summary 

4.6 Glossary 

4.7 Answers to self check exercises 

4.8 References/Suggested Readings 

4.9 Terminal Questions 

4.1 Introduction 

Dear student, in this unit we will study about some more types of groups known as 
permutation group and dihedral group. We will try to write the elements of these group and will 
discuss some of their properties.  

4.2 Learning Objectives: 

 After studying this unit, students will be able to 

 1. define permutation group 

 2. prove and apply properties on permutation group 

 3. define dihedral group 

 4. prove and apply properties on dihedral group 

4.3 Permutation Group 

 Permutation group are control to study of geometric symmetries and to Galoir theory and 
to the study of finding solutions of polynomial equations. Permutation groups also gives us an 
example of non abelian group. Before defining permutation group, we first read about the 
symmetries of an equilateral triangle  ABC. The symmetries actually consists of permutations 
of the three vertices. These three vertices have the following six permutations. 
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A B C

A B C

 
 
 

  
A B C

C A B

 
 
 

  
A B C

B C A

 
 
 

 

 
A B C

A C B

 
 
 

  
A B C

C B A

 
 
 

  
A B C

B A C

 
 
 

 

 Here a permutation of the set S =  , ,A B C is a one-to-one and onto map  : S S. 

 Here 
A B C

B C A

 
 
 

denotes the permutation that send A to B, B to C and C to A. 

  The symmetry of a triangle also form a group  

Permutation of Degree n : 

Let S be a set having n elements. Then a one-one mapping of S onto itself is called a 
permutation of degree n. 

Degree of the Permutation: 

The number of elements in the finite set S is known as the degree of the permutation. 

For Example:- 

 Let Sn =  1 2( ), ( )............ ( )nf a f a f a  

This can be written as  

 1 2

1 2

______

_______
n

n

a a a

b b b

 
 
 

 

Here the first line we write the element of Sn and in second line we write the image of 
that element of Sn. Two permutations f and g of degree n are said to be equal if we have f (a) 

= g(a)  a  S. 

For example: 

 f  = 
1 2 3 4

2 3 4 1

 
 
 

 

and g = 
2 4 3 1

3 1 4 2

 
 
 

 

 are two permutations of degree 4. In this case, in  

f replace 1  2 2  3 3  4 and 4  1 

and g replace  1 2 2  3 3  4 and 4  1 

 i.e. in both f and g replacement is same  
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 so f  = g 

Note: If S is a finite set having n distinct elements then we have n! distinct permutations of the 
elements of S. 

Symmetric Set of Permutation of Degree n: 

The set consisting of all permutation forms a symmetric set of permutation. If Sn be the 
set consisting of all permutations of degree n, then the set Sn is called the symmetric set of 
permutation of degree n.  

Example 1: S2 be the set consisting of all permutation of degree 2 and having 2! element.  

 S2 = 
1 2 1 2

,
1 2 2 1

    
    
    

 

Similarly S3 = 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

, , ,
1 2 3 1 3 2 3 2 1 2 1 3 2 3 1 3 1 2

          
          
          

having 6 

elements  

Similarly S4, S5 etc. 

Identity Permutation:  

If I is permutation of degree n such that I replaces each element by the element itself, 
then I is called identity permutation of degree n. 

For example :
1 2

1 2

 
 
 

, 
1 2 3

1 2 3

 
 
 

, 
1 2 3 4

1 2 3 4

 
 
 

 are identity permutation of 2, 3 and 4 degree.  

Product of two Permutations 

 If f = 
1 2 3

1 3 2

 
 
 

 and g = 
1 2 3

2 3 1

 
 
 

 

 then f g = 
1 2 3

1 3 2

 
 
 

1 2 3

2 3 1

 
 
 

 

 Since in f , 1  1 and in g 1  2 so in f g we have 1  2 

 Similarly in f , 2  3 and in g 3  1 so in f g 2  1 

 and  in f  3  2 and in g  2 3 so in f g 3  3 

  f g = 
1 2 3

2 1 3

 
 
 

 

 Similarly If = 
1 2 3

2 1 3

 
 
 

1 2 3

1 3 2
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  If = 
1 2 3

3 2 1

 
 
 

 

 So we can say that in general f g g f . 

Cycuc Permutation: 

A permutation f on a set S is called a cyclic permutation of Length x. If for x1, x2, 

............... xn S such that f (xt) = x1 and leaves all other elements of S fixed.  

For Example: If f = 
1 2 3 4 5 6

3 2 4 1 5 6

 
 
 

 be a permutation of degree 6 such that f (1) = 3, 

f (3) = 4 f (4) = 1 f (2) = 2 f (5) = 5 f (6) = 6 

 Then f = (1 3 4) is a cyclic permutation of degree of length 3. Here the element whose 
image is the element itself is called an invariant element.  

For Example: In f = 
1 2 3 4 5 6 7 8 9

2 3 4 5 1 6 7 8 9

 
 
 

 

 f (1) = 2, f (2) = 3, f (3) = 4 f (4) = 5 and f (5) = 1 

 then f  = (1 2 3 4 5) is a cyclic permutation of length 5. 

Example: (1, 2, 4, 5, 3) on the set (1, 2, 3, 4, 5, 6, 7, 8, 9) 

Means: 
1 2 3 4 5 6 7 8 9

2 4 1 5 3 6 7 8 9

 
 
 

 Here the elements 6, 7, 8, 9 remains as it is and 

the remaining changes as 1  2, 2  4, 4  5, 5  3, 3  1 

Remarks:  

1. Every permutation can be written as product of two cycles  

2. A 2 - cycle permutation is called transposition  

3. If a permutation can be written as product of even number of permutation then it 
is called even permutation 

  1 2 3  =  1 2  1 3 , So  1 2 3  is even permutation. 

4. If a permutation cannot be written as a product of even number of permutation is 
called odd permutation  1 2 3 4  =  1 2  1 3  1 4  is odd permutation 

5. Product of two even permutation is even permutation  

6. Product of an odd and an even permutation is permutation.  

7. Product of two odd permutation is even permutation. 
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The set S3 can be written as  

 S3 =           , 1 2 , 1 3 , 2 3 , 1 2 3 , 1 3 2I  

Self Check Exercises - 1 

Q.1 Write all the elements of the permutation group on symmetric group S4 for 
(1, 2, 3, 4) 

Q.2 If f = 
1 2 3 4

4 1 2 3

 
 
 

 and g = 
1 2 3 4

2 1 4 3

 
 
 

 

 Show that permutation multiplication is not commutative  

Q.3 Write the cycle of the permutation 
1 2 3 4 5 6 7

6 3 5 1 4 2 7

 
 
 

 

 Write the cycle of the permutation 
1 2 3 4 5 6

1 4 2 3 5 6

 
 
 

 

Example: the symmetric group of n elements Sn is a group with n! elements where the binary 
operation is the composition of maps.  

 Here binary operation is composition of map i.e. I : R R : I (x) = x is in 5. 

Solution:Closur Property: Since let f , g  S then f  0 g also belongs to S. So composition of 
map is closed in S. 

 So composition of map is a binary operation on the set Sn.  

Associative Property: 

The binary operation is associative so, composition of map is associative on the set Sn.   

Existence of Identity: 

Since, Ix is the identity map, is the identity of Sn as  

 f 0 Ix = Ix 0 f = f  f  Sn. 

Existence of Inverse: 

Also we know that if a function is one-one and onto i.e. f : X X then g : X X sit. 
f 0 g = g 0 f  = Ix   So g will act as inverse of f . 

 Hence Sn, the permutation group or symmetric group on n elements forms a group under 
the binary operation of composition of map.  

Inverse of a Permutation: 

The two row representation of inverse of a permutation in Sn is obtained by 
interchanging the row 0 of the 2 row representation of given permutation.  
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For Example: If f = 
1 2 3 4

3 1 4 2

 
 
 

 then 1f   is obtained by interchanging the rows. 

 So 1f   = 
3 1 4 2

1 2 3 4

 
 
 

 = 
1 2 3 4

2 4 1 3

 
 
 

 

Example: Find the inverse of f =  1 2 3  

Solution: Since f  =  1 2 3  = 
1 2 3

2 3 1

 
 
 

 

 So 1f   = 
2 3 1

1 2 3

 
 
 

 = 
1 2 3

3 1 2

 
 
 

 =  2 3 1  

Self Check Exercise - 1 

Q.5 If f is a cycle  1 3  in S5, write 1f   in the 2-row format. Also cheek if 
1f   is a cycle or not 

Q.6 Write inverse of  1 2  and  2 4 5  in S5 

Example: Write the composition table of S2 

Solution: Since S2 =  , (1, 2)I  

 I (1, 2) 

I I (1, 2) 

(1, 2) (1, 2) I 

 
1 2 1 2 1 2

2 1 2 1 1 2

     
     

     
 

Self Check Exercises - 1 

Q.7 Write the composition table of S3 and prove that S3 forms a group under 
composition of map.  

The Alternating Group: 

The set of all even permutation of Sn row, is called alternating group An for n elements. 

 The alternating group An is a sub group of Sn. 
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 The number of even permutation in Sn is equal to number of odd  permutation, 

hence order of An is 
1

2

n
 

Self Check Exercise - 1 

Q.8 Write the alternating group A4 of S4. 

 

4.4 Dihedral Group 

A dihedral Group is a group of symmetries of regular polygon with n sides, where n is 
positive integers. The dihedral group of order 2n, denoted by Dn is the group of all possible 
rotations and reflections of the regular polygon. The group Dn consists of 2n elements, which 
can be depicted as follows: 

 n rotations denoted by R0, 
360R

n
, 2 (360)R

n
 , ........... 

( 1)360R n

n


 where R 

360i

n
 

represents a rotations of 
360i

n
 
 
 

 clockwise about the center of polygon.  

 n reflections denoted by F0, F1, F1, ........., F(n-1) where Fi represent a reflections 
across a line passing through the center of the polygon and one of the vertices.  

 The group operation in Dn, is the composition of symmetries  

 D1 and D2 are only abelian dihedral groups otherwise Dn s non abelian for n > 3. 

 Alternatively, the dihedral group Dn is defined by  

 Dn =  2 1 1; , , , 0,2...., 1, 12i j nr s r e s e srs r i n j        

Some Dihedral Groups: 

Example 1: 

1. D1 = |D1| = 2 i.e. (1 rotation + 1 reflection) =  1 2 1; 1, 1, ; , 1,2i jr s r s srs r i i j      

 (1) Ration 
360 360

360 ; 0
1

i i
i i

n
 

   
   

(1)  Reflection 

(1) 

 

    A                             B 

 

 

    A                               B 
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(2) 

  

    A                               B 

      h 

 

B   A 

Composition Table:- 

 R0 h 

R0 R0 h 

h h R0 

 

Here h.h   h   h

   A B B A A       B 

 

 

11y Ro h   h    Ro

   A B B       A               B       A 

Example 2: 

1. D2 = |D2| = 4 = (2 rotations + 2 reflections) 

 D2 =   2 2 1 1; 1, 1, , 1,2, 1,2i jr s r s srs r i j       

  =  , , , ,e r s r s  

 Alternatively D2 =   0 , , ,R Riso h v . Explained below: 

2. Rotations 
360 360

180 ; 0,1
2

i i
i i

n

   
   

 
 

(1) 

 D C   D C 

      Ro 

 A B   A B 
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(2) 

 D C   B A 

      R180 

 A B   C D 

(2) Reflections 

(3) 

 D C   A B 

      h 

 A B   D C 

 

(4) 

 D C   C D 

      V 

 A B   B A 

 

Production of terms : 

 h.R180  

 

 D C   B A  C D 

      R180    h   = V 

 A B   C D  B A 

 

 V h  

 

 D C   A B  B A 

      h    V   = R180 

 A B   D C  C D 
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Thus, Composition table is given by  

 R0 R180 h v 

R0 R0 R180 h v 

R180 R180 R0 v h 

h h v R0 R180 

v v h R180 R0 

Example 3: 

Construction of D3: (3 rotation + 3 reflection) =  2 3 1 1; 1, 1, , 1,2,3; 1,2i jr s r r srs r i j     
 

  = B {e, r, r2, s, r s, r2 x} 

(1) 

  B     B 

     Ro 

   C         A    C            A  

(2) 

           B            A 

     R120 

    C         A    B            C  

 

(3) 

           B            C 

     R240 

    C         A    A       B  

 

(4) 

           B            C 

     FAa 

    C         A    B           A  
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(5) 

           B     B 

     FBb 

    C         A    A       C  

(6) 

           B            A 

     FCc 

    C         A    C           B  

Alternatively thus, D3 =  0 120 240, , , , ,Aa Bb CcR R R F F F  

Now, composition table is given by 

 R0 R120 R240 FAa FBb FCc 

R0 R0 R120 R240 FAa FBb FCc 

R120 R120 R240 R0 FCc FAa FBb 

R240 R240 R0 R120 FBb FCc FAa 

FAa FAa FCc FBb R0 R240 R120 

FBb FBb FAa FCc R120 R0 R240 

FCc FCc FBb FAa R240 R120 R0 

It can be calculated as: 

 FAa R140  (1) 1st apply R240 

    (2) Then apply FAa 

   Ultimatimaely 

 SimilarlyFBb. FAa   

(1) 1st apply R240 

           B            C 

     R240 

    C         A    A       B  
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(2) Then apply FAQ 

           C            B 

     FAa 

    A         B    A           C  

Ultimalimatety 

           B     B 

    FAa R240
 

    C         A    A       C  

SimilarlyFBb. FAa 

           B            C            A 

    FAa R240    FBb
 

    A         C    B           A     B        C 

Example 4: 

 D4 : 4 2 1| 1, 1, , 1,2,3; 1,2i jr s r s srs r i j     =  2 3 2 3, , , , , , , ,e r r r s r s r s r s  

 |D4| = 8 i.e.  4 rotations + 4 reflections  

Construction of D4 : 

4. Rotations 
360

. . 90 ; 0,1, 2,3
4

i
i e i i

   
  

   

(1) 

  C B    C B 

     R0 

  D A    D A 

 

(2) 

  C B    B A 

     R90 

  D A    C D 
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(3) 

  C B    A D 

     R180 

  D A    B C 

 

(4) 

  C B    D C 

     R270 

  D A    A B 

 

4  Reflections 

(5) 

  C B    D A 

     H 

  D A    C B 

 

(6) 

  C B    B C 

     V 

  D A    A D 

 

(7) 

  C B    C D 

     D 

  D A    B A 

 

(8) 

  C B    A B 

     D' 

  D A    D C 

Therefore  D4 =  10 90 180 270, , , , , , ,R R R R H V D D  



83 
 

Product of Elements: 

 Here, R180. R270 

 

  C B    D C   B A 

     R270       R180 

  D A    A B   C D 

 

Rao . H 

  C B    D A   A B 

     H       R180 

  D A    C B   D C 

H. R90 = D Similarly, we can find product of other elements. 

Composition Table:  

 R0 R90 R180 R270 H V D D1 

R0 R0 R90 R180 R270 H V D D1 

R90 R90 R180 R270 R0 D1 D H V 

R180 R180 R270 R0 R90 V H D1 D 

R270 R270 R0 R90 R180 D D1 V H 

H H D V D1 R0 R180 R90 R270 

V V D1 H D R180 R0 R270 R90 

D D V D1 H R90 R270 R0 R180 

D1 D1 H D V R270 R90 R180 R0 

Example 5: 

(5) D5 =  5 2 1| 1, 1, , 1,2,3,4; 1,2i jr s r s srs r i j      =  2 3 4 2 3 4, , , , , , , , ,e r r r r s r s r s r s r s  

 |D5| = 10 i.e. 5 rotations + 5 reflections  

Construction of D5 : 

 5 Rotations 
360 360

. . 72 ; 0,1, 2,3, 4
5

i i
i e i i

n
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(1) 

   A     A
 

  B  E      R0  B  E 

     C           D      C          D 

(2) 

   A     E
 

  B  E      R72  A  D 

     C           D      B          C 

(3) 

   A     D
 

  B  E      R144  E  C 

     C           D      A          B 

(4) 

   A     C
 

  B  E      R216  D  B 

     C           D      E          A 

(5) 

   A     B
 

  B  E      R288  C  A 

     C           D   D          E 
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5 Reflections 

(6) 

   A     A
 

  B  E tA  E  B 

     C           D   D         C 

(7) 

   A     C
 

  B  E tB  B  D 

     C           D      A          E 

(8) 

   A     E
 

  B  E tC  D  A 

     C           D      C          B 

(9) 

   A     B
 

  B  E tD  A  C 

     C           D      E          D 

(10) 

   A     D
 

  B  E tE  C  E 

     C           D       B          A 

 D5 =  0 72 144 216 288, , , , , , , , ,A B c D ER R R R R t t t t t  
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Product of elements: 

 Here R27. R216 

   A    C      B
 

 
.  B  E R216 D  B      R72       C     A   

= R288 

     C           D  E A          D             E 

 tB . R216 

   A    C      A
 

  B  E R216 D          B      tB       E     B   
= tA 

     C           D      E          A          D             C 

 tB . R288 

   A    B   B
 

  B  E R288 C          A      tB       A     C   
= tD 

     C           D  D          E  E             D 

Similarly,We can find product of other dements  

Composition Table: 

 R0 R72 R144 R216 R288 tA tB tC tD tE 

R0 R0 R72 R144 R216 R288 tA tB tC tD tE 

R72 R72 R144 R216 R288 R0 tD tE tA tC tB 

R144 R144 R216 R288 R0 R72 tB tC tD tE tA 

R216 R216 R288 R0 R72 R144 tE tA tB tC tD 
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R288 R288 R0 R72 R144 R216 tC tD tE tA tB 

tA tA tD tB tE tC R0 R144 R188 R72 R216 

tB tB tE tC tA tD R216 R0 R144 R288 R72 

tC tC tA tD tB tE R72 R216 R0 R144 R288 

tD TD tB tE tC tA R288 R72 R216 R0 R144 

tE tE tC tA tD tB R144 R288 R72 R216 R0 

Similarly, we can form composition table for D6, D7, D8 ................ by using group operation of 
composition of symmetries.  

Self Check Exercise - 2 

Q.1 Write the composition table for D6 

Q.2 Write the composition table for D7 

4.5 Summary:  

In this unit, we studied that 

 1. Symmetric group of n elements Sn is a group with n! elements.  

 2. The set of all even permutation of Sn is called alternating group. An. 

 3. Dihedral group is a group of order 2n, of n rotation and n refection.  

 4. Dihedral group is defined as  

  Dn =  2 1 1| , , , 0,1,2...... 1 1,2i j nr s r e s e srs r i n j        

 5. D1 and D2 are only abelian dihedral group 

4.6 Glossary: 

 Permutation Group: A permutation group G on a set X is a subgroup of the 
symmetric group Sx, which is the group of all bijective mapping from X to itself 
under function composition.  

 Dihedral Group: The dihedral group Dn is the group of symmetries of a regular 
n-gon. It consists of all rotations and reflections that preserve the geometric 
structure of n-gon.  

 Permutation: A permutation of a set X is a rearrangement of its element. If X 
has n elements, there are n! permutations of X. 
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4.7 Answers to Self Check Exercise  

Self Check Exercise - 1 

Q.1 S4 =  , (1,2), (13), (14), (2,3), (2,4), (3,4), (1,2,3)(1,3,2)(1,2,4), (1,4,2),i  

 (1,3,4), (1,4,3), (2,3,4), (2,4,3), (12)(34)  (14, 23), (13) (24), (1, 2, 3 4), 

Q.2 f g = 
1 2 3 4

1 4 3 2

 
 
 

 g f  = 
1 2 3 4

1 4 3 2

 
 
 

 

Q.3 (1, 6, 2, 3, 5, 4) 

Q.4  2, 4, 3  

Q.5  1 3  in S5 

 then f  = 
1 2 3 4 5

3 2 1 4 5

 
 
 

 

 1f   = 
3 2 1 4 5

1 2 3 4 5

 
 
 

 = 
1 2 3 4 5

3 2 1 4 5

 
 
 

 = f  

 So 1f   is a cycle also 

Q.6 f = (1, 2) = 
1 2 3 4 5

2 1 3 4 5

 
 
 

 

 1f  = 
2 1 3 4 5

1 2 3 4 5

 
 
 

= (1, 2) 

 f  =  2 4 5  = 
1 2 3 4 5

1 4 3 5 2

 
 
 

 

 1f  = 
1 4 3 5 2

1 2 3 4 5

 
 
 

 =  2 5 4  

Q.7  

 I (12) (13) (23) (123) (132) 

I I (12) (13) (23) (123) 132 

(12) (12) I (32) (123) (23) (13) 
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(3) (13) (123) I (132) (12) (23) 

(23) (23) (132) (123) I (13) (12) 

(123) (123) (13) (23) (12) (123) I 

(132) (132) (23) (12) (13) I (123) 

Q.8 I, (12) (34), (13) (24), (14) (23), (123) (132) (124) (142) (134) (143) (234) (243) 

Self Check Exercise - 2 

Q.1 Do same as D5 

Q.2 Do same as D5 

4.8 References/Suggested Readings:- 

 1. Vijak. K. Khanna and S.K. Bhambri, A course in Abstract Algebra. 

 2. Joseph A Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayrer Jr. Modern Algebra, Schaum's Outline Series. 

 4. A.R. Vasistha, Modern Algebra, Modern Algebra, kushan Prakashan Media. 

4.9 Terminal Questions 

Q.1 Write the alternating group of A3 of S3 

Q.2 Write the dihedral group D8. 

 

***** 
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Unit - 5 

Cyclic Group 

Structure 

5.1 Introduction 

5.2 Learning Objectives  

5.3 Order of an element of a group 

 Self Check Exercise-1 

5.4 Idempotent Element 

 Self Check Exercise-2 

5.5 Cyclic Group 

 Self Check Exercise - 3 

5.6 Summary 

5.7 Glossary 

5.8 Answers to self check exercises 

5.9 References/Suggested Readings 

5.10 Terminal Questions 

5.1 Introduction 

Dear student, in this unit you will studied about the order of an element of a group, 
idempotent element and about cyclic group. You will study how we can prove that a given group 
is cyclic by using various examples, along with their properties.  

5.2 Learning Objectives: 

 After studying this unit, student will be able to 

 1. Define and find the order of an element of a group  

 2. Prove the theorem based on order of an element. 

 3. Define and prove, that a given group is cyclic 

 4. Find the generators of a cyclic group.  

5.3 Order of an Element 

 Definition: 

Let a be an element of a group G. If there exists a positive integer n such that an = e, 
(using the binary operation), then a is said to have finite order, and the smallest such positive 
integer 'n' with this property is known as the order of a and is denoted by O(a).  
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 Here an does not mean only n times multiple of a, but it means we apply the 
given binary operation n times on element 'a'. 

 In case of additive notation, above definition becomes, if n a = e then o(a) = n. 
We apply n times the additive operation.  

 If there does not exist a positive integer n such that an = e, then a is said to have 
infinite order or the order does not exist or the order of a is zero.  

 In a group, order of identity element is always 1, i.e. 0(e) = 1 Let us try to clear 
the concept of order of an element of a group by examples: 

Example 1: Find the order of each element of group G {i, w, w2} cube root of unity under 
multiplication.  

Solution: Since in this given group G (1, w, w2}, 1 act as identity element under multiplication. 
Now we have to find a positive integer n such that an = 1, for all the elements of G. Also we 
know w3 = 1.  

 Since, is identity element of G so 0(1) = 1 

 Now for w, Sincewww = w3 = 1, so order of w is 3, i.e. 0(w) = 3 

 3, i.e. 0(w) = 3.  [By definition] 

 Now taking the element w2,  

 Since w2
w2

w2 = w6 = (w3)2 = (w2)3 = 1 

  So 0(w2) = 3. 

Example 2: find the order of each element of the group of order four of G = {1, i, -1, -i} under 
multiplication. 

Solution: To find the order of each element of G we have to find a positive integer k such 
(element)k = identity since 1 is identity element of this group.  

 0(1) = 1 

 Now, 0(i), Since iiii = i4 = (i2)2 = (-1)2 = 1 =  identity 

 i4 = 1 

  0(i) = 4 

 Now 0(-1), Since -1  -1 = 1 = identity 

  (-1)2 = 1 

  0(-1) = 2 

 Now, 0(-i), since -i -ii -i = (-i)4 = 1 = identity 

 0 (-i) = 4 

Example 3: Find the order of each element of the group {0, 1, 2, 3, 4} under addition modulo 5. 

Solution: Given group is G = {0, 1, 2, 3, 4} and the binary operation is addition modulo 5 i.e.  
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 a +5 b = Least non negative remainder when a+b is divided by 5. 

 Since 0 is identity element of the given group. 

 So 0(0) = 1 

 Now, 0(1), Since 1+51+51+51+51 = 0 [we apply the operation addition modulo 5, five time 
on 1 so that the remainder is zero that is identity element of group. 

  0(1) = 5 

 Now, 0(2), Since 2+52 = 4, 2+52+52 = 1, 2+52+52+52+52 = 0 (Remainder is zero when 10 
is divided by 5), we apply the operation 5 times on element 2 to get the identity element.  

  0(2) = 5 

 Now, 0(3), Since 3+53 = 1, 3+53+53 = 4, 3+53+53+53 = 2 

 3+53+53+53+3 = 0, we apply the operation addition modulo 5 five times on element to get 
0 (identity element) 

  0(3) = 5 

 Now, 0(4), Since 4+54,54 = 2, 4+54+54+54 = 1, 

 4+54+54+54+4 = 0 

  0(4) = 5 

Example 4: Find the order of each element of the group {1, 2, 3, 4, 5, 6} under multiplication 
modulo 7.  

Solution: Since we know that 1 is identity element of the group under multiplication modulo 7. 
i.e.  

 a7b = least non negative integer when ab is divided by 7.  

 As 1 is identity element, so 0(1) = 1 

 Now 0(2), Since 272 = 4, 2727 = 1, which is identity element when 8 is divided by 7, 

  0(2) = 3 

 Now 0(3), Since 3+73 = 2, 3+73+73 = 6, 3+73+73+73 = 4 

 3+73+73+73+73 = 5, 3+73+73+73+73+73 = 1, (which is identity  

element when 729 is divided by 7) 

  0(3) = 6 

 Now, 0(4), 4+74 = 2, 4+74+74 = 1, which is identity element  

when 63 is divided by 7 

 Similarly 0(5) = 6 and 0(6) = 2. 

Example 5: Consider the group Z10 with addition modulo 10. what is the order of the elements.  

Solution: Let since Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 
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 Here a is identity 0(0) = 1  0(e) = 1 

 Now taking each element 

0 0(e) = 1  0(0) = 1 

1 110  0 (mod 10) as 1+101+101+101+101+101+101+101+101+101  0(mod 10) 

2 2  2(mod 10)    0(2) = 5 

 2+2 = 4  4 (mod 10) 

 2+2+2 = 6  6 (mod 10) 

 2+2+2+2 = 8  8 (mod 10) 

 2+2+2+2+2 = 10  0 (mod 10) 

 

3 3  3(mod 10)    3+3+3+3+3+3 = 18  8 (mod 10)  

 3+3 = 6  6 (mod 10)   3+3+3+3+3+3+3 = 21  1 (mod 10) 

 3+3+3 = 99 (mod 10)  3+3+3+3+3+3+3+3 = 24  4 (mod 10) 

 3+3+3+3 = 122 (mod 10)  3+3+3+3+3+3+3+3+3 = 27  3 (mod 10) 

 3+3+3+3+3 = 155 (mod 10) 3+3+3+3+3+3+3+3+3+3 = 30  0 (mod 10) 

 0(3) = 10 

4 4  4(mod 10)      

 4+4 = 8  8 (mod 10)    

 4+4+4 = 12  2 (mod 10)   

 4+4+4+4 = 16  6 (mod 10)   

 4+4+4+4+4 = 20  0 (mod 10) 

 0(4) = 5 

5 5  5(mod 10) 

 5+5 = 10  0 (mod 10) 

 0(5) = 2 

6  6  6(mod 10)      

 6+6 = 12  2 (mod 10)    

 6+6+6 =18  8 (mod 10)   

 6+6+6+6 = 24  4 (mod 10)   

 6+6+6+6+6 = 30  0 (mod 10) 

 0(6) = 5 
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Theorems Based On Order of Element  

Theorem 1: In a finite group the order of every element exists. 

Proof. Let G be a finite group of order n. 

 Let a  G be any element. 

  By closure property in G, the collection {a, a2, a3, .....} of powers of a are element 
of G. 

 But G is finite. 

  the elements in the above collection cannot be all different. 

 Let ai = aj, i, j are +ve integers; i j, i> j (say) i.e. i - j is a positive integer. 

 Now aj
 G and G is a group.  a-j

 G 

  ai a-j = aj. a-j  ai-j = a0 = e 

  a+ve integer = e 

 By well ordering principle, let m be the smallest +ve integer, then 

  am = e 

  Order of a exists and O(a) = m. 

 But a is any element of G. 

 Thus the order of every element exists. 

Theorem 2. If G is a finite group of order n then show that for any a  G,  some positive 
integer r, 1 < r < n, such that ar = e. 

Proof: G is finite group of order n i.e. O(G) = n 

 Let a  G be any element. 

 By closure property a2, a3, ....... all belong to G. 

 Consider n+1 elements e, a, a2 ......, an 

 [All these elements are in G] 

  But G contains only n elements. 

  at least two of these elements are equal 

 If any of a, a2, ........, an equal e 

 then ar = e for 1 < r < n and r is +ve integer.  

 So our result is proved. 

 If each of a, a2, .........., an is not equal to e, 

 then ai = aj for some i, j, 1 <i< n, 1 < j < n. 

 Without any loss of generality, take i> j 
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 then ai = aj 

  ai, a-j = ai a-j 

  ai-j = e, 1 <i - j < n 

 Put i - j = r 

  ar = e for 1 < r < n and r is +ve integer.  

Theorem 3: Let G be a group and a  G be of order m. Prove that  

 (i) a0 = e, a, a2, ........., am-1 are all different. 

 (ii)  n  I, an is equal to some one from the above list. 

Proof: Given O(a) = m where a  G, a group. 

  am = e and m is the smallest positive integer.  

 Let if possible ai = aj, 0 <i, j <m ;i j and say i> j 

Operating by a-j ( aj
 G and G is a group  a-j

 G) 

  ai, a-j = aj. a-j 

  ai-j = a0 = e, where 0 <i - j < m. 

 which is a contradiction as m is the smallest integer such that am = e. 

  Our supposition is wrong. 

 Hence all the elements e, a, a2, ......., am-1 are different. 

 (ii)  n  I, let n = m q + r where 0 < r < m 

 Consider an = amq+r = amq. ar 

   = (am)q. ar = eq. ar (  O(a) = m  am = e) 

   = e.ar = ar, 0 < r < m 

 Hence  n  1, an = ar, 0 < r <m ; which is some one from the above list.  

Theorem 4: Let G be a finite group and let a  G be an element of order n. Then am = e iff n is a 
divisor of m.  

Proof: Firstly, let n be a divisor of m i.e. n|m, where O(a) = n. 

  there exists a positive integer q such that  

  m = nq 

 Now am = anq = (an)q = eq = e.  
( ) .O a n

an e

 
 
  

 

 Conversely let am = e, where O(a) = n.  

 By division algorithm theorem 
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 m = n q + r, where q, r  1 and 0 < r < n 

  e = am = anq + r = anq .ar = (an)q .ar = eq .ar = ar 

  ar = e, where 0 < r < n 

 which is not possible, because O(a) = n and n is the least positive integer such  

that an = e. 

  Above result holds only if r = 0. 

 i.e. when m = nq + 0 = nq 

 i.e. when n is a divisor of m. 

Theorem 5: Let G be a group and let a  G be order m. Then 

 O(ak) = 
( , )

m

m k
, where k = 1, 2, ...... m-1 

Proof: Let O(ak) = t. To show that t = 
( , )

m

m k
. 

 Now akt = (ak)t - e, but O(a) = m. 

  m/kt  [By Theorem 1.3.3] 

  d/m and d/k 

 Let m = m1d and  k = 1d, where (m1, k1) = 1 

  
m

d
 = m1, so we need to show t = m1.  

 Now m/kt  m1d/k1 dt  m1/k1 t 

 but (m1, k1) = 1  m1/t 

 Again (ak)m
1 = akm

1 = ak
1
dm

1 

   = ak
1
 m 

   = (am)k
1 = ek

1 = e 

 But O(ak) = t 

  t/m1 

 So, from (1) and (2), we get  

  t = m1 

 i.e. O(ak) = 
m

d
 = 

( , )

m

m k
 

Cor.1. If O(a) = m, then O(ak) = m iff (m, k) = 1 
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 By above theorem, 

 O(ak) = 
( , )

m

m k
 

  O(ak) = m iff
( , )

m

m k
 = 1 i.e. iff (m, k) = 1 

2. If O(a) = p, where p is a prime number, then 

 O(ak) = p, for all k = 1, 2, ......, p - 1.  (  (p, k) = 1) 

Theorem 6: Let a, b and x be any elements of a group G. Then prove that  

 (i) O(a-1) = O(a) 

 (ii) (x-1ax)k = x-1ak x, for all k  1 

 (iii) O (a) = O(x-1 ax) 

 (iv) O(ab) = O(ba) 

Proof. (i) Let O (a) = m and O(a-1) = n 

  m, n are the least +ve integers such that  

  am = e and (a-1)n = e 

 Now (a-1)m = a-m = (am)-1 = e-1 = e, but O(a-1) = n 

  n/m   .....(1) 

 Again, an = (a-n)-n = [a-1)n]-1 = e-1 = e, but O(a) = m 

  m/n   .....(2) 

 From (1) and (2), we get 

  m = n 

  O(a-1) = O(a). 

 (ii) We shall prove by induction that  

  (x-1ax)k = x-1ak x, for all k  I 

 when k = 1, L.H.S. = (x-1 ax)1 = x-1 a1 x = R.H.S. 

  the result is true for n = 1. 

 Let the result holds for k = m, where m is a positive integer. 

  (x-1ax)m = x-1 am x is true. 

 Now (x-1ax)m+1 = (x-1 ax)m (x-1 ax) 

  = x-1 am (xx-1) ax 

  = x-1 am eax 
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  = x-1 am+1 x. 

  The result is true for k = m+1 also. 

 Hence the result is true for all positive integers. 

 Also when k = 0, then 

  L.H.S. = (x-1 ax)0 = e = x-1 ex 

   = x-1 a0 x = R.H.S. 

Now, let k = -m, where m is a positive integer.  

  (x-1ax)k = (x-1 ax)-m = {(x-1 ax)m}-1 

  = {x-1 am x)-1 

  = x-1 a-m (x-1)-1 

[By Reversal law (ab)-1 = b-1 a-1] 

 = x-1ak x.  [  (x-1)-1 = x] 

  The result is true for zero and negative integers also. Hence the result is proved 
for all integers.  

 (iii) Let O(x-1 ax) = m and  O(a) = n 

 Now (x-1ax)n = x-1 an x = x-1 ex = x-1 x = e 

 But O(x-1 ax) = m 

  m/n     .....(1) 

 Again  O(x-1 ax) = m 

  O(x-1 ax)m = e 

  x-1 am x = e x-1 x  

  x-1 am x = x-1 e x 

  am = e    [Using left and right cancellation laws] 

 But O(a) = n 

  n/m     ....(2) 

 From (1) and (2), we get  

  n = n. 

 i.e. O(x-1 a x) = O(a). 

 (iv) From (iii) we have 

  O (a) = O(x-1 a x),  a, x  G 

 Replacing a by a b and x by a, we get 

  O(ab) = O(a-1(ab)a) = O(a-1 a b a) 
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   = O(e b a) = O(b a) 

 Aliter: Since ab = eab = (b-1 b) ab = b-1 (ba)b 

  O(ab) = O(b-1 (ba)b) 

  O(ab) = O(ba).  [Using (iii)] 

Remark: If a, b  G be elements of finite order or a group G, then O(ab) may not be finite and if 
it is finite even then it need not be equal to O(a) O(b) 

 To prove above thing, let us take the following examples. 

Example 6: Let G = { f ; f : R R is one-one and onto function} be a group under the operation 
of composition of functions. 

 Let 1f , 2f  G be two elements such that 1f (x) = -x and 2f (x) = 1-x. 

 Then O( 1f ) = 2 = O( 2f ), but ( 1f 2f ) does not exist. 

Solution: For 2
1f (x) = 1f ( 1f (x)) = 1f (-x) = (-x) = x  ( 1f ) = 2 

 and 2
2f (x) = 2f ( 2f (x)) = 2f (1-x) = 1 - (1-x) = x 

  O( 2f ) = 2 

 But 1f 2f (x) = 1f 2f (x)) = 1f (1-x) = - (1-x) = -1 + x 

 Also,  ( 1f 2f )n (x)  x,  n N. 

  O( 1f 2f ) does not exist. 

Example 7: Let G = : , , , 0
a b

a b c d R suchthat ad bc
c d

  
    

  
 

 i.e. G is a group of all non-singular 2  2 matrices under the operation of 
multiplication of matrices.  

 Let A = 
1 0

0 1

 
 

 
and B = 

1 1

0 1

 
 

 
 be two elements of G. 

 Prove that O(A) = O(B) = 2 but O(AB) does not exist. 

Solution: Here A2 = 
1 0

0 1

 
 

 

1 0

0 1

 
 

 
= 

1 0

0 1

 
 

 
   (A) = 2 

  B2 = 
1 1

0 1

 
 

 

1 1

0 1

 
 

 
 = 

1 0

0 1

 
 

 
  O(B) = 2 
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 and AB = 
1 0

0 1

 
 

 

1 0

0 1

 
 

 
 = 

1 2

0 1

 
 
 

 

   .......................................... 

   ........................................... 

  (AB)n = 
1

0 1

n 
 
 

,  n N 

  O (AB) does not exist.  

Theorem 8: If a, b be any two elements of a group G such that ab = ba and (O(a), O(b)) = 1. 
Then prove that  

 O(a b) = O(a) O(b). 

Proof: Let O(a) = m and O(b) = n, where (m, n) = 1 

 Let O(ab) = k. To show that k = m n, where ab = ba. 

 Now e = (ab)nk = ankbnk = ank. (bn)k 

  = ank. ek = ank e = ank 

 i.e. ank = e, but O(a) = m 

  m/n k, but (m, n) = 1 

  m/k.   .....(1) 

 Similarly, e = (ab)mk = amkbmk = (am)kbmr 

   = ekbmr = ebmk = bmk 

 i.e. bmk = e, but  O(b) = n 

  n/m k,  but (m, n) = 1 

  n/k 

 From (1) and (2), we get    ....(2) 

  m/k and n/k  [m, n] | k 

 But [m, n].(m, n) = mn   ....(3) 

  [m, n] . 1 = mn 

  From (3), we have 

  m n / k.    ....(4) 

 Again (ab)mn = amnbmn = (am)n (bn)m = enem = ee = e 

 but O (ab) = k 

  k/mn 
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  from (4) and (5), we get  .....(5) 

   k = m n 

 i.e. O (ab) = O(a).O(b). 

Self Check Exercise - 1 

Q.1 Find the order of each element of the group {1, i, +j +k} under 
multiplication. 

Q.2 find the order of each element of the group Zn under addition modulo 7  

Q.3 Find the order of each element of the group U10. 

Q.4 Show that the group Q-{0} i.e. non zero rational numbers under 
multiplication has only two element of finite order.  

5.4 Idempotent Element:  

In 0 group G an element a is called an idempotent element of aa = a, where  is a 
binary operation. 

 Let us take following examples:- 

Example 1: Show that if G is a group then a  G is an idempotent if and only if a = e, the 
identity of a.  

Solution: Given G is a group 

 Let a  G is idempotent  

 then by definition of idempotent  

  a2 = a 

  a.a = a.e 

  a = e (using cancellation law)  

Conversely Let a = e 

  a.a = a.e 

  = e.e. = e = a 

  a2 = a, So a is idempotent element.  

Example 5: Continue  

7. 7  7(mod 10)    

 7+7 = 14  4 (mod 10) 

 7+7+7 = 21  1 (mod 10) 

 7+7+7+7 = 28  8 (mod 10) 

 7+7+7+7+7 = 35  5 (mod 10) 
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 7+7+7+7+7+7 = 42  2 (mod 10) 

 7+7+7+7+7+7+7 = 49  9 (mod 10)   

 7+7+7+7+7+7+7+7 = 56  6 (mod 10) 

 7+7+7+7+7+7+7+7+7 = 63  3 (mod 10) 

 7+7+7+7+7+7+7+7+7+7 = 70  0 (mod 10) 

  0(7) = 10 

8. 8  8(mod 10)    

 8+8 = 16  6 (mod 10) 

 8+8+8 = 24  4 (mod 10) 

 8+8+8+8 = 36  6 (mod 10) 

 8+8+8+8+8 = 40  0 (mod 10) 

 0(8) = 5 

9. 99(mod 10)    

 9+9 = 188 (mod 10) 

 9+9+9 = 277 (mod 10) 

 9+9+9+9 = 366 (mod 10) 

 9+9+9+9+9 = 45 5 (mod 10) 

 9+9+9+9+9+9 = 544 (mod 10) 

 9+9+9+9+9+9+9 = 633 (mod 10)   

 9+9+9+9+9+9+9+9 = 722 (mod 10) 

 9+9+9+9+9+9+9+9+9 = 811 (mod 10) 

 9+9+9+9+9+9+9+9+9+9 = 90  0 (mod 10) 

  0(9) = 10 

Example 2: Let G be a group such that a2 = e, for all a  G, Show that G is abelian. 

Or 

 Show that a group in which every element is its own inverse is an abelian group. 

Or 

 If each element of a group, except the identity element, is of order 2, show that the group 
is abelian. 

Solution: Let a, b  G be any two elements, where a  e, b  e  a b  e. 

  a2 = e and b2 = e (or O(a) = 2, O(b) = 2) 
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  a-1 = a  and b-1 = b (i.e. every element is its own inverse) 

 Also a, b  G  a b  G (By Closure Property) 

  (ab)2 = e (or O(ab) = 2) 

  (ab-1 = ab 

 But (ab)-1 = b-1 a-1 

  b-1 a-1 = ab 

  ba = ab  [  b-1 = b and a-1 = a] 

  G is abelian group. 

Example 3: If in a group G, a5 = e and ab a-1 = b2 for all a, b  G.  

Prove that if b  e, then O(b) = 31 

Solution: Now, b2 = aba-1   .....(1) 

  b4 = (aba-1)2 

  = ab2 a-1  [  (x-1ax)k = x-1akx] 

  = a(aba-1)a-1  [Using (1)] 

  = a2 ba-2 

 
 b8 = (a2 ba-2)2 

  = a2b2 a-2 

  = a2(aba-1) a-2  [Using (1) 

  = a3 ba-3 

  b16 = (a3 ba-3)2 = a3 b2 a-3 

  = a3(aba-1)a-3 [Using (1)] 

  = a4 ba-4 

 Similarly, b32 = a2 ba-5 

   b32 = ebe-1 = b [  a5 = e] 

  b.b31 = be 

  b31 = e.  [By left cancellation law] 

  O(b) must divide 31. But 31 is a prime number. 

  O(b) = 31 

Example 4 : If G is an abelian group, then (a b)n = an bn, holds for all a, b  G and for all n  I. 

Solution : Given G is an abelian group. 

 Let a, b  G. We shall prove the result (a b)n = an bn by Mathematical Induction. 
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 If  n = 0, then (a b)0 = e = e e = a0 b0 

  the result is true for n = 0 

 If  n = 1, then (a b)1 = ab = a1 b1 

  the result is true for n = 1 

 Suppose that the result is true for n = k > 1. 

  (ab)k = ak bk 

 Consider (ab)k+1 = (ab)k (ab)= (ak bk) (ab) 

  =   k ka b a b, by associativety in G 

  =   k ka b a b, by associativity in G 

  =   k ka ab b, since G is abelian 

  =   k ka a b b, by associativity 

  =  1k ka b b 

  = ak+1 (bkb) by associativity 

  = ak+1 bk+1 

  the result is true for n = k+1, if it is true for n = k. 

But we have already proved the result for n = 1 

  the result is true for every positive integer n. 

 When n is a negative integer 

 Let n = -m for some positive integer m. 

 Then (ab)n = (ab)-m 

  =   
1m

ab


 

  = (am bm)-1, since m is a positive integer 

  = (bm am)-1, since G is abelian 

  = (am)-1 (bm)-1 = a-m b-m 

  = an bn 

 Hence (ab)n = an bn,   n  I. 

Example 5: If (G, +) is a group such that 2 a = 0 for all a  G, then show G is an abelian group. 

Solution: Let a, b  G be any two elements 
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 Then 2a = 0  a + a = 0  a = -a  ....(1) 

 and 2b = 0  b + b = 0  b = -b  ....(2) 

 By closure property, a + b  G 

  2 (a+b) = 0 

  (a+b) + (a+b) = 0 

  a+b = -(a+b = - b - a 

  a+b = b+a   [Using (1) and (2)] 

 Hence G is an abelian group 

Self Check Exercise - 2 

Q.1 Show that a group of even order has an element of order 2 

Q.2 Show that in a group of even order the number of element whose order is 2 
are add.  

5.5 Cyclic Group 

Definition: 

A group G is called a cyclic group if there exist on element a  G, such that every 
element of G can be expressed as a power of a Mathematically 

 G = {an, n  Z}, when binary operation is multiplication  

and 

 G = {na, n  Z} when binary operation is addition. 

 Such element is called generator of G and is written as G = <a> 

Some Properties of a cyclic group 

 1. If G = <a> be a cyclic group of order n, then 

  G = {e, a, a2, ........an-1} i.e. O(G) = O(a) = n. 

 2. If a is a generation of a cyclic group G then a-1 is also a generator of G i.e. 

  for ang xG, we have x = an also x = (a-1)-n where n, -n Z. 

Example 1: Consider the group Z4 = {0, 1, 2, 3} under addition modulo 4 then 0(0) = 1, 0(1) = 4, 
0(2), 0(3) = 4, is a cyclic group. To verify this statement, all we need to do prove that some 
element of Z4 is a generator, here 1 is a generator of the group, as every element of (Z +4) can 
be expressed as a power of 1. 

Remark: Any cyclic group can have more than one generator. 

Example 2: Z8 = {0, 1, 2, 3, 4, 5, 6, 7} is cyclic group under addition abvious modulo 8. 

 Since <1> is a generator of given group. Also  
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 <3> = 3,3 3(mod8),3 3 3(mod8),3 3 3 3(mod8),3 3 3 3 3(mod8),           

  3 3 3 3 3 3(mod8),3 3 3 3 3 3 3 3(mod8)             

  = {3, 6, 1, 4, 7, 2, 5, 0} (mod 8} 

 <3> = {0, 1, 2, 3, 4, 5, 6, 7} = Z8 

 So <3> is a generator of Z8: 

Similarly, if we cheek ,<2> =  

 2,2 2(mod8),2 2 2(mod8),2 2 2 2(mod8),2 2 2 2 2(mod8)           

= {2, 4, 6, 0, 4}  Z8, so <2> is not a generator of Z8. 

So Z8 is a cyclic group 

Example 3: (Z12, +12) is a cyclic group. Under addition modulo 12. 

 Again <1> is a obvious generator of the given group. 

 Here the element 5 is a generator, as 

 <5> = {15 (mod 12), 25 (mod 12),35 (mod 12), 45 (mod 12), (55) mod 12, (65) 
mod 12, (75) mod 12, (85) mod 12, (95) mod 12, (105) mod 12, (115) mod 12, (125) 
mod 12} 

 = {5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 0} 

 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12 

 So (Z12, +12) is a cyclic group. 

Example 4 : U10 = S {1, 3, 7, 9} is a cyclic group. Under multiplication modulo 10. 

 To prove U10 is cyclic, we have to prove one of its element is its generator. 

 Now, <3> = {30, 31, 32, 33} mod 10 

 = {1, 3, 9, 7} = U10. <3> is generator of U10. 

 So U10 is a cyclic group. 

Note : an integer K in Zn is a generator of Zn if and only if gcd (n1k) = 1 

Example 5 : 1. Group of integers Z, under addition (Z, +) is cyclic, with generators <1> 

and <-1> 

 2. Group of real number under addition is not a cycle group. 

 3. Group of rational number under addition is not cyclic. 

 Because, let q Q then <q> = {nq : n  z} But this gives us atmost integer multiple of q 
not every element of Q. 
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Some Theorems on Cyclic Group 

Theorem 1 :  A subgroup of a cyclic group is cyclic. 

Proof : Let G = <a> and let H < G. 

 If H = (e), then there is nothing  to prove. 

 Let H  (e) Members of H will be powers of a. Let m be the least +ve integer such that 
am  H.  

 We claim that   H = <am> 

 Let    x  H be any element. Then 

    x = ak for some k. 

 By division algorithm,  k = mq + r where 0 < r < m 

    r = k - mq 

    ar = ak . a-mq = x.(am)-q
 H. 

 But m is the least +ve integer such that am
 H. 

    r = 0 

    m = mq 

    k = ak = (am)a i.e. any member of H is a power of am. 

  H is cyclic and H = <am> i.e. H is generated by am. 

Theorem 2. A cyclic group is abelian 

Proof : Let G = <a>. If x, y  G be any elements, then x = an, y = am for some integers m, n. 

Now  xy = an. am = an+m 

   = am+n = am . an 

   = y.x 

  xy = xy x, y  G. 

  G is abelian. 

Note. Clearly all non-abelian groups are non-cyclic. 

Example : Give an example of an abelian group which is not cyclic. 

Solution : Let (Q, +) be the group of rationals under addition. 

 This is clearly an abelian group.    [ a + b = b _ a a, b  Q] 

 Let if possible, the group of cyclic. Let 
m

n
 Q be a generator of Q. Then any element of 

Q should be a multiple of 
m

n
. 
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 Now  
1

3n
 Q and if

m

n
 is a generator, then we should be able to write. 

 
1

3n
= k.

m

n
 for some k. 

 
1

3
 = km, which is not possible. [  k, m are integers. But

1

3
 is not] 

Hence no element can act as generator of Q. 

Theorem 3. Order of a cyclic group is equal to order of its generator.  

Proof : Let G = <a> i.e. g be a cyclic group generator by a.  

Case (i) O(a) is finite say n. 

Then n is the least +ve integer such that an = e 

Consider the elements 

 a0 = e, a, a2, ..... an-1 

 These are all elements of G and are n in number. 

 Suppose any two of the above elements are equal say 

  ai = aj with i> j 

Then   ai.a-j = e  ai-j = e 

But   0 <i - j < n - 1 < n. 

Then s a +ve integer i - j such that ai-j = e and i - j < n. 

Which is a contradiction to the fact that O(q) = n 

 There no two of the above n elements can be equal i.e. G contains at least n elements. 
We shall show that it does not contain any other element. 

 Let x  G be any element. since G is cyclic generated by a,  x will be some power of a. 

   x = am 

 By division algorithm, we can write 

   m = nq + r where 0 < r < n 

 Now   am = anq + r = (an)q. ar 

    = eq.ar = ar 

   x = ar where 0 < r < n 
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 i.e.  x is one of a0 = e, a, a2, ....an-1 

  g contains precisely n elements. 

 Hence   O(G) = n = O(a) 

Case (iii) O(a) is infinite. 

In this case no two powers of a can be equal [  if an = am (a > m)] 

then   an-m = e 

i.e. it is possible to find a +ve integer n-m such that an-m = e 

 O(a) is finite. 

Hence no two power of a can be equal. 

Thus G would contain infinite number of elements. 

Theorem 4. A group of prime order is cyclic and every element of G other than identity can be 
taken as its generator. 

Proof : Let   O(G) = p, a prime. 

 Take any a  G, a  e 

 Let  H = [an : n is an integer] 

 Then H is a cyclic subgroup of G. 
( )

( )

O H

O G


( )O H

p
 

   O(H) = 1 or p   [  p is prime] 

 But   O(H)  1   [  a  H, a  e] 

   O(H) = p 

   H = G. 

i.e. G is a cyclic group generated by a.  

Since a was taken as any element (other than e)  any element of G can act as its generator. 

Cor. A group of prime order is abelian.  

Sol. A group of prime order is always cyclic. 

Also a cyclic group is always abelian. 

Hence a group of prime order is always abelian. 

Let us understand above theorems through following examples. 

Example 5 : Prove that group of order 3 must be cyclic. 

Solution : Using the theorem that a group of prime order is cyclic. Hence a group of order 3 is 
cyclic.  
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Example 6 : Prove that the set K4 = {e, a, b, ab} under the binary operation. On K4 given by 
table. 

. e a b ab 

e e a b ab 

a a e ab b 

b b ab e a 

ab ab b a e 

is abelian but not cyclic. K4 is known as Klein-4-group. 

Solution : From the given composition table. We find that it is symmetrical about main diagonal, 
So it is abelian.  

 Now, to prove that it is cyclic or not. To prove the given group is cycle we have to 
generate K4 by any of its element. 

 From the table, you can see, <a> = {e, a}  K4 

 Similarly<b> = {e, b}  K4, <ab> = {e, ab}  K4. 

 Therefore, K4 cannot be generated by {e} {a}, {b} {a b}. 

 Thus K4 is not cyclic.  

Theorem 5 : An infinite cyclic group has precisely two generators.  

Proof : Let G = <a> be an infinite cyclic group. 

If a is a generator of G, then a-1 will also be a generator of G. 

[ If an = e, then (a-1)n = (an)-1 = (e)-1 = e] 

Let if possibleb a, b  a-1 be any other generator of G.  

Since   b  G and a is a generator of g. 

  b = an for some integer n.  

Again  a  G and b is a generator of G. 

  a = bm for some integer m. 

  a = bm = (an)m = anm 

  anm-1 = e  

  O(a) is finite and< nm - 1 

Since   O(G) = O(a) is infinite. 

 the above result is possible only if nm - 1 = 0 
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   nm = 1 

   m = 
1

n
 

   n = ± 1   [  m, n are integers] 

i.e.    b = a or a-1 

Thus a and a-1 are precisely the generators of G. 

Hence the result 

Next we shall find the number of generators for a finite cyclic group. 

For this first of all we shall define a function known as Euler's Function. 

For any integer n, we define. 

  (1) = 1 and for n > 1, 

  (n) = number of +ve integers less than n. 

and relatively prime to n.[e.g. (6) = , (10) - 4 etc.] 

Following two results will be helpful to fine (n). 

(i) If p1, p2, ...., pn are distinct prime factor of n(>1), then 

 (n) = n 
1

1
1

p

 
 

  2

1
1

p

 
 

 
......

1
1

kp

 
 

 
 

(ii) If m, n are co-prime, then (mn) = (m).(n). [m, n >1] 

Theorem 6 : Number of generators of a finite cyclic group of order n is (n). 

Proof : Let  G = <a> be a cyclic group of order n. 

Then    O(a) = O(b) = n. 

We claim that am is a generator of G. 

iff  (m, n ) = 1 i.e. m, n are relatively prime. 

Let now am be a generator of G for some m. 

Since   a  G 

  a = (am)i for some i = ami 

  ami-1 = e 

  
( )

1

O a

mi 
 

  
1

n

mi 
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  mi -1 = nj for some integer 

  mi - nj = 1 

  (m, n) 

Conversely. 

Let (m, n) = 1 

Then s integers x and y such that 

  mx + ny = 1 

  amx + ny = a 

  amx . any = a 

  amx . (an)y = a 

  amx = a 

  a = (am)n 

Since every elt. of G is a power of a and a itself is a power of am. 

 am generates G.  

Hence the result. 

To understand above theorems, Let us take following examples. 

Examples of Eluer's Function 

Let n = 20, 44 = 22
51  [Prime factors of n] 

 (n) = 20
1

1
2

 
 

 

1
1

5
 
 

 
 

 = 20
1

2


4

5
 

 (n) = 8 

Example 7 : Find the number of generator of (Z8+8) and list than 

Solution : Here n = 8 

 n = 222 = 23  [Prime factorization] 

Now (8) =8
1

1
2

 
 

 
   definition of Euler's  function 

  = 8 
1

2
 

 (8) = 4 
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 There are 4 generators of Z8 

As Z8 = {0, 1, 2, 3, 4, 5, 6, 7} 

 Using the result, "an integer k in Zn is a generator of Zniffgcd (n, k) = 1" 

 To find the generators of Z8 we have to find the integer from the set Z8 which are co 
prime to 8, and the elements are {1, 3, 5, 7} 

 Therefore the 4 generators of Z8 are <1>, <3>, <5>, and <7>. 

 Note : Let G = <g> be of order n, and let d be positive divisor of n. Then the number of 
elements of G of order d is (d) 

Example 8 : How many elements of order 2 and 5 do Z50 under addition have? modulo 50. 

 Find the elements also. 

 Given O(Z50) = 50 

 Since 2 and 5 are positive divisor of n. 

 then number of elements of G of order 2 is (2)= 

   (2) = 2 
1

1
2

 
 

 
 

   (2) = 
1

2
2

 


=1 

    = 1 

Hence in Z50 there is only 1 element of order 2. 

And the element of order 2 is 25. 

Similarly, the number of elements of G, of order 5 = (5) 

  = 5 
1

1
5

 
 

 
 

  = 5 
4

5


  = 4  

Hence in Z50, there are 4 element having order 5. 

and these elements are 10, 20, 30 and 40. 

Self Check Exercise - 3 

Q. 1 Show that {1, w, w2} terms a cyclic group under multiplication. 

Q. 2 Show that {1, -1, -i, -i}, the group of fourth root of unity terms a cyclic 
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group under multiplication. 

Q. 3 Show that a = {0, 1, 2, 3, 4, 5, +6} is a cyclic group. 

Q. 4 Is the group (6z, +) is cyclic. 

Q. 5 Find all the generators of Z6, Z8 and Z20 under addition modulo n and list 
them. 

Q. 6 Find the generators of Z25 and Z256. 

5.6 Summary:  

In this unit, we have discussed the following points  

 1. Order of an element 

 2. Cyclic group 

 3. Cyclic Abelian group 

 4. Abelian group that is not cyclic 

 5. Number of Generators of a Cyclic group 

6. Number of elements in a cyclic group having order, which is a divisor of order of 
group. 

5.7 Glossary: 

 Order of an element : Let a g, where G is a group. If there exist least positive 
integer n s.t. an = e. The n is the orders of an element.  

 Idempotent element: Let G be a group with binary operation ''. If aG and 
satisfy aa = a. Then a is idempotent element of G. 

 Finite Cyclic Group: Let G be a group. If a  G, order of element a is equal to 
the order of the group. Then g is finite cyclic group. 

5.8 Answers to Self Check Exercise  

Self Check Exercise - 1 

Q.1 O(1) = 1 

 O(-1) = 2 

 O(i) = 4 

 O(-i) = 4 

Q. 2 O(0) = 1 

 O(1) = 7 

 O(2) = 7 

 O(3) = 7 

 O(4) = 7 
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 O(5) = 7 

 O(6) = 7 

Q.3 O(1) = 1 

 O(3) = 4 

 O(7) = 4 

 O(9) = 2 

Q.4 Since 1 is the identity element and O(1) = 1 also (-1)2 = 1, so O(-1) = 2, so 1 and 
-1 are only two elements of finite orders. 

Self Check Exercise - 2 

Q. 1 Let G be a finite group of order 2n 

 Let t = {x G : x2 = e} 

 and S = {x G : x2 ± e} 

 Then T  as e  T 

 also T∩S =  and TUS = G 

  O(G) = 0 (TUS) 

  = O(T) + O(S) 

When G , Let x S 

 x-1  S    [  x2
 e and x-1

 x] 

 O(S) is even 

and when S = , so G has an element of order 2 

Let O(s) = 2k 

 O(T) > 2 

 at least are element a  e  T s.t. a2 = e 

  O(a) = 2 

Q. 2 As per as Question 1. 

Self Check Exercise - 3 

Q.1 Since 1 = w3, each element of G is an integral power of w.  So {1, w, w3} is a 
cyclic group. 

Q. 2 Since 1 = i4, -1 = i2, -i = i3 

each element of {1, -1, i, -i} is an integral power of i so {1, -1, i, -i} is a cyclic 
group. 

 Q. 3 Do same as example 1. 
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 Q. 4 Yes 

 Q. 5 Z6 → <1> and <5> 

  Z8 → <1>, <3>, <5> and <7> 

  Z20 → <1>, <3>, <7>, <9>, <11>, <13>, <17> and <19> 

  Z25 the generators are all non-zero element other than 5, 10, 15, 20. 

  Z256 the generators are all odd integers. 

5.9 References/Suggested Readings:- 

 1. Vijak. K. Khanna and S.K. Bhambri, A course in Abstract Algebra. 

 2. Joseph A Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayrer Jr. Modern Algebra, Schaum's Outline Series. 

 4. A.R. Vasistha, Modern Algebra, Modern Algebra, kushan Prakashan Media. 

5.10 Terminal Questions 
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117 
 

Unit - 6 

SUBGROUP 

Structure 

6.1 Introduction 

6.2 Learning Objectives  

6.3 Subgroups and its properties  

 Self Check Exercise-1 

6.4 Theorems on Subgroups 

 Self Check Exercise-2 

6.5 Set Operations on Subgroups  

 Self Check Exercise - 3 

6.6 Summary 

6.7 Glossary 

6.8 Answers to self check exercises 

6.9 References/Suggested Readings 

6.10 Terminal Questions 

6.1 Introduction 

Dear student, in previous units related to groups you have studies about the algebraic 
structures of integers, rational numbers, real number and complex numbers. You may have 
noticed that some groups ae contained within another large group under the same binary 
operation. For examples to get of integers under addition (z1+) is contained in set of real under 
addition (R1+). Here the thing to be noticed is that, it is not only the set of a group to be a subset 
of the other, but also that of the group operation on the subset be the induced operation that 
assigned the same element to each offered pair from that subset as is assigned by the group 
operation or whole set. 

In this unit, you will such subject of a set under a binary operation, known as subgroup, 
along with their properties and theorems based on them. You will also study about the set 
operation (union and intersection) on and product subgroups. 

6.2 Learning Objectives: 

 After studying this unit, you will be able to : 

 1. define and give examples of subgroups. 

 2. prove theorem based on subgroups. 
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 3. check that the conditions for a subset of a given up to be a subgroup are satisfied 
or not.  

 4. prove and apply results related to set operations on subgroups. 

6.3 Subgroup 

 Definition: 

A non empty subset H of a group <G, > is said to be a subgroup of G if <H, ) is itself a 
group. Here H is a group in itself under the same operation of G. If (H, ) is a subgroup of (G, ), 
we denote it mathematically as (H, ) or (H < G) 

Also if H is not a subgroup of G, then we write (H, ) < (G, ) or (H, G). 

For Example:- (1) (Z, +) set of integers under addition is a subgroup of (Q, +), (R, +) and (C, 
+) i.e. set of rational number, set of real numbers and set of complex numbers under addition. 

 (2) G = {1, -1, i, -1} and H = {1, -1} where i2 = -1 where G is a group under usual 
multiplication of complex number, Since H is a subset of G, we can easily prove that H is a 
subgroup of G, as it form a group under multiplication.  

. 1 -1 

1 1 -1 

-1 -1 1 

 From composition table it can easily be verified that (H, .) is a group.  

Proper Subgroup:  

Let (G, ) be a group and (H, ) < (G, ), is a Subgroup of G such that H < G. Then H is 
called proper subgroup of G. Mathematically, H < G or H < G or H < G, H  G. H  {e} 

Improper or Trivial Subgroup: 

Since every group has all east two subgroups i.e. {e} and G itself. These two subgroup 
are called trivial or improper subgroup.  

Note:  1. If H is a subgroup of G and k is a subgroup of H then k is a subgroup of G 

 2. If H and k are subgroups of a group G and H < K then H is a subgroup of K.  

 For more understanding of subgroups, let us take following examples. 

Example 1: Show that the set <Q +, .> is a subgroup of <Q - {0}, .> 

Solution: The set Q - {0} is the set of all non zero rational numbers forms a group under 
multiplication and Q+, set of positive rational number. So Q+ < Q-{0}. 

 Also that set Q+ - the set of positive rational numbers.  



119 
 

 Since rational numbers are closed under multiplication, obeys alsociative property under 

multiplication,  1 is its identity and for p
q  Q+, q

p Q+ act act inverse element. 

 So Q+ forms a group under multiplication 

 So <Q+, .> forms a subgroup of <Q - {0}, .> 

Example 2: Show that the set n Z = {....., -3n, -2 n, -n, 0, n, 2 n, 3n,......} of all integral multiplies 
of n, is a subgroup of the group Z of all integers under the operation of addition. 

Solution: We know that Z, the set of integers forms a group under addition. 

 Now n Z = {n m : m  Z} 

 Since n, m  Z  n m  Z 

  n Z Z. 

 We now show that nZ forms a group under addition. 

 Let x, y  n Z so that x = n m1 and y = nm2 for some m1, m2 Z. 

  x - y = nm1 - nm2 - n(m1 - m2)  n Z. 

   [Since m1 - m2 Z for every m1, m2 Z] 

  The closure property holds in n Z. 

 The associative law holds in n Z since it holds in Z and n Z Z. 

 Also 0 = n 0  n Z and x + 0 = x = 0 + x,  x  n Z. 

  0 is identity element of n Z. 

 Now for x = n m  n Z we have y = n (-m)  n Z. 

 And x + y = n m + n(-m) = nm - nm = 0 = y + x. 

  y is the inverse of x in n Z. 

  inverse of every element in nZ exists. 

  n Z forms a group under addition. 

 Thus n Z is a subgroup of Z. 

Example 3: Verify the following statement for being true or false. 

 1. The additive group of even integers is a subgroup of the additive group of all 
integers. 

 2. The set of all odd integers is not a subgroup of <Z1 +> 

 (1) Let Z be the additive group of integers and 

  E be the set of all even integers of Z 

  Clearly 0  E  E is non-empty subset of Z 
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 Let x, y  E be any two elements. 

  x = 2 n, and y = n2 for some n1, n2 Z 

  x - y = 2n1 - 2n2 = 2(n1 - n2)  E 

  E is a subgroup of Z. 

 (2) Let O be set of odd integers 

 Then if we take 3, 5  O 

 Then 3 + 5  O    (  8  E) 

  O is not a subgroup of <Z, +>. 

Example 4: Let C* denote the group of all non-zero complex numbers. 

Show that the set S = {z  C*s.t. |z| = 1} is a subgroup of C

Solution: Since | Cand |1| = 1,  1  S 

 i.e., S is non-empty subset of C*

 Let z1, z2 S be any two element  |z1| = and |z2| = 1 

 Now |z1z2| = {z1| |z2| = 1 = 1 

  z1z2 S 

  the closure property hold in S 

 The associative law holds in S since it holds in C*and S  C*

 Since 1.z = z = z.1 for all z  C*

 In particular 1.z = z = z.1 for all z  S 

  1 is the identity element of S 

 Since for every z  S  z  C
  z'  C*s.t. 

  zz' = 1 = z' z    [  C* is a group] 

 But |zz'| = |1| = |z'z| 

  |z| |z'| = 1 = |z'| |z| 

  1.|z') = 1  |z'| = 1  z'  S 

  for every z  S,  z'  S s.t. 

   z z' = 1 = z' z 

  inverse of every elements of S exists in S 

  S is a group under multiplication. 

 Hence s is a subgroup of C*. 

Example 5 : If x is any element of group G, then show that {xn | n  Z} is a subgroup of G. 
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Solution : Let x be any element of group G 

 Take H = {xn | n  Z} 

 Clearly H  as (x = x1
 H) and H  G 

 Now take .,  H. Then  = 1kx ,   = 2kx  for k1, k2 Z 

  
-1 = ( 1kx )( 2kx )-1 

   = 1 2k kx   where k1 - k2 Z 

   H 

  h is a subgroup of G. 

Example 6 : Is Q0, the set of non-zero rational numbers, a subgroup of  

G = {a + 2  b | a, b  Q and a2 + b2
 0} a group under multiplication? Justify. 

Solution : Let a  Q0. Then a = a + 2 (0) G 

  Q0 G 

 and Q0 as 1  Q0   (1 = 1 + 2 (0)) 

 Now inverse of x = a + 2  b  G is = 
1

x
 = 

1

2a b
 = 2 2

2

2

a b

a b




 

   =
2 22

a

a b
2 2 22

b

a b

 
 

 
 

   = a+ 2 d  G 

 For x, y  Q0 x y-1 = 
x

y
 Q0 

     (a, b are rationals
a

b
 is rational) 

  Q0 is subgroup of G. 

Example 7 : for positive integers m, n show that n Z is a subgroup of m Z if m | n. 

Solution : We have m Z = {......, -2m, -m, 0, m, 2, m, .....} 

 Take H = n Z = p m Z     (Given m | n n = p m for p Z) 

  = {....., -2 p m, -p m, 0, p m, 2 p m, ....} 

 where m and p are fixed integers 

 Clearly H  m Z for p = 1 
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 Let a, b  H  r, s  Z s. T. a = p m r, b = p m s 

  a - b = p m r - p m s = p m (r - s)  H   (as r - s  Z) 

  H1 is a subgroup of m Z 

  = nZ. 

Example 8 : Let G be group of 2  2 non singular matrices over R under multiplication. 

 Show W = 0
0

a b
a d

d

  
  

  
 is a subgroup of G. 

Solution : Clearly W =
0

0 ,

a b a d

d a bd R

  
  

  
 is non empty 

 subset of group G =
, , ,

and 0

a b a b c d R

c d a d bc

  
  

   
as 

1 0

0 1

 
 
 

 W 

 Let A =  1 1

10

a b

d

 
 
 

 and B = 2

20
ba b

d

 
 
 

 W 

 Now AB-1 = 1 1

10

a b

d

 
 
 

2

2 2 2

2

1

1
0

b

a a d

d

 
 

 
 
 
 

2 2

1
1B

a d


 



2 2

20

d b

a

 
 
 

 

  = 

1 1 2 1

2 2 2 2

1

2

0

a a b b

a a d d

d

d

 
  

 
 
 
 

 W  1 1 1 2

2 2 2 2

0
a d a b

a d a d

 
   

 
 

  W is a subgroup of G. 

Example 9 : Show that SL (2, R) is a subgroup of the group GL (2, R) under the composition of 
multiplication of matrices. 

Solution : Now SL (2, R) = ,  where ,  ,  ,     s. t.   -    =1
a b

a b c d R a d b c
c d

  
  

  
 

 is a non-empty subset of the group 

 GL (2, R) = ,  where ,  ,  ,     s. t.   -    0
a b

a b c d R a d b c
c d
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 as I = 
1 0

0 1

 
 
 

 SL (2, R). 

 Moreover, SL (2, R) is a group under the operations of multiplication of matrices. 

(Already Proved) 

 Hence SL (2, R) is a subgroup of GL (2, R). 

Example 10 : If e is an identity element of a group G, then { e } is a subgroup of G. 

Solution : Since e is the identity element of group G, therefore e  G. 

 Let H = { e }, then H  G.  

Since  e e = e  H, therefore closure property holds in H. 

Also (e e) e = e (e e) = e. 

 Associatively to holds is H 

Since  e e = e = e e 

 e is identity element of H and  

 e-1 = e  H. 

 H itself is a group 

 H is a subgroup of G 

Remark : The subgroup G and { e } are called trivial or improper subgroups of G. Any 
subgroups of group G other then G and { e } is called proper subgroup of G. 

Example 11. Show that the set of cube roots of unity H = {1, w, w2} and the set of fourth roots 
of unit K = {1, -1, i, -i} are subgroups of the group of twelfth roots of unity  

G = 
2

cis  : k = 0, 1, 2, 3 ..., 11
12

k 
 
 

under multiplication of complex numbers.  

Solution : Clearly, H and K are non-empty subset of G. The composition table for H and K are 
given below: 

Composition table for H 

. 1 w w2 

1 1 w w2 

w w w2 1 

w2 w2 1 w 
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Composition table for K 

. 1 -1 i -i 

1 1 -1 I -i 

-1 -1 1 -i i 

i i -i -1 1 

-i -i i 1 -1 

From the composition table, it is easy to see that H and K from groups and hence are 
subgroups of G. 

Example 12 : Show that the set H {0, 3} and K = {0, 2, 4} are subgroups of the group G = {0, 1, 
2, 3, 4, 5} under the operation addition modulo 6. 

Solution : Clearly, H and K are non-empty subset of G. The composition table for H and K are 
given below: 

Composition table for H 

+6 0 3 

0 0 3 

3 3 0 

Composition table for K 

+6 0 2 4 

0 0 2 4 

2 2 4 0 

4 4 0 2 

From the composition table, it is easy to see that H and K from groups and hence are 
subgroups of G. 

Properties of Subgroups 

 Just like group subgroups also have some properties which are related to their group 
these are : 

Property I. The identity element of a subgroup is same as the identity element of the group. 

Proof . Let H be a subgroup of a group G. 
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 Let e and e' be the identity elements of G and H respectively  

 Let a  H be any element  

  a e' = a    [  e' is the identity of H] 

 Also  a  H and H  G  a  G 

  a e = a    [  e is the identity of G] 

  we have a e = a e' 

  e = e'.     [ by left cancellation law] 

 Hence the identity of a group and that of a subgroup is the same. 

Property II. The inverse of any element of a subgroup is the same as the inverse of the element 
regarded as the element of the group. 

Proof. Let e be the identity element of G and H. 

 Let a  H be any element. 

 Since H  G    a  G. 

 Let b be the inverse of a in H and c be the inverse of a in G. 

  b a = e and c a = e 

  b a = c a 

  b = c.    [by right cancellation law] 

 Hence the inverse of any element of a subgroup is same as the inverse of the same 
element regarded as an element of the group. 

Property III. The order of any element in a subgroup is the same as the order of the element 
regarded as the element of the group. 

Proof. Let e be the identity element of G and H. 

 Let a  H such that o(a) = n 

  an = e and am
 e for every m < n. 

 Also a  H  a  G and so an = e  G  o(a) = n in G. 

 Hence order of any element in a subgroup is same as the order of the element regarded 
as the element of the group. 

Property IV. Subgroup of an abelian group is abelian. 

Proof. Let H be a subgroup of an abelian group G 

  H  G. 

 Let a, b  H be any two elements 

  a, b  G   a b = b a  [  G is abelian] 
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   a, b H   we have a b =  b a 

 Hence H is an abelien subgroup of G. 

 The converse of above result is false  

 i.e., A subgroup may be abelian even if G is not abelian. 

Note : A non-abelian group may have abelian sub group. 

 To prove above properties let us take following examples.  

Example 13 : Can an abelian group have non abelian subgroup? 

Solution : No, Let G be a group which is abelian and let H be its subgroup. As commutative 
property holds in G so it will hold in H. Therefore, an abelian group always has an abelian 
subgroup. 

Example 14 : Can a non abelian-group have an abelian subgroup? 

Solution : Yes, the example for in abelian subgroup of a non abelian group is given as. 

 As the quaternion Group Q = {±1, ±i, ±j, ±k}, under multiplication is a non abelian group, 
but if we take the subset H {1, -1, i, -1} of Q. then by composition table for H is  

. 1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i i 

i i -i -1 1 

-i -i i 1 -1 

 From the table we conclude that (H, .) is a group. 

 We find that the element are symmetric about the main diagonal, Also H = {1, -1, i, -1} 
form an abelian group. 

 Hence a non abelian group can have an abelian sub group. 

Self Check Exercise - 1 

Q. 1 Prove that {1, -1} and {1, -1, i, -i} are abelian subgroups of non-abelian 
Quaternion group. 

Q. 2 Prove that H = subset of Z consisting all multiple of n (n is any non zero) 
integer is a proper subgroup of Z under addition. 

6.4 Theorems on Subgroups 

Theorem 1. A non-empty subset H of a group G is a sub group of Giff 

 (1) a, b Ha , b  H 
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 (2) a  H  a-1
 H.     

Proof . If H < G, then (1), (2) follows from definition   [  H is a group] 

Conversely : Let (1) and (2) be satisfied. 

By (2)  a, b  H  a-1
 H 

By (1)  a  H, a-1
 H a . a-1

 H  e  H i.e. id. elt. exists in H. 

Since Ass. law holds for all elts of G.  in particular in holds for all elts of H. 

[  H is a subset of G] 

 H is a group under the binary operation (product) in G. 

 H is a subgroup of G. 

Theorem 2 : The necessary and sufficient condition that H be a subgroup of G is that a, b  H 
 ab-1

 H.  

Proof. The condition is necessary 

Let  H < G.  H is a gp. 

  b  H  b-1
 H 

  a  H, b-1
 H  ab-1

H. 

The condition is sufficient  

Given a, b  H  ab-1
 H. 

Since Ass. law holds for G.  it holds for H    [  H < G]   

Again  a, a  H a . a-1
 H  e  H  Id. elt. exists in H. 

Again e, a  H e . a-1
 H  a-1

 H  inverse exists in H. 

Again a, b-1
 H a (b-i)-1

 H   ab  H 

 closure property is satisfied  H is a gp. Hence H < G. 

Definition . Any non-empty subset H of G is called a complex of the group G 

 if a  H, b  H  a b  H, then the complex H is stable.  

Note : In case of additive notation, above two theorems can be stated as : 

Remark 1 A non empty subset H of a group G is a sub group of Giff a, b  H  a + b H 

  and  a  H  -a  H. 

Remark 2 A non empty subset H of a group is a subgroup of G iff a - b  H  a, b  H. 

Theorem 3.A non-empty finite subset H of a group is a subgroup of G iff a b  H,  a, b  H. 

Proof :Necessary Part. Let a non-empty finite subset H of a group G be its subgroup. 

 H itself is a group 

  a b  H,   a, b  H.   (By closure property} 
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Sufficient Part. Suppose that H is a non-empty finite subset of a group G  

such that a b  H,  a, b H. 

 The operation of multiplication is a binary operation on H. 

Let a, b c  H  a, b c  G, since H  G. 

 (a b) c = a (b c), Since G is a group. 

 The associative law holds in H under multiplication. 

Firstly we prove that cancellation laws hold in H.  

 Let a, b, c  H, such that a b = a c.  

 Since a H,  so a  G. 

  a-1
 G such that a a-1 = e = a-1 a 

 Now  a b = a c 

  a-1 (a b) = a-1 (a c) 

  (a-1 a) b = (a-1 a) c 

  e b = e c   b = c 

  a b = a c  b = c. 

 Similarly b a = c a  b = c. 

  The cancellation laws hold in H. 

  H is a non-empty finite set with an associative binary operation in H and the 
cancellation laws hold in H. 

  H itself is a group.     (already proved) 

 Thus H is a subgroup of G. 

 Notice that the above theorem holds only finite subsets of a group. 

Remark : In case of additive notation, the above lemma can be stated as  

 A non-empty finite subset H of a group G is a subgroup iff 

 a - b H,    a, b  H. 

Let use try some examples of subgroups based on above theorems : 

Example 1. Show that SL (2, R) is a subgroup of the group GL (2, R). 

Solution : Now SL (2, R) =  : ,  ,  ,     s. t.   -    =1
a b

a b c d R a d b c
c d

  
  

  
 

 and GL (2, R) = :  ,  ,  ,     s. t.   -    0
a b

a b c d R a d b c
c d
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 To show that SL(2, R) is a subgroup of GL (2, R) 

Clearly, SL (2, R) is a non-empty subset of GL (2, R) 

for, I = 
1 0

0 1

 
 
 

 SL (2, R). 

Let A, B  SL (2, R)   |A| = 1, |B| = 1 

Now | AB |  = | A | | B | = 1.1 = 1 

 AB  SL (2, R) 

Also for each A  SL (r, R),  B (= adj A) 

s.t. AB = I = BA 

where | B | = | adj-A | = | A |2-1 = | A | = 1    B SL(2, R). 

B is the inverse of A i.e., B = A-1. 

Hence SL (2, R) is a subgroup of GL (2, R). 

Example 2.  G =  : ,  ,  ,    Z
a b

a b c d
c d

  
  

  
 under addition. 

Let H =  : 0
a b

a b c d
c d

  
     

  
. Prove that H is a subgroup of G. 

 What if 0 is replaced by 1? 

Solution : Clearly, H is a non-empty subset of G for 
0 0

0 0

 
 
 

 H, 

 Let A = 
a b

c d

 
 
 

, B = 
' '

' '

a b

c d

 
 
 

be any two elements of H, 

 where a + b + c + d = 0 and a' + b' + c' + d' = 0 

 Now A - B = 
a b

c d

 
 
 

 - 
' '

' '

a b

c d

 
 
 

 

  = 
' '

' '

a a b b

c c d d

  
 

  
 

 so (a - a') + (b - b') + (c - c') + (d - d') 

  = (a + b + c + d) - (a' + b' + c' + d') 

  = 0 - 0 = 0 

 A - B H,    A - B  H. 
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 Hence H is a subgroup of G. 

 Now, when 0 is replaced by 1, them 

 H  =  : 1
a b

a b c d
c d

  
     

  
 is not a subgroup of G. 

 for, A = 
1 3

5 2

 
 
 

,  B = 
2 3

4 8

 
 

 
 be two elements of H. 

 But A - B = 
1 0

9 10

 
 
 

is not an element of H.  

 as -1 - 9 + 0 + 10  1    A - B  H. 

  H will not a subgroup of G. 

Example 3. Let G. = GL (2, R) 

 and H = 
0

 : a and b are non-zero integers
0

a

b

  
  
  

 

 Prove or disprove that H is a subgroup of G under multiplication. 

Solution : H is not a subgroup of G, for the inverse of the matrix A = 
0

0

a

b

 
 
 

 is  

 the matrix B = 

1
0

1
0

a

b

 
 
 
 
  

H  if a, b 

Example 4. Show that subset H = {(1, b) : b  R} of the group 

 G =  {(a, b) : where a, b  R, s.t. a  0} under the operation * defined by  

 (a, b)* (c, d) = (a c, b c + d) is a subgroup of G. 

Solution : Clearly, H is a non-empty subset of G, for (1, 0)  H. 

 Let (1, b), (1, c)  H be any two elements, where b, c  R. 

  (1, b)* (1, c) = (1.1, b.1 +c) = (1, b + c)  H. 

 Also, we know that the identity of the group G is (1, 0) 

 Let (x, y) be the inverse of the element (1, b) 

  (x, y) * (1, b) = (1, 0) 

  (x.1, y.1 + b) (1, 0) 
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  x = 1, y + b = 0 

  x = 1,  y = -b  i.e. (1, -b) is the inverse of (1, b) 

Clearly, (1, -b)  H. 

 Inverse of each element of H exists in H. 

Example 5 : Show that the elements of finite order in a commutative group G from a subgroup 
of G. 

Solution : Let G be commutative group and let 

 H = {a G : o (a) = finite number} 

Clearly, H , for e  H, as o(e) = 1; a finite number  

 Let a, b  H be any two elements.  

  o (a) and o (b) are finite number Let o (a) = m, o (b) = n 

  am = e, bn = e. 

 Now (a b)m n = am n bm n = (am)n . (bn)m = en .em = e . e = e 

  o (a b) is also finite    a b  H. 

 Also o (a-1) = o (a) 

 i.e. if a H then a-1 H. 

 Hence H is a subgroup of G. 

Example 6. G is an abelian group having n elements g1, g2, g3, .....gn. 

 Show that (g1 g2.....gn)
2 = e, where e is identity of G. 

Solution : Given G = {g1, g2, ...., gn} is an abelian group. 

 Since e, the identity element is in G 

  some g1 = e for fixed l.     ...(1) 

 Further every element of G is invertible. 

 i.e. gj G, (j  l), gk G s.t.gjgk = e    ...(2) 

Now consider 

 (g1 g2 .... gn)
2 = (g1 g2 .... gn) (g1 g2 .... gn) 

 Since G is abelian and also associative law holds 

  using (1) and (2), we get  

 (g1 g2 .... gn)
2 = e. 

Example 7 Let H = {7 x | x  Z}. Prove H is a subgroup of (Z, +) 

Solution : Clearly H is non empty as 0  Z (7 . 0 = 0) 
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 Take a, b  H be any two elements 

 Then a = 7 x and b = 7 y for some x, y  z 

  a - b = 7 x - 7 y = 7 (x - y)  H    (as x, y  Z  x - y  Z) 

  a - b  H    a, b  H 

  H is a subgroup of Z. 

Example 8 . Let G be an abelian group with identity e. Show that  

 H = {x G : x2 = e} is a subgroup of G. 

Solution : e2 = e for e  G 

  e H  H is non empty subset of G  

 Now let x, y  H be any two elements 

  x2 = e and y2 = e  x-1 = x and y-1 = y   ...(1) 

 Now (x y-1)2 = (x y-1) (x y-1) = x (y-1 x) y-1 

  = x (y x-1) y-1     (Using (1)) 

  = x(x-1 y) y-1    (  y x-1 = x-1 y as G is abelian) 

  = (x x-1) (y y-1) 

  = e e = e 

  x y-1  H  x, y  H 

  H is a subgroup of G. 

Example 9 . Let H be a subgroup of group g and a  G.  

Show that a H a-1 = {a h a-1 : h  H} is a subgroup of G. 

Solution : Since e = a e a-1
 e  a H a-1 

  a H a-1 is a non empty subset of G 

 [  a h a-1
 a H a-1 where a, h G as H  g and G is a group 

   a h a-1
 G i.e. a H a-1

 G] 

 Let x, y  a H a-1 be any two elements 

 Then x = a h1 a
-1 and y = a h2 a

-1 for some h1, h2 H 

 Now x y-1 = (a h1 a
-1) (a h2 a

-1)-1 

  = (a h1 a
-1) (a h2 a

-1)    [ (a-1)-1 = a] 

  = a h1 (a
-1 a) h2 a

-1 

  = a h1 h2
-1a-1     ( a-1 a = e] 

  = a h3 a
-1 where h3 = h1 h2

-1
H 
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   a H a-1 

  a H a-1 is a subgroup of G. 

Example 10. Show that the elements of a group G which commute with the square of given 
element 'a' form a subgroup H of G and which commute with 'a' itself form a subgroup of G. 

Solution : Let a be any element of G 

 and H = { x G | x a2 = a2 x} 

1st Part 

 Now to show H is a subgroup of G 

 Let x, y  H  x a2 = a2 x and y a2 = a2 y 

 Here y a2 = a2 y 

  a2 y = y a2 

  y = (a2)-1 y a2
 y-1 = (a2)-1 y-1 (a2)   ....(1) 

 Now (x y-1) a2 = x e y-1 a2     (e is identity of H) 

  = x (a2 (a2)-1) y-1 a2) 

  = (x a2) ((a2)-1 y-1 a2) 

  = (x a2) y-1      [Using (1)] 

  = (a2 x) y-1 = a2 (x y-1) 

  (x y-1)a2 = a2 (x y-1)   x y-1
 H 

  H is a subgroup of G. 

IInd part 

 Let H1 = {x G : x a = ax} 

 Now to show H1 is a subgroup of G 

 Now for x  H1 we have x a = a x, x  G  a = x a x-1 

  x-1 a = (x-1 x) a x-1 

  x-1 a = a x-1    ( x-1 x = e, x-1
 G 

  x-1 E H1 

  Further let x, y  H1 x a = a x, y a = a y; x, y G 

   (x y) a = x (y a) = x (a y) = ( x a) y = (a x) y = a (x y) 

   (x y) a = a (x y) ; x y  G 

   x y  H1 

  Hence H1 is a subgroup of G. 
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Self Check Exercise - 2 

Q. 1 Check whether or not Z( 3 ) = a + b 3 , a, b  Z is a subgroup of R. 

Q. 2 Check whether or not Z 6  = a + b 6 , a, b  Z is a subgroup of R. 

Q. 3 Check whether or not {1, w2, w4, w8} is a subgroup of 10th root of unity. 

6.5 Set Operations on Subgroups 

 Dear students, in set operations on subgroup we will study about the operations of like 
union, intersection and product on subgroups of group. To study the effect of union, intersection 
and product on subgroup of group, Let us prove following theorems. 

Intersection of two Subgroup 

Theorem 1: Prove that the intersection of two subgroups of a group is again a subgroup of the 
group. 

Proof. Let H and K be two sub groups of a group G. 

  H and K are subset of G. 

  H ∩ K  g. 

 Now let x, y  H ∩ K 

  x, y  H and x, y  K 

  x y-1
 H and x y-1

K,    since H, K are both subgroups of G. 

  x y-1  H ∩ K 

  x y-1  H ∩K,     x, y  H ∩ K 

  H ∩ K is a subgroup of G. 

Theorem 2. the intersection of an arbitrary collection of subgroups of a group is again a 
subgroup of the group. 

Solution : Let G be the group and {H | } be a family of subgroups of G. 

 Take H = H



 

 Since H is a subgroup of G,  

  e  H 

  e  H



 

  e  H H 

 Also as H G,  
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 so H



 G 

  H  g 

 Now let a, b  H 

  a, b  H



 

  a, b  H,  

  a b-1
 H  

 ( for each , H is a subgroup of G) 

  a b-1
 H



 

  a b-1
 H 

  H is  itself is a group and H G 

 So H is a subgroup of G 

 * The union of any two subgroups of a group is not necessarily a subgroup of the group. 

For example : (i) The sets H = {0, 3} and K = {0, 2, 4} are subgroups of the group G = {0, 1, 2, 
3, 4, 5} under the operation addition modulo 6. But the union H U K = {0, 2, 3, 4} is not a 
subgroup of G, for 2, 3  H U K, but 2 + 3 = 5  H U K. 

 (ii) The set n Z = {......., -3 n, -2 n, -n 0, 2 n, 3 n, .......} of integral multiple of n, is a 
subgroup of the group of integers under addition. 

  2 Z = {........, -6, -4, -2, 0, 2, 4, 6, ......} 

 and  3Z = { ...., -9, -6, 3, 0 3, 6, 9, ......} are subgroups of Z, under addition. 

 But 2Z U 3Z = {......, -9, -6, -4, -3, -2, 0, 2, 3, 4, 6, 9, .......} is not a subgroup of Z, for 4, 
3  2 Z U 3 Z but 4 + 3 = 7  2 Z U 3Z. 

 (iii) The set H = {1, -1, i, -i} and K = {1, -1, j -j} are subgroups of the Quaternion group 
Q8, but H U K = {1, -1, i - i, j, -j} is not a subgroup of the Q8 for, i, j  H U K, but i, j = k  H U K. 

Union of Subgroups 

Theorem 3. The union of two subgroups of a group is a subgroup iff one is contained in the 
other. 

Proof.Necessary Part : Let H1 and H2 be two subgroups of a group G such that H1 U H2 is 
again a subgroup of G. 

 We shall prove that either H1 H2 or  H2 H1. 

 If possible, suppose that  H1  H2 or  H2  H1. 

Since H1  H2, so  a  G such that a  H1 but a  H2. 
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Again since H2  H1, so  b  G such that b  H2 but b  H1. 

Since a  H1 and H1H1 U H2 so a  H1 U H2. 

Similarly b  H2 and H2  H1 U H2 b  H1 U H2 

 a, b  H1 U H2 

 a b-1
 H1 U H2, since H1 U H2 is a subgroup 

 a b-1
 H1 or a b-1  H2. 

 First consider the case when a b-1
 H1. 

 Since a  H1 and H1 is a subgroup    a-1
 H1 

 a-1 (a b-1)  H1

 (a-1a)b-1
 H1 

 e b-1
 H1 

 b-1
 H1 

 (b-1)-1
 H1 

i.e., b  H1, which is not true. 

 This case is not possible.  

 Now consider the case a b-1
 H2 

 Since b  H2. 

 (a b-1) b  H2  a (b-1 b)  H2 

i.e., a e  H2 a  H2, which is again false. 

 This case is also not possible 

So both the cases are not possible. Therefore, out supposition is wrong. 

 either H1 H2   or H2 H1. 

Sufficient Part : Suppose that either H1 H2 or H2 H1 

 H1 U H2 = H2  or  H1 U H2 = H1 

 H1 U H2 is a subgroup of G, since both H1 and H2 are subgroups of G. 

Product of Two Subgroups 

Definition : 

 Let H and K be two subgroups of a group G, then the set HK defined by HK = {h k : for 
all h H, k  K} is called the product of the subgroups H and K. 

Remark : The product HK of two subgroups of a group G may or may not be a subgroup of G. 
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For example : Let H = {I, (12)} and K = {I, (13)} be two subgroups of the symmetric group S3 on 
three elements 1, 2, 3. 

 But HK = {I, (12), (13), (12) (13)} = {I, (12), (13), (123)} 

 So, HK is not a subgroup of S3, for 

  (123)  HK and (123) (123) = (132)  HK. 

  In fact here K H = {I, (12), (13), (132)} 

 i.e. HK  KH. 

Theorems on Product of Two Subgroups 

Theorem 4. If H and K are two subgroups of a group G, then HK is a subgroup of g iff HK = KH. 

Proof .Necessary Part. Let H and K be two subgroups of a group G such that HK is also a 
subgroup of G. 

 We shall prove that HK = KH. 

 Let x  HK be arbitrary element. 

  x-1
 HK, as HK is a subgroup of G. 

  x-1 = h k for some h H, k K 

  (x-1)-1 = (h k)-1 

  x = k-1 h-1 

 Since k K and K is a subgroups of G, so k-1
 K. 

 Similarly h-1
 H. 

  k-1 h-1
 K H. 

  x  K H 

  

 Let now xbe arbitrary element  

  x = k h for some k K and h H. 

  x-1 =(k h)-1 = h-1 k-1


  x-1
 HK 

  (x-1)-1
 HK, as HK is a subgroup of G, 

  x  HK. 

  KH  HK 

 Thus HK = KH. 

Sufficient Part. Suppose that H and K are two subgroups of a group G such that HK = KH. 

 We shall prove that HK is a subgroup of G. 



138 
 

 Let x, y  HK be arbitrary elements. 

  x = h1 k1 and y = h2 k2 for some h1, h2 H and k1, k2 K 

  xy-1 = (h1 k1) (h2 k2)
-1 = (h1 k1) (k2

-1 h2
-1) = h1 (k1(k2

-1 h2
-1)) 

  = h1 ((k1 k2
-1) h2

-1).      ...(1) 

 Now  (k1 k2
-1) h2

-1
 KH 

  (k1 k2
-1) h2

-1
 KH, since HK = KH 

  (k1 k2
-1) h2

-1 = h3 k3 for some h3 H  and k3 K   ....(2) 

  x y-1 = h1 (h3 k3)     [From (1) and (2)] 

   = (h1 h3) k3 H K 

  x y-1
 HK,  x, y  H K. 

  HK is a subgroup of G. 

Note : (i) See another proof of the above theorem as 2.1.15. 

(ii) HK = KH does not mean that each element of H commute with every element of 
K. It only mean that for each h H and k K, h k = k1 h1, for some h1 H and  
k1 K. 

 (iii) If the composition in G is addition, then we define 

  H + K = {h + k : for h H, k  K}. 

 Cor. If G is an abelian group, then HK is also a subgroup of G, for HK = KH. 

Remark : If H and K are two abelian subgroups of a group G, then HK need not be a subgroup 
of G. 

Theorem 5. If H and K are finite subgroups of a group G, then 

 O (HK) = 
( ) ( )

( )

O H O K

O H K
 

Proof. We known that 

  H K = {h k : h H, k  K}. 

 Let H ∩ K = {x1, x2,....., xn} and suppose O(H) = r, O (K) = s 

 Now h k = h xi xi
-1 k = (h xi) xi

-1 k)  HK, i = 1, 2, 3, ...., n. 

 Since h xi H, xi
-1 k K 

 Thus h k = (h xi) (xi
-1 k)  HK, i = 1, 2, 3, ......, n. 

 i.e., h k can be written in atleastn different ways. We show that these are the only n ways 
that h k can be expressed as an element of HK. 

 If possible, let h k = hi k1 be another representation 
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  h-1 h1 = k k1
-1
 H ∩ K 

  h-1 h1 = xi and k k1
-1 = xi for some xi H ∩ K 

  h1 = h xi and k1 = xi
-1 k. 

 Thus h k = h1 k1 = (h xi) (xi
-1 k). 

 Which is not a new representation. 

 Hence each h k can be written in exactly n different ways. 

 Also h can be chosen in r ways, k can be chosen in s ways. 

  h k can be choosen in 
rs

n
 different ways. 

 Thus O(HK) = 
rs

n
 = 

( ). ( )

( )

O H O K

O H K
. 

Note : There is another proof for this theorem in 2.2.8. 

Cor. (i) If H and K are two subgroups of a group G such that G = HK and H ∩ K = {e}, then O 
(G) = O (H) O (K). 

Proof . Since G = HK and H ∩ K = { e } i.e. O(H ∩ K) = 1 

 Therefore O (G) = O (HK) = 
( ). ( )

( )

O H O K

O H K
 = 

( ). ( )

1

O H O K
 

  O (G) = O (H) . O (K). 

 (ii) If H and K are two subgroups of a group G such that O (H) > ( )O G  and O (K) 

> ( )O G , then O (H ∩ K) > 1. 

Proof. Since H, K are subsets of G,  HK is also a subset of G. 

  O(G) > O (HK) = 
( ) ( )

( )

O H O K

O H K
>

( ) ( )

( )

O G O G

O H K
 = 

( )

( )

O G

O H K
 

  O(H ∩ K) > 1. 

Inverse of a Subset of a Group 

Definition : 

 Let H be a subset of a group G, then the inverse of H is H-1 and is defined as  

  H-1 = {h-1 : for all h  H}. 

 Remark : In case of additive notation the above concept transformed as Let H be a 
subset of a group G, then the inverse of H is H-1 and is defined as  

H-1 = {-h : for all h  H}. 
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Theorem 6. If H be a subgroup of a group G, then H-1 = H. 

Proof. Let h-1
H-1 be any element, where h H. 

 Since H is a subgroup of G   h-1
 H 

 Thus h-1
H-1

h-1
 H 

  H-1
 H.      ....(1) 

Conversely,  

 Let h H be any element of H 

 Since H is a subgroup of G  h-1
H 

  (h-1)-1
 H-1   i.e., h  H-1     

Thus h H h H-1
 H  H-1   ....(2) 

From (1) and (2), we get H = H-1 

Remark : The converse of above theorem need not be true. i.e., if H is a subset of a group G 
such that H-1 = H, then H need not be a subgroup of G. 

For example : (i) Let G be the group of square roots of unity, i.e., G = {-1, 1} under 
multiplication, let H = {-1} be a subset of G. 

 Here H-1 = {-1} = H, for (-1)-1 = -1. 

 But H is not a subgroup of G. 

 (ii) Let G = {(0, 1, 2, 3, 4, 5), +6} be a group under addition modulo 6. 

 Let H = {1, 3, 5} be a subset of G. then H-1 = {1, 3, 5} = H, for  

 (1)-1 = 5, (3)-1 = 3, (5)-1 = 1, but H is not a subgroup of G as 3 +6 5 = 2  H. 

Theorem 7 : A non-empty subset H of a group g is a subgroup, the HH = H. 

Proof. Let H1 h2 HH be any element, where h1, h2 H 

 Since H is a subgroup of G   h1 h2 H 

 Thus,   h1, h2 HH   h1 h2 H 

  HH  H.      ...(1) 

Conversely : 

 Let h H be any element of H. 

 Now h = h e  HH.     (  e  H) 

 Thus  h H   h HH 

  H  HH.      ...(2) 

  from (1) and (2), we get  

  HH = H 
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Remark. : The converse of above theorem need not be true i.e., If H is a non-empty subset of a 
group G such that HH = H, then H need not be a subgroup of G. 

For example : (i) Let G be the additive group of integers of H be the set of all non negative 
integers, then HH = H, but H is not a subgroup of G. 

 (ii) Let <Q - {0}, X > be the group of non-zero rational numbers under multiplication. 
Let H be the set of all odd integers. Then HH = H, but H is not a subgroup of G, as H has no 
multiplicative inverse of each elements. 

Note. If H is a finite subset of a group g having the property that HH = H, then H is a subgroup 
of G. 

Proof . The result follows immediately by applying Lemma 2.1.4. 

Theorem 8 : A non-empty subset H of a group G is subgroup iff HH-1 = H. 

Proof : The result follows immediately by applying Lemma 2.1.3 and  

 Theorem 2.1.11 and 2.1.12. 

Theorem 9 : If H and K be any two subset of a group G, then 

 (HK)-1 = K-1 H-1. 

Proof : Let (h k)-1 be any element of (HK)-1, where h H, k K 

  (h k)-1 = k-1 h-1
 K-1 H-1  [  h-1

H-1 and k-1
 K-1] 

 Thus (h k)-1
 (HK)-1   (h k)-1

 K-1 H-1 

  (HK)-1
  K-1 H-1      ...(1) 

Conversely, 

Let k-1 h-1
 K-1 H-1 be any element, where k K, h H. 

  k-1 h-1 = (h k)-1
 (HK)-1 

 Thus K-1 H-1
 K-1 H-1   k-1 h-1

 (HK)-1 

  K-1 H-1
 (HK)-1      .... (2) 

 From (1) and (2), we get 

  (HK)-1 = K-1 H-1 

Note: we are having another proof of the theorem 2.1.8 

Theorem 10: If H and K are two subgroups of a group G, then HK is a subgroup of G iff HK = 
KH. 

Proof, Firstly, let HK = Kh. To show that HK is a subgroup of G 

 It is sufficient to show that (HK) (HK)-1 = Hk 

 we have (HK) (HK)-1 = (HK) (K-1H-1) = H (KK-1) H-1 = (HK)H-1 
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   [  K is a subgroup of G  KK-1 = K] 

  = (KH)H-1 

  = K (HH-1) 

  = KH  [  H is a subgroup of G  HH-1 = H] 

  = HK. 

 Thus HK is a subgroup of G. 

Conversely: 

Suppose HK is a subgroup of G. To show HK = KH. 

 Now (HK)-1 = HK [  if H is a subgroup of G then H-1 = H] 

  K-1 H-1 = HK  KH = HK 

Cor. If H, K are subgroups of an abelian group G, then HK is a subgroup of G. 

Proof: Since H, K are subgroups of an abelian group G. Then HK = KH 

  By above theorem HK is a subgroup of G. 

 Consider following examples for its better understanding.  

Example 14. Let Z be the additive group of integers and for any positive integer n, let Hn denote 
the set of all multiplie of n. Show the following: 

 (i) Hn is a subgroup of Z. 

 (ii) For any two positive integers m, n, if j and k are their H.C.F and L.C.M 
respectively, then 

  Hj = Hm + Hn and Hk = Hm∩ Hn. 

Solution: (i) Now Hn = n Z = {..........., -3 n, -2 n, -n, 0, n, 2 n, 3 n,........} 

 Clearly Hn is a non-empty subset of Z, as 0  Hn.  

 Let a, b Hn be any two element then 

  a = pn, b = qn for some p, q  Z. 

  a - b = pn - qn = (p - q) n Hn 

  a - b Hn,  a, b  Hn. 

 Hence Hn is subgroup of Z.  

 (ii) Let HCF {m, n} = j and LCM {M, n} = k. 

 We show that Hm + Hn = Hj and Hm∩Hn = Hk. 

 Now by part (i) Hm, Hn, Hj are subgroups of Z. 

 Moreover, Hm + Hn = Hn + Hm  [  Z is abelian group] 
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  Gm + Hn is a subgroup of Z. 

 Let x  Hm + Hn  x = am + bn, for some a, b  Z. 

 Since j = HCF {m, n}  j/m and //n  j/am + bn 

  j/x   xHj 

  Hm + HnHj.  

 Again, let y Hj  y = t j = t (am + bn) = t am + t bn  Hm + Hn. 

  Hj Hm + Hn. 

 Thus Hj = Hm + Hn. 

 Secondly, because HmHnHj are subgroups of Z. 

 Also intersection of two subgroups is a subgroup. 

  Hm∩Hn is a subgroup of Z. 

 Let x Hn  x  Hm and x Hn 

    x = a m and x = b x for some a, b  Z. 

 Since k = LCM {M, n}  m/k and n/k 

     am/ak and bn/bk 

     x/ak and x/bk 

     x/(ak, bk) 

     x/k (a, b) 

     x Hk. 

  Hm∩HnHk 

 Again, let y Hk  y = t k, for some t  Z  

  y = t (mp)  [  m/k  k = mp for some p  Z] 

  = m (tp) 

  y  Hm. 

 Similarly y Hn, for y = tk and n/k 

  k = nq for some q  Z 

  y  Hm∩ Hn. 

  y = t (nq) = (tq) n Hn 

  Hk Hm∩ Hn. 

  Thus Hk = Hm∩ Hn.  
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Example 2: Let G be an abelian group, let n be a fixed positive integer. Let Gn = {gn : g  G}. 
Prove that Gn is a subgroup of G. Give an example showing that Gn need not be a subgroup of 
G when G is non-abelian.  

Solution: Clearly Gn
  for e = en

 Gn. 

 Now, let x, y Gn be any two elements such that x = g1
n, y= g2

n,, where g1, g2 G.  

 Now xy-1 = g1
n (g2

n)-1 = g1
n g2

-n = (g1 g2
-1)n

 Gn. 

    [  g1, g2 G  g1 g2
-1
 G] 

 Hence Gn is a subgroup of G. 

 Next, consider the group S3 = {i, (12), (13), (23), (123), (132)} 

 Now S3
3 = {g3 : g  S3} = (t3, (12)3, (13)3, (23)3, (123)3, (132)3} 

  = {i, (12), (13), (23)}. 

 But S3
3 is not a subgroup of S3, for (12), (13)  S

3

3
 but 

  (12) (13) = (123)  S3
3 

Example 3: Let H be a sub-group of a group G. Prove the following: 

 (i) For any x  G, x-1Hx = {x-1hx : for all h  H} is a subgroup of G. 

 (ii) O (H) = O (x-1Hx), if H is a finite subgroup of G. 

Solution: (i) Since e = x-1 ex  e  x-1Hx 

  x-1 H x is a non-empty subset of G. 

  [  x-1 h x  x-1 H x where x, h G as H  G and G is a group 

     x-1hx G i.e. x-1 H x  G] 

 Let a, b  x-1 H x be any two elements.  

 Then a = x-1 h1 x, b = x-1 h2 x, for some  h1, h2 H 

 Now ab-1 = (x-1 h1 x) (x-1 h2x)-1 

  = (x-1 h1x) (x-1 h2
-1x) 

  = x-1 h1 (xx-1) h2
-1 x 

  = x-1 h1 h2
-1 x  [  xx-1 = e] 

  = x-1 h3 x,  where h3 = = h1 h2
-1
 H 

   x-1 H x. 

 Thus x-1 H x is a subgroup of G 
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 (ii) Let f : H x-1 H x be a map defined by f (h) = x-1hx,  h H. 

 We show that f  is one-one and onto map. 

 Clearly, for each x-1hx 

  f  is onto. 

 Let f (h1) = f (h2) 

 Let f (h1) = f (h2) 

  x-1 h1 x = x-1 h2 x 

  h1 = h2  [By left and right cancellation law in G] 

  f is one-one. Thus f is one-one onto. 

  O (H) = O(x-1Hx). 

Example 4: Prove that if <H, > is a sub-group of <G, > and <K, > is a subgroup of <H, > is 
also a subgroup of <G, > 

Solution: Given K is a subgroup of H and H is a subgroup of G. 

 To show that K is also a subgroup of G. 

 Let a b  K be any elements. 

  a, b  G. 

 Also b-1
K   [  K  H  G] 

  ab-1
 G 

 Thus K is a subgroup of G also. 

Example 5: G be an abelian group, show that all elements of finite order in G form subgroup of 
G. 

Solution: Let T = {a : a  G s.t. O (a) is finite}. 

 Clearly T , for e  T  O (e) = 1, a finite number. 

 Let a, b  T be any element s.t. O (a) = m and O (b) = n 

 i.e., an = e = bm. 

 Now (ab)mn = amnbmn = (an)m . (bm)n = em. en = em. en = e.e = e 

  O (a b) is also finite  a b  T. 

 Also O (a-1) = O (a). 

  if a  T  a-1
 T. 
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 Hence T is a subgroup of G. 

Note: The above group is known as the torsion subgroup of a group. 

Example 6: Show that a group can never be expressed as the union of two of its proper sub-
groups.    

Solution: Let G = H U K, where H and K are proper subgroups of G. 

 Clearly, H  K and K  H. 

  We can choose a  H s.t. a  K and b  K s.t. b H. 

 Also then a, b  H U K and since H U K is a group  a b  H U K 

  a b  H or a b  K 

 If a b H then a-1 (ab)  H i.e.,  b  H,  a contradiction 

 and if a b K then (ab) b-1
 K  i.e., a  K, a contradiction. 

 So our supposition is wrong. 

 Hence group cannot be expressed as union of two of its proper subgroup. 

Example 7: Let G be the group of all 2  2 non-singular matrices over the reels.  

Find the centre of G. 

Solution: Here G = ; , , , . . 0
a b

a b c d R s t ad bc
c d

  
    

  
 

 Now by definition of C (G), 

  C (G) = {g G|g x = x g,  x  G}. 

 Let 
a b

c d

 
 
 

 C(G) be any element. Then it should commutate with all elements of G. 

 In particular it commutes with 
0 1

1 0

 
 
 

,
1 0

1 1

 
 
 

 G. 

  
a b

c d

 
 
 

0 1

1 0

 
 
 

 = 
0 1

1 0

 
 
 

a b

c d

 
 
 

 

   
b a

d c

 
 
 

 = 
c d

a b

 
 
 

 

  b = c, a = d. 

 Also 
a b

c d

 
 
 

1 0

1 1

 
 
 

 = 
1 0

1 1

 
 
 

a b

c d
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a b b

c d d

 
 
 

 = 
a b

a c b d

 
 

  
 

  a + b = a, b = c = 0   [using (1)] 

 Hence 
a b

c d

 
 
 

 C (G) is of the form 
0

0

a

a

 
 
 

 

 Hence C (G) = 
0

: 0
0

a
a R

a

  
   

  
 

Example 8: Find all the subgroups of S3. 

Solution: Since S3 = {i, (12), (13), (23), (123), (132)}. 

 All the subgroups of S3 are  

 H1 = {i, (12)}, H2 {i, (13)}, H3 = {i, (23)}, and H4 = {i, (123), (132} 

Self Check Exercise - 3 

Q.1 Show that (2Z)Z) = 6Z < Z 

Q.2 Let H = {I, (1, 2, 3), (1, 3, 2), (1, 3, 2)} and K = {I, (1, 2)} 

 Check whether or not HK < S3. If it is,  

 Find O(HK). Find O (H∩K)   

6.6 Summary:  

In this unit you studied about  

 1. Subgroup, its definition and various examples  

 2. Elementary properties of subgroup with their explanatory exaples.  

 3. Theorems based on subgroups 

 4. Set operations like Union, intersection and product of two subgroups along with 
the theorems and examples.  

6.7 Glossary: 

 Abelian Group:A group g is abelian of for all elements a, b  G, the following 
commutative properly holds. 

ab = ba, where '' is the binary operations associated with G. 

 Subgroup:Let G be a group with operation ''. A non-empty subset HG is 
called a subgroup of g if H itself is a group under the operation ''. 

 Non-Abelian Group:A Group G with operation '' is called non-abelian group, 
there exist a, b  G. Such that a  b b a. 
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6.8 Answers to Self Check Exercise  

Self Check Exercise - 1 

Q.1 Yes, {1, -1} and {1, -1, i, -1} are abelian subgroups of non abelian Quaternion 
group. 

Q. 2 Yes, It is a proper subgroup of Z. 

Self Check Exercise - 2 

Q. 1 Yes, Z 3  is a subgroup of R 

Q. 2 Yes, Z 6  is a subgroup of R. 

Q. 3 No, it is not a subgroup of 10th root of unity. 

. 1 w2 w4 w8 

1 1 w2 w4 w8 

w2 w2 w4 w6 w10 

w4 w4 w6 w8 w12 

w8 w8 w10 w12 w16 

Also w2 . w4 = w6 

[as w3 = 1   

(w3)2 = 1 as son on 

Self Check Exercise - 3 

Q.1 2Z = 2m, m  Z. 

 3Z = 3n, n  Z. 

 Now (2Z) (3Z) = (2m) (3n) 

   = 6mm, m, n  Z 

 Again 6Z  = 6z, z Z 

   = (2.1) (3.z) 

   = 2Z. 3z 

 Thus (2Z)(3z) = 6Z 

 Thus product of two subgroups of Z is a subgroup of Z.  
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Q. 2 As O(H) = 3, O(K) =2, O(H∩K) = 1 as only I is common element 

 O(HK) = 
( ) ( )

( )

O H O K

O H K
 = 

3 2

1


 = 6 = O(S3). 

 Since order is same so [HK < S3] 

6.9 References/Suggested Readings:- 

 1. Vijak. K. Khanna and S.K. Bhambri, A course in Abstract Algebra. 

 2. Joseph A Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayrer Jr. Modern Algebra, Schaum's Outline Series. 

 4. A.R. Vasistha, Modern Algebra, Modern Algebra, kushan Prakashan Media. 

6.10 Terminal Questions 

 1. Let G be on abelian group with identity e show that  

  H = { x G : x2 = e} is a subgroup of G 

2. Show that the elements of a group G which commute with the square of given 
element a from a subgroup H of G and which commute with a itself form a 
subgroup of G.  

***** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 
 

Unit - 7 

Cosets and Lagrange's Theorem 

Structure 

7.1 Introduction 

7.2 Learning Objectives  

7.3 Cosets  

 Self Check Exercise-1 

7.4 Theorems on Cosets 

 Self Check Exercise-2 

7.5 Index of A Subgroup 

 Self Check Exercise-3 

7.6 Lagrange's Theorem 

 Self Check Exercise-4 

7.7 Summary 

7.8 Glossary 

7.9 Answers to self check exercises 

7.10 References/Suggested Readings 

7.11 Terminal Questions 

7.1 Introduction 

Dear Students in this unit you will study about the equivalence relations defined or 
group, corresponding to each of its subgroups. You will also study the importance of the 
partitioning of a group into the equivalence classes, called Cosets. We will use the concept of 
Coset to prove a very important theorem known as Lagrange's theorem, which is named after a 
French Mathematician Lagranges. You will also study about the index of a subgroup. 

7.2 Learning Objectives  

 After studying this unit, students shall be able to 

 1. Define and give examples of coset both left and right. 

 2. State and prove Lagerange's theorem. 

 3. Apply Lagrange's Theorems on mathematical questions. 

Introduction  
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 In group theory, a coset is subject of a group obtained by multiplying each element of a 
subgroup by a fixed element of the group. The cosets of a subgroup partition the group into 
distinct subsets or we can say the cosets are disjoint and their union is equal to the whole 
group. The number of Lay cosets is equal to right cosets, and this number is known as index of 
the subgroup. 

 Cosets Lays important role in defining other types of groups like quotient group. 

7.3 COSETS 

 Dear students, we have already discussed about the product of two subgroups. Here we 
will study the case when one of the subgroup, for the product, is a single element. Here we take 
product of the subgroup of G i.e. H with an element of a group G.  

Definition of Coset  

 Let H be a subgroup of a group G and let aG 

 1. Then the set Ha = {ha : hH} is called a right coset of H in G determined by a. 

 2. The set a H = {ah : hH} is called the left coset of H in G determined by a. 

 If the operation is addition, then above defining becomes. Let H be a subgroup of a 
group G and let a  G 

 1. H+a = {h+a; hH, is called a right coset of H in G determined by a 

 2. a + H = {a+h; hH, is called left coset of H in G determined by a 

Notes : 1 If H is a subgroup of a group G, Then H itself is a right as well as left coset of H 
of G determined. If e is identity element of the group G, Then he and eH are right 
and lay coset of H in G 

  Also  He = {he : hH} = {h ; hH} = H 

   eH = {eh : hH} = {h : hH} = H 

 2. When G is an abelian group then there is no distinction between a left and right 
cosets.  

 Let us take following examples to more understanding  

Example 1 What are the right cosets of uZ in (Z,+) 

Solution : Here the group G is Z and the subgroup H is uZ and the operation is addition. 

 Since the elements of Z are  = {-4, -3, -2, -1, 0, 1, 2, 3, 4.....} 

     = 0,  1,  2,  3,  4,  5, .... 

 and H = uz = {-16, -12, -8, -4, 0, 4, 8, 12, 16, ........} 

   = {01,  41,  81,  121,  161, ....... 

 So to find the right cosets of uz in z we have to add element of z in H, Let us start from 0 

 H+0 = {h+0, hH}  = {0+0,  4+0,  8+0,  12+0,......} 

    = {0,  4,  8,  12, ......} = H 
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 H+1  = {0+1, +4+1, -4+1, +8+1, -8+1, +12+1, -12+1, ......} 

  = {1, 5, -3, 9, -7, 12, -11} 

  = {......., -11, -7, -3, 1, 5, 9, 13,.....} 

Now  H-1  = {0-1, +4-1, -4-1, +8-1, -8-1, +12-1, -12-1, ......} 

  = {-1, 3, -5, 7, -9, 11, -13, .......} 

  = {......., -13, -9, -5, -1, 3, 7, 11,.....} 

H+2  = {0+2, +4+2, -4+2, +8+2, -8+2, +12+2, -12+2, ......} 

  = {2, 6, -2, 10, -6, 14, -10, ......} 

  = {......., -10, -6, -2, 2, 6, 10, 14,.....} 

 H-2  = {0-2, +4-2, -4-2, +8-2, -8-2, +12-2, -12-2, ......} 

  = {-2, 2, -6, 6, -10, 10, -14, .......} 

  = {......, -14, -10, -6, -2, 2, 6, 10,.....} 

H+3  = {0+3, +4+3, -4+3, +8+3, -8+3, +12+3, -12+3, ......} 

  = {3, 7, -1, 11, -5, 15, -9, ......} 

  = {......., -9, -5, -1, 3, 7, 11, 15,.....} 

 H-3  = {0-3, +4-3, -4-3, +8-3, -8-3, +12-3, -12-3, ......} 

  = {-3, 1, -7, 5, -11, 9, -15, .......} 

  = {......, -15, -11, -7, -3, 1, 5, 9,.....} 

H+4  = {0+4, +4+4, -4+4, +8+4, -8+4, +12+4, -12+4, ......} 

  = {4, 8, 0, 12, -4, 16, -8, ......} 

  = {......., -8, -4, 0, 4, 8, 12, 16,.....} = H 

 H-4  = {0-4, +4-4, -4-4, +8-4, -8-4, +12-4, -12-4, ......} 

  = {-4, 0, -8, 4, -12, 8, -16, .......} 

  = {......, -16, -12, -8, -4, 0, 4, 8,.....} = H 

H+5  = {0+5, 4+5, -4+5, 8+5, -8+5, 12+5, -12+5, ......} 

  = {5, 9, -1, 13, -3, 17, -7, ......} 

  = {......., -7, -3, 1, 5, 9, 13, 17,.....} = H+1 

 H-5  = {0-5, 4-5, -4-5, 8-5, -8-5, 12-5, -12-5, ......} 

  = {-5, -1, -9, 3, -13, 7, -17, .......} 

  = {......, -17, -13, -9, -5, -1, 3, 7,.....} = H-1 

Also from above we find that  

H+0 = H 
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 H+1 = {......., -11, -7, -3, 1, 5, 9, 13,.....} = H-3 

 H+2 = {......., -13, -9, -5, -1, 3, 7, 11,.....} = H-2 

 H+3 = {......., -9, -5, -1, 3, 7, 11, 15,.....} = H-1 

 H+4 = {......., -8, -4, 0, 4, 8, 12, 16,.....} = H 

H+5 = {......, -17, -13, -9, -5, -1, 3, 7,.....} = H-1 

 and so on, 

 Therefore, the distinct right cosets of H in G are 

 H, H+1, H+2, H+3 

Note :- In above example OH+x, if and only if x H. Thus H+x is not a sub group of a unless 
xH. Here H+1, H+2 are not subgroups of G. 

Example  2 Find the right cosets of the subgroup {1, -1} of the group {1, -1, i, -i} under 
multiplication. 

Solution : Here of set G = {1, -1, i, -i} under operation of multiplication and the subgroup  
H = {1, -1} 

 Therefore, right coset of H in G are H.1, H.(-1), H.(i) and H. (-i) 

 Now,  H.1 = {1.1), (-1.1)} = {1, -1} = H 

  H.(-1) = {1.-1), (-1.-1)} = {-1, 1} = {1, -1} = H 

  H.(i)  = {(1.i), -1.i)} = {i, -i} 

  H.(-i) ={1.(-i), -1.(-i)} = {-i, i} = H(i) 

  the distinct cosets of H in G are H and Hi 

Example 3 : Find all left and right cosets for S3 symmetric group on {1, 2, 3} of subgroup  

H = {I, (1, 2)} 

Solution : Here G = S3 = {I, (1 2), (1 3), (2, 3) (1 3 2)} and given H = {I1 (1, 2)}  

 binary composition of symmetric group is composition of function  

 Now the left cosets of H in G = S3 are 

 I. H =  
1 2 3

1 2 3

 
 
 

. 
1 2

2 1

 
 
 

= 
1 2 3

2 1 3

 
 
 

= (1 2) =H 

 (1 2).H = 
1 2 2 1 2 1 2

,
2 1 2 2 1 2 1

I

I

      
      
      

 = 
1 2 1 2

,
2 1 1 2

    
    
    

 = {(1 2), I} = H 

 (1 3).H = 
1 3 1 2 1 3 1 2

,
3 1 1 2 3 1 2 1

      
      
      

 



154 
 

  = {(1 3) , (1 3 2)}  (1 2 (1 3) = (1 2 3) 

 (2 3).H = 
2 3 1 2 2 3 1 2

,
3 2 1 2 3 2 2 1

      
      
      

 

  = {(2 3) , (1 2 3)}  (1 2  3) = (2 3) (1 2) 

 (1 2 3). H =  
1 2 3 1 2

1 2 3 ,
2 3 1 2 1

I
   
   

   
 

  =  
1 2 3

1 2 3 ,
1 3 2

  
  

  
 

  = {(1 2 3), (2 3)} = (2 3). H 

(1 3 2).H =  
1 3 2 1 2

1 2 3 . ,
3 2 1 2 1

I
   
   

   
 

 =  
1 3 2

1 2 3 ,
3 1 2

  
  

  
 

  = {(1 2 3), (1 3)} = (1 3). H 

 Therefore the distinct left cosets of H in S3 are. 

 H, (13)H and (23).H 

 Now right cosets of H in S3are : 

 H.I  = {I.I., (1.2) I} 

  = {I, (1, 2) = H 

 H.(1 2) = {I.(1 2), (1 2). (1 2)} 

  =  
1 2

1 2 ,
1 2

  
  

  
 = {1, 2), I} 

 H.(1 3) = {I. (1 3), (1 2). (1 3)} 

  ={(1 3), (1 2 3)} 

 H.(2 3) = {I. (2 3), (1 2). (2 3)} 

  ={(2 3), (1 2 3)} 

 H.(1 2 3) = {I.(1 2 3), (1 2).(1 2 3)} 

  =  
1 2 1 2 3

1 2 3 ,
2 1 2 3 1
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  =  
1 2 3

1 2 3 ,
3 2 1

  
  

  
 

  = {(1 2 3), (1 3)} = H.(1 3) 

 H. (1 3 2 ) = {I. (1 3 2), (1 2) (1 3 2)} 

  =  
1 2 1 3 2

1 3 2 ,
2 1 3 2 1

   
   

   
 =  

1 2 3
1 3 2 ,

1 3 2

  
  

  
 

  = {(1 3 2 ) (2 3)} = H.23 

 Therefore distinct right cosets of H in S3 are H, H.(1 3) and H (2 3) 

Example 4 : Find the left cosets of the subgroup H = {1,-1, i,-1} of the group G = { 1,  i k} 
under multiplication. 

Solution : The left coset of H in G are 

 1 H  = {1.1, 1.-1, i.i, 1.-i} = { 1, -1, i, -i} = H 

 -1 H = {-1.1, -1.-1, -i.i, -1.-i} = {-1, 1, -i, i} = H 

 i H  = {i.1, i.-1, i.i, i.-i} = {i, -i, 1, -1} = H   i2 = -1   -i2 = 1 

 -i H = {-i.1, -i.-1, -i.i, -i.-i} = {-i, i, 1, -i} = H 

 j H  = {j.1, j.-1, j.i, j.-i} = {j, -j, -k, k} 

 -j H = {-j.1, -j.-1, -j.i, -j.-i} = {-j, j, k, -k} = j H 

 k H  = {k.1, k.-1, k.i, k.-i} = {k, -k, -j, j} = j H 

 -k H = {-k.1, -k.-1, -k.i, -k.-i} = {-k, k, j, -j} = j H 

 So the distinct left cosets of H in G are H and i H. 

Self Check Exercises - 1 

Q.1 Let <G, +> be additive group of integer and H be set of all integer multiple of 5. Find 
all right cosets of H in G. 

Q. 2 Find all left and right cosets of H = {I, {1, 2, 3}} in S3.  

Q. 3 Let H = {1, -1} be a subgroup of G = { 1,  i,  j,  k}. Find all its left and right 
cosets. 

Q. 4 Let G be group of integers under addition and H be subgroup of G having even 
integers. Find all right cosets of H in G. 

Q. 5 Let (G, +) be a additive group of integers and H be the set of all integral multiple of 3. 
Prove that H is a subgroup of G and find all the cosets of H in G.  

7.4 Theorems on cosets  

 In this section we will discuss some important theorems based on cosets : 
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Theorem 1 (i) H  = H iffH. 

  (ii)  H = H iffH. 

  where H is a subgroup of G. 

Proof (i) We prove that H  = H iffH. 

 Firstly, suppose that H   = H.    ...(1) 

 Since H is a subgroup of G, soeH, wheree is the identity element of H 

 eH    H

     H    (From (1)  

  H = H   H

 Conversely, suppose that  H

 We shall prove that   H =H 

 Let  x H  be an arbitrary element. 

 x = h for some h H 

 h,  H 

 h H, since H is a subgroup of G 

  xH 

  xH   x H 

  H H.      ...(2) 

 Now let  x H. Since  also belongs to H and H is a subgroup 

  x-1
 H 

  (x-1)  H 

  x(-1
)  H 

  x H 

  x H    x H  

  H H.      ...(3) 

 From (2) and (3), we get H a = H. 

 (ii) Its proof is similar to (i). 

Theorem 2 (i) H  = H b iffb-1H. 

  (ii)  H = b H iff-1 bH. 

Proof (i) We prove that H  = H b  iffb-1
H. 

 Firstly, let H  = H b 
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 Since H is a subgroup of G, soeH,  

 eH  i.e., H

  Hb,  since H = H b  

  h b for some h H 

 b-1
= (h b)-1 = h(b b)-1 = h e = h H 

  b-1
 H. 

 Conversely, let b-1
H

 We shall prove that  H =H b 

 Since b-1
 H, so  b-1 = h for some h H 

  (b-1b) = h b 

   e = h b 

   = h b 

 H  = H (h b) 

= (H h) b 

= H b, since hH, so H h = H. 

 (ii) Its proof is similar to that of (i). 

Theorem 3 : Any two right (or left) cosets are either disjoint or identical. 

Proof. Let H be a subgroup of a group G. Let H  and H b be two right cosets of H in G, so that 
a, b,  G. 

 We shall prove that either H  = H b    or H a ∩ H b =  

 If H ∩ H b = , then we have noting to prove. 

 So, let H ∩ H b. 

 In this case we shall prove that H  = H b. 

 Since H ∩ H b ,  so  at least one x H ∩ H b 

  x H  and x H ∩ H b  

  h1
-1 (h1) = h1

-1 (h1b) 

  (h1
-1h1)  = (h1

-1h1) b 

  e  = h3 b, where h3 = h1
-1h2 H. 

   = h3 b 

  H  = H (h3 b) 

   = (H h3) b 
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   = H b since h3 H, So H h3 = H 

  H  = H b. 

 If H ∩ H b, then H  = H b. 

 So, either H ∩ H b = ,  or H  = H b. 

Theorem 4 The group G is equal to the union of all right cosets of H in G.  

Proof. Let e, a, b, c, .... 

  H e = H, H a, H b, H c, ..... are all the right cosets of H in G 

 We shall prove that G = H U H a U H b U H c U .......... 

 Let x G be any element. 

  H xis a right coset of H in G. 

 Since H is a subgroup of G, so e G, where e is the identity element of G.  

  ex H x i.e., x H x 

  x H U a U H b U H c U.....U Hx U........ 

  G  H U a U H b U H c U.......   ...(1) 

 Conversely, let H a be any right coset of H in G, where a  G. 

 Let  x H a 

 x= ha for hH. 

Since  hH 

 h G  also a G 

 ha G 

 x G  

 x H a  x G 

 H a G 

 
a G




 H a G 

 H U a U H b U H c U....... G   ....(2) 

From (1) and (2), we get 

 G = H U a U H b U H c U....... 

Theorem 5. There is one to one correspondence between any two right cosets of H in G.  

Proof. Let H a, H b be two right cosets of H in G, where a, b G. 

 Define a map f : H a → H b by  
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   f (ha) = hb,  ha H a. 

 f  is one-one. Let  x, y  H a such that f(x) = f (y) 

 Since x , y  H a 

  x = h1a and y = h2a for some h1, h2 H. 

  f(x) = f (y)  f(h1a) = f (h2a) 

     h1b = h2b 

     h1= h2 

     by the right cancellation law in the group G. 

     h1a = h2a 

     x = y  

  f is one-one 

f  is onto. Let   y  H b 

 y = h b for some h H 

Take  x = ha. 

Since hH,  so h a  H a 

 x H a,    where x = ha H a 

 f(x) = f (ha) = h b = y  

 f is onto. 

 f : H a → H b is one-one and onto. 

 H a, H b are in one-one correspondence. 

Cor, if H is a finite subgroup of G. Then O (H a) = O(H). 

Proof. Since by property V above, there is one-one correspondence between any two right 
cosets of H in G. In particular there is one-one correspondence between H and H a.  

  O (H a) = O(H). 

Theorem 6. There is one-one correspondence between the set of left cosets of H in G and the 
set of right cosets of H in G.  

Proof. Let L and M be respectively the set of left cosets and right cosets of H and G.  

 L = {aH :a G} and M = {H a : a G} 

 Define a map  f: L → M by 

   f (a H) = H a-1, a G.  

 If a G, then a-1
 G and hence H a-1

 M.  

 ƒ is a map from L to M. 
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We now prove that ƒ is well defined  

Let a, b  G such that a H = b H. 

  a-1b H. 

  H a-1b = H 

 (H a-1b)b-1 = H b-1 

 H(a-1b)b-1 = H b-1 

 H a-1 (b b-1) = H b-1 

 H a-1e = H b-1 

 H a-1 = H b-1 

 ƒ(a H) = ƒ (b H). 

 ƒ is well-defined. 

The reverse steps shows that ƒ is one-one. 

We finally prove that ƒ is oneto. 

Let H a  M be arbitrarily . 

 a G.  a-1
 G. 

 a-1 H  L, such that ƒ(a-1 H) = H (a-1)-1 = H a. 

 ƒ is onto. 

 the mapping ƒ : L → M is in one-one and onto. 

 The set of left cosets of H in G and the set of right cosets of H in G are in one-one 
correspondence.  

Theorem 7 (H a)-1 = a-1 H, where a G. 

Proof.Let  x (H a)-1 

 x= y-1 for some y  H a.  

Now, y  H a y = ha for some hH. 

 x= y-1 = (ha)-1 = a-1h-1 

Since hH and H is a subgroup, h-1
 H. 

 a-1h-1
a-1 H 

 xa-1 H 

 x(H a)-1
xa-1H 

 (H a)-1
 a-1 H.       ...(1) 

Now, let xa-1 H. 
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 x = a-1 h for some hH 

= a-1 (h-1)-1 

= (h-1a)-1 

Now hHh-1
 H, since H is a subgroup 

 h-1 a  H a 

 (h-1a)-1
 (H a)-1

x (H a)-1 

 x (a-1H)  x (H a)-1 

 a-1 H  (H a)-1.       ...(2) 

From (1) and (2), we get 

 (H a)-1 = a-1 H. 

Note : For nN, the distinct right cosets of nz in z under addition are nz, nz+1, -nz+(n-1). 

Similarly under addition distinct left cosets of nz in z are nz, H-nz, 2+nz, ......(n-1) + nz. 

Using above not we can, say that the right cosets of 4z in z (as in example 1) are H, H+1, H+2, 
H+3. For Higher values of nN the cosets becomes identical with these distinct cosets for 
example : 

 4z + 57 = 4 z + 1 = H+1 

  57 1 (mod 4) 

 again 4z - 26 = 4z + 2 = H + 2 

 - 26   2 (mod 4) 

 also 4z + 96 = 4z+0 = H+0 = H  

  96   0 (mod 4) 

Example 1:- Prove that Union of two distinct right cosets of a group is equal to a group, liking 
example. 

Solution : Since for H2 {I, (12)} be a subgroup of a of S3, Then the distinct light cosets of H in a 
are H, H(13) and H(23). then.  

 H U H (13) U H (23) 

 = H U {(13), (123)} U { (23), (132)} 

 = {I, (12)} U {(13), (123)} U {(23), (132)} 

 = {I, (12), (13), (23), (123), (132) } = S3 

Example 2:- To prove that the distinct right cosets of of group S3 for H2 {I, (12)} are disjoint.  

Solution : Since H1 H(13) and H(23) are distinct cosets of H in S3 

 To prove these cosets are disjoint H(23) 

 H ∩ H (13) ∩ H (23) 
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 = (I, 12) ∩ {(13), (123)} ∩ {(23), (132)} 

 =   

Example 3:- Let H = {11 a2} be a subgroup of group a = {a, a2, a3, a4 = 1}. Find  all the left 
cosets of  H in a. Also show that union of all these cosets is equal to a and any two costs are 
either identical or disjoint. 

Solution:- Given H = {1, a2)} is a subgroup of G = {a, a2, a3, a4 = 1} How Lest cosets of H in a 
are 

 aH = a {1, a2} = {a1, a.a2} = {a. a3} 

 a2H = a2 {1, a2} = {a2.1, a2.a2} = {a2, a4 = 1} = {a2, 1} = H 

 a3 H = a3 {1, a2} = {a3.1, a3.a2} = {a3, a5} = {a3, a4.a} = { a3, a} = aH 

 a4 H2 IH = 1. {, a2} = {1, a2} = H. 

  The distinct left cosets of H in a are H and aH. 

 To prove any two cosets are disjoint 

 Since H and aH are to distinct cosets, to prove they are disjoint, prove there 
intersicsetions is empty i.e.  

 H ∩ a H = {1, a2} ∩ { a, a3} =  

 To show Union of all cosets of H in G is equal to G 

 As H and H are two distinct cosets of H in G so liking union i.e. HUAH = {1, a2} U { a,a3} 
= { 1, a, a2, a3} = G. 

 Hence Proved 

Example4 :- Prove that union of all distinct right cosets of 4Z in Z are gives Z and any two 
cosets are either identical or disjoint.  

Solution :- For example 1, we know that distinct right cosets of 4Z in Z are H1 H+1, H+2 and 
H+3. To prove, two distinct cosets are disjoint, Let us take H and H+1, to prove H ∩ H + 1 =  

 Since H = {0, ± 4, ± 8 ± 12, ± 16, + ...............} 

 H + 1 = {-11, -7, -3, 1, 5, 9, 13 .........} 

 H ∩ H + 1 = { --, -8, -4, 0, 4, 8, --} ∩ {....., -11, -7, -3, 1, 5, 9 ......} =  

 Similarly we can prove it for others also. 

 Now to prove that Union of all distinct coset of H in G gives  

G i.e. H U H + 1 U H + 2 U H + 3 = Z 

Let = {-8, -4, 0, 4, 8 ....} U {......m -11, -7, -3, 1, 5, 9, 13 ---.} 

 U { ----, -10, -6, -2, 2, 6, 10, 14 -----} 

 U { --- -9, -5, -1, 3, 7, 11, 15, ---} 

 = {- - - , -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8} 



163 
 

 = {0, ± 1, ± 2, ± 3, ±, 4, ± 5, ± 6, ± 7, ± 8  ----} = Z 

 Hence HUH + 1 U H + 2 U H + 3 = Z  (set of inegers).  

Self CheckExercises - 2 

Q.1 Prove that subgroup H = {i, -i} of G = { ± 1, + i, ± j > ± k} has disjoint cosets 
and their union gives the set G. 

Q.2 Prove that left coset of the subgroup H = {1, -1, i, -1} of G = {± 1, ± j, ± k } 
are disjoint and their Union gives the set G. 

7.5 Index of A Subgroup : 

 Let H is a subgroup of a then the number of distinct let or distinct right costs is called the 
index of H in G. It is denoted by [a : H] or ia (H). 

Note : The index of every subgroup of finite group is a divisor of the order of group. If k is index 
of H in G and n is order of finite group then n = mk. or k/n. 

 n = m k where m  Z.  

 order of G = order of H X index of H in G  

 or index of H in G = 
0( )

0( )

order of a a

orderof H H
  

2. If the group G is an infinite group, then the quotient 
0 ( )

0 ( )

a

H
 does not make sense. Infinite 

group may have subgroup of finite of infinite india. 

For, Example :- 1 [R : Z] =   as the group G = R is infinite also the subgroup H is infinite.  

 2. Let H = { i, -i, 1, -1} be a finite subgroup of C complex numbers, as c is infinite, 
then [C : H] = infinite.  

 To have more Understanding of index of a subgroup of G, Let us take following 
examples, here we take previously solved question of cosets.  

Examples 1. Find :4Z Z  i.e. index of 4Z in Z. 

Solution : Here the group is Z and subgroup is 4Z Since the distinct cosets of 4Z in Z are,  

H1 H+11, H+21 H+3 = 4 

  So :4Z Z  = 4. 

Example 2 Find the index of H = {11 - 1} in G = {1, - i, i, - i} 

Solution Since the no of distinct coset of H in G are 2 therefore, index of H in G is 2 
  [From Example 2.] 

Example 3 Find the index of H = {I, (1,2)} in S3. 

Solution Since the distinct number of cosets of H in G are 3, therefore index of H in G is 3. 
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  [From example 3.] 

Example 4 Find the index of H = {1, -1, i, -i} of group  

G = {± 1, ± i, ± j, ± k}. 

Solution Since the distinct number of cosets of H in G are H and iH, only 2. So index of H 
in G is 2.  [From example 4] 

Self check exercise 

Q.1 Find :5 5Z Z 

Q.2 Find 4 :12 3Z Z   

Q.3 Find 3 : (12) 3S    

Q.4 Find 12 : 4 4Z     

Q.5 Find 4 : 4D t    

7.6 Lagrange's Theorem 

 Lagrange's Theorem is a fundamental result in group Theory. This Theorem provides a 
relationship between the order of a finite group and order of its subgroups. Lagrange's Theorem 
provides a useful tool for studying to studying the structures and properties of finite group as 
well as for determining certain properties of subgroups within those group. Lagrange's theoreum 
has application in various are as of mathematics including number theory, ayptogrophy and 
combinations.        

Statement of Lagdage'sTheorem : The order of each subgroup of a finite group is divisor of 
the order of group. 

Proof : Let a be a group of finite order n 

 Let H be a subgroup of a and let 0(H) = m 

 Let order h1, n2 ----- hm be m distinct members of H  

 If H - G, then there is nothing to prove. 

 But if H ǂ G, 

 Let a  G. Then Ha is a right coset of H in G and by the definition of coset 

 Ha = {h1a, h2a, ......... hma}  

 Ha has m distinct members, 

 If any two entries of W a are equal, then 

 hia - hj a with i ± j 

 hi = hj [using cancelation law]  
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 which is a contradiction, as hi, h2 ....... hm are m distinct members of H 

 Since, any two distinct right coosets of H in G are disjoint, i.e. they have no element in 
common. Since [Theorem 3 of cosets] G is finite group, the number of distinct right cosets of H 
in G will be finite, Let it be equal to k.  

Using, the result of theorem, i.e. the group G is equal to the union of all right cosets of H 
in G. [Theorem 4 of coset So the union os k distinct right cosets of H in G is equal to G, 
Therefore as Ha1, Ha2, Ha3 ........ Hak are ok distinct right cosets of H in G then.  

 G = H U Ha1U Ha2 .......... U Hak 

 = No of elements in G = Numbers of elements in Ha1 

 + Number of element in Ha2 

 + ........... + Number of elements in Hak 

 As two distinct right cosets are mutually disjoint i.e. they have no common element. 
 [Theorem 5 of coset as O(Ha) = O(H). 

 No of element in G = mk {where m is order of H 

 = n = km 

 O(G) = k O(H) 

 =) O(H)| O(G) 

 O(H) is a divisor of O(G) 

 Hence the proof of the theorem 

Remarks 1. Lagrange's theorem immediately limits the possibilities of the subgroups of any 
given finite group. For example let G be a group of order 25, Alon it can only have subgroup of 
orders which are divisor of 25 i.e. 1, 5 & 25. It cannot have subgroup of order 2, 3, 10, 12 as non 
of these are divisor of 25. 

 To have more understanding of Lagrange's theorem Let us take following examples. 

Example 1. What are the posible order of a subgroup of a group of order 30. Also list the 
corresponding no of cosets.  

Solution : Since given a is a group of order 30. By using Lagrange's theorem, the possible 
order of its subgroup will be a divisor of 30, i.e. 1, 2, 3, 5, 6, 1, 15 and 30.     

 Also in order to find the number of cosets, we will use the result of index of a group i.e. 

 
( )

:
( )

o G
G H

o H
  

 So index of a subgroup of are.  

Index of subgroup of order 1 - = 
30

1
= 30 
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Index of subgroup of order 2 = 
30

2
= 15  

Index of subgroup of order 3 = 
30

3
= 10 

Index of subgroup of order 5 = 
30

5
= 6 

Index of subgroup of order 6 = 
30

6
= 5 

Index of subgroup of order 10 = 30
10 = 3 

Index of subgroup of order 15 = 30
15= 2 

Index of subgroup of order 30 = 30
30 = 1 

Remark 2 Lagrange's Theorem cannot be generalised to infinite group since o(H)|o(G) is 
meaningful only for finite group. But an infinite group can have finite subgroup and infinite group 
can have a subgroup of finite index. As in example 1, (Z, +) is an infinite group but its subgroup 
H = 4Z, has finite number of cosets hamly H, H+1, H+2, H+3. 

Example 2 : Let G be a group of order 300. H is a proper subgroup of G and K is a proper 
subgroup of H. If O(k) = 30 what are possible order of H? What would be the corresponding 
indices of H in G be.   

Solution - Given O(G) = 300 & O(k) = 30, 

 H is proper subgroup of G O(H) ǂ O(G) 

 K is proper subgroup of H  O(k) ǂ O(H) 

   O(H) ǂ 30. 

 Since given K < H < G, So the possible subgroups of G should be a divisor of G, but K is 
subgroup of H of order 30. So order of H must be greater than 30, So the divisors of 300 which 
are greater than 30 are, 60 & 150 

 So possible order of H is either 60 or 150 

 Index of subgroup of order 60 in G = 
( ) 300

( ) 60

O G

O H
  = 50 

 and Index of Subgroup of order 150 in G = 
( ) 300

( ) 100

O G

O H
  = 2 

Example 3 - If H and k are subgroups of group G of order 12 and 35 respectively then find  
H ∩ k. 



167 
 

Solution Given H < G and k < G 

 o(H) = 12 and o(k) = 35 

 Also H ∩ k < H and H ∩ k < k 

 o (H ∩ k) must be a factor of 12 and 35 

Since 12 and 35 are co prime i.e. (12, 35) = 1 

 Hence o (H ∩ k) = 1, So H ∩ k = e. 

Example 4. Find the possible order of subgroups of S4, D10, Q8 

Solution. 1. Since S4 is a symmetric group of order 4! 

   So O(s4) = 4! = 24 

So possible order of the subgroups will be the divisor of 24, which are  
= 1, 2, 3, 4, 6, 8, 12, 24 

  2. Since D10 is a Dihedreal group of order 10 = 20 so O(D10) = 10 = 10 

So posssible order of its subgroups will be its divisor of 10, which are  
= 1, 2, 5, 10,  

  3. Since Q8 is a group of order 5  

   O(Q8) = 8 

 So possible order of its subgroups will be a divisor of 8, which are = 1, 2, 4, 8 

 In above example of we wish to find nontrivial proper subgroups then subgroup of order 
1 and subgroups of order equal to order of group will be removed from the possible collection. 

Converse of Lagrange's Theorem : If a is a finite group and m/ocg) then G has a subgroup of 
order m. The corvese of this theorem is not always true.  

 For example, Let G be a group under addition modulo 6  

 i.e. G = {0, 1, 2, 3, 4, 5} 

 o(G) = 6 

 Then the possible order of subgroup of G will be, = 1, 2, 3, 6 

 Let H = {0, 4}, o(H) = 2 

 and (O(H) |O(G) i.e. 2|6 

 But H = {0, 4} to be a subgroup it must be a subset of G under some binary operation  

 taking the element 4, 4+4 = 8   2(mod 6)  

 but 2  H, so H is not a subgroup of G. Although O(H)| O(G). 

Examples - What is the least order of a non-abelian group Prove that all proper subgroup of a 
group of order 8 must be abelian.  
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Solution : As we know that a group of order lesss than or equal to 4 are abelian. Also a group 
of prime order is also abelian. So the group of order 1, 2, 3, 4, 5 are all abelian So the least 
order of a non abelian group is 6.  

 Let G be a group of order 8 i.e. o(9) = 8 

 Subgroup of G will have the order 1, 2, 4, 8, but proper subgroup of G will have order 2 
and 4 only. The group of order 2 and 4 are abelian. Since a subgroup is also a group, So all 
proper subgroup of a group of order 8 are abelian.  

Theorem. 1  If H and K are finite subgroups of a group G, then 

 O(HK) = 
( ) ( )

( )

O H O K

O H K
 

Proof : Since H and K are finite subgroups of a group G 

  D = H ∩ K is also a finite subgroup of a group G. 

 Also D = H ∩ K K. 

  D is a subgroup of a finite group K. 

  The number of distinct right cosets of D in K is also finite. 

 Let , 2 .........at K such that DD,.........., Dt are the distinct and hence pairwise 
disjoint and right cosets of D and K.   

 Here,  = The number of distinct right cosets of D in K. 

 = The index of D in K = 
( )

( )

O K

O D
 

   = 
( )

( )

O K

O D
 

 From (1), we get, HK = H (D1  D2  ........ D ) 

  HK = H 
1 i

i
D



 
 
 

 = 
1i
  H (Di) = 

1i
  (HD) i 

 = 
1i
H i, since D is subgroup of H, so HD = H. 

  HK = H1U H2U ....... U Ht 

 Now we prove that no two of H1U H2  .......Htare equal.  

 Let H i = H j for some 1 <i, j < . 

  ij
-1
 H 

  Also j

  j
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  j



  j

∩ 

  j

D 

  D=Dj 

  Since D 1, H2, ......, Dat are distinct 

  H1, H2, ......, H are distinct. 

  H1, H2, ......, Hare mutually disjoint.  .....(4) 

 From (3) and (4), we get 

 O(HK) = O(H1) + O(H2) + ....... + O(Ht) 

  = 
( ) ( ) ........ ( )O H O H O H

times

  
 

 Since H is a subgroup of a finite group G, so order of each right coset of H in G is equal 
to order of H. 

  O(HK) = l. O(H) = 
( )

( )

O K

O D
. O(H) (From (2)) 

 = 
( ) ( )

( )

O H O K

O H K
 

  O(HK) = 
( ) ( )

( )

O H O K

O H K
 

Theorem 2. Let G be a finite group and  G. then O() | O(G) i.e., the order of an element 
of a group is a divisor of the order of the group. 

Proof. Let G be a finite group of order n Let  G and let O() = m. 

 To prove that m is a divisor of n. 

 Let H = { ....., -3, -2, -1, 









be the subset of G consisting of all integral 

powers of 

 Then we know that H is a subgroup of G. We shall show that H contains only m distinct 
elements and that they are 

 Let  1 <r< m, 1 < s < and r > s. 

 Then 
r = s 

 
 

r


s


s


s  
r-s = 

  
r-s = e.   

 Thus there exists a positive integer r- s less than m such that m = e. But m is the least 
positive integer such that m = e. Therefore r


s. Thus 





m = 
= e are all distinct 

elements of H. 
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 Now suppose at is any element of H, where t is any integer. By division algorithm, we 
have t = m p + q, where p and q are some integers and 0 < q < m. 

 We have t = mp+q = mp


q = (am)p


q = ep


q = q. 

 Since 0 < q < m, therefore aq is one of the m elements 


m




 Hence H has only m distinct elements. Thus order of H is m. By Lagrange's Theorem m 
is a divisor of n.  

Cor. If G is a finite group of order n and G, then O(G) = e i.e. n = e. 

Proof. Let O(= m, then by above Theorem 2.2.9 

  O () | O (G)  m | n. 

 Let n = m k, for some k  I. 

  n = m k, for some k  I. 
 

 
n = m k = (m)k = ek = e.  

O(G) = e. 

Definition :Euler's Function 

For any positive integer n,  (n) is defined as follows : 

 (1) = 1, and for n> 1 we have 

  (n) = The number of positive integers less than n and relatively prime to n.  

 If n = 6, then the positive integers less than 6 and relatively prime to 6 are 5 and 1 

  (6) = 2. 

 If p is a prime number, then all of 1, 2, ....., p - 1 are coprime with p. 

  (p) = p -1, if p is a prime number 

 If n is any positive integer (n > 1), then we know 

 n = p1
 p2

2 ...... pk
k where p1, p2, ..... pk are distinct primes and i N, then 

 (n) = n
1 2

1 1 1
1 1 ...... 1

kp p p

   
     

    
 

 Now ri
(n)  1 (mod n) 

 [  r1 G  r1
O(G) = i in G  r1

(n) - 1 in G  n | r1
(a) -1] 

 Hence (n)
1 (mod n) 

 so theorem is proved. 

Theorem 3. Fermat's theorem  

 If p is a prime integer andis any integer, thenp(mod p). 

Proof. Case I. (, p) = 1. 
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 If (, p) = 1, then by Euler's theorem, 

  (p) 1 (mod p) 

  
p-11 (mod p), since p is prime number(p) = p - 1. 

  p | p-t - 1 

  
p-1 - 1 = k p for some integer k. 

 Multiplying throughout by , we get 

  
p-1
 -  =  k p 

  
p
k p 

  p divides p -  

  
p(mod p). 

  This complete the theorem in this case. 

Case 2. (, p) >1 

 Since p is a prime number, therefore the only divisors of p are 1 and p. 

 If (, p) = d, then d | p and d> 1. 

  d = p. 

  (, p) = p 

 p |  also  | p 

  p | p also p |  

  p | dp -  

  
p  (mode p). 

  This complete the theorem in this case.  

 Let use try to apply these theorem on some examples. 

Example : Find the remainder when 641 is divided by 55. 

  Here n = 55 and a is 6 

Solution : Since prime fectasiation of 55 is 55 = 5x11 where 

 5 and 11 both are prime. 

 So  (55) = (5) (11)   Using (mn) = (m) (n) 

  = 5x 
1

1
5

 
 

 
 11 

1
1

11
 
 

 
 Using the definition of  function  

  = 4 x 10  
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   (55) = 40 

Theorem 4 : Theorem (Euler's) 

 If n is a positive integer and a is any integer such that (a, n) = 1, n> 1 

 Prove a(n)1(mod n) 

Proof : Consider G = {r | r Z; (r, n) = 1, 1 <r<n] 

 G is a group under multiplication modulo n with identity element 1. 

  O(G) = (n)  (by definition of Euler's function (n)) 

 When n = 1, then (n) =  (1) = 1 

  a(n) = a11 (mod 1)   ( 1 | a–1) 

 When n > 1, then 

 a = nq1 + r1 for some integers q1 and r1, where 0 <r1<n 

 If  r1 = 0, then a = nq1 

 n divides a  

  (a, n) = n 

  (a, n) > 1     ( n > 1) 

 which contradicts given  

 r1 0 i.e. 1 <r1<n 

 Let (r1, n) = m 

  m | r1 and m | n 

  m | a - nq1 and m | nq1 

  m | a - nq1 + nq1 and m | n 

  m | a and m | n 

  m | (a,n)  m | 1 m = 1 

  (r1, n) = 1 and 1 <r1<n 

  r1 G 

  And a = nq1 + r1  a  r1(mod n) 

  a(n) r1
(n)(mod n) 

 So here n is 55 

 and (55) = 40 
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Applying Euler's theorem i.e. a(n)1(mod n)  

 640  1(mod 55) 

 640.6   6(mod 55) 

 641  6(mod 55) 

 or dividing 641 by 55 we get remainder 6 

Example 6 What is the remainder obtained on dividing 347 by 23. 

Solution : Here n = 33, a = 3, as n = 33 is prime, so (n) = n
1

1
n

 
  
 

 = 22 

 Applying ad(n)  1 (mod n) 

 322  1 (mod 23) 

(322)2  (1)2 (mod 23) 

344  1 (mod 23) 

344 .3   1.3 (mod 23) 

 345  3 (mod 23) 

= 345.32  9.3 (mod 23) 

 347  27 (mod 23) 

but as 27   4 (mod 23) 

 347  4 (mod 23) 

Hence when we divide 347 by 23 we get remainder 4. 

Example 7. Use Fermat's theorem to determine the remainder when 8103 is divided by 103. 

Solution. By Fermat's Theorems ap  a (mod p) 

 Here p = 103 which is a prime, and a = 8 

 So 81038(mod 103) 

 So remainder is 8 when 8103 is divided by 103. 

Self Check Exercises-4 

 Q 1. Let G be a group. H and K be finite subgroup G such that O(H) and O(K) are 
relatively prime. Show that H∩K = {e}. 

 Q. 2. What is remainder when 1318 is divided by 19. 

 Q. 3 What is remainder when 1332 is divided by 15. 

 Q. 4 What is remainder when 192200002 is divided by 23. 

 Q. 5 How many numbers from 1 to 300 can neither be divisible by 2 nor by 3 or nor by 
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5. 

7.7 Summary 

 In this unit we have studies the following : 

1. The difinition and examples of cosets of a subgroup of a group 

2. Two left (right) cosets of a subgroup are disjoint. 

3. The group G is equal to the union of all of its cosets. 

4. There is one one correspondence b/w and left(right) cosets 

5. There is one one correspondence b/w the set of left and right cosets of H in G. 

6. From Lagrange's theorem, we learn that order of a subgroup divides the order of 
a group. 

7. The index of a subgroup of a group, also index of a subgroup, divides the order 
of a group. 

8. Euler's and Fermat theorem. 

9. Application of Euler's and Fermat's theorem. 

7.8 Glossary 

o Coset : A coset is a subset of a group obtained by multiplying each element of a 
subgroup by a fixed element of the group. 

o Index of a subgroup : Let H is a subgroup of G then the number of distinct left 
or distinct right cosets is called the index of H in G. 

o Converse of Lagrange's Theorem : Let G is a finite group and m/O(G) the G 
has a subgroup of order m. 

7.9 Answer to Self Check exercises 

Self Check Exercise-1 

Q. 1 The right cosets will be H, H+1, H+2, H+3, H+4. 

Q. 2 Left cosets are H, (13) H, (23) H. 

 Right cosets are H, H(13), H(23). 

Q. 3 Right cosets are 

Q. 4 The distinct cosets are H & H+1 

Q. 5 The distinct Cosets are H, H+1, H+2 

Self Check Exercise-2 

Q. 1 By using answer to self check exercise 3 

Q. 2 Use the example 4 the prove this. 

Self Check Exercise-3 
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Q. 1 5 

Q. 2 3 

Q. 3 3 

Q. 4 4 

Q. 5 4 

Self Check Exercise-4 

Q. 1 As H ∩K < K and H∩K < H O(H) = m1 O(K) = n. 

 O(H∩K) = (m, n) 

Q. 2 1 

Q. 3 1 

Q. 4 16 

Q. 5 80 

7.10 References/Suggested readings 

 1. Vijak K Khanna and S.K. Bhambri, A course in Abstract algebra 5th edition. 

 2. Joseph A. Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayrer Jr Modern Algebra, Schaum's outline series. 

 4. A.R. Vasijiha, Modern Algebra, Krishna Prakason Media. 

7.11 Terminal Questions  

 Q. 1 Use Fermat's theorem to determine the remainder 5103 is divided by 103. 

 Q. 2 Let Z be additive group of integers and Hn i.e. the subgroup of multiples of a fixed 
integers n > 1. What is the index of Hn in Z. Write all the cosets of Hn in Z. 
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Unit - 8 

Normal Subgroup 

Structure 

8.1 Introduction 

8.2 Learning Objectives  

8.3 Normal Subgroups 

 Self Check Exercise-1 

8.4 Theorems BASDED on Normal Subgroups 

 Self Check Exercise-2 

8.5 Properties of Normal Subgroups 

 Self Check Exercise-3 

8.6 Summary 

8.7 Glossary 

8.8 Answers to self check exercises 

8.9 References/Suggested Readings 

8.10 Terminal Questions 

8.1 Introduction 

Dear students in this unit you will learn about one special type of subgroup known as 
normal subgroup. These subgroups are directly related to coset of a subgrup of a group. If H is 
a subgroup of a group G, then the left coset aH of H in G may not be equal to the corresponding 
right coset Ha. In this unit you will study a particular class of subgroups H for which each left 
coset of H in G is equal to the corresponding right coset of H in G. Such subgroup give size to 
normal subgroup. You will also study properties of normal subgroup as well as & due theorem 
based or normal subgroup. 

8.2 Learning Objectives 

 After studying this unit, students will be able to  

 1. define normal subgroup with examples. 

 2. prove a given subgroup is normal or not using properties of normal subgroup. 

 3. state and prove thesens based on normal subgroup. 

 4. Apply the properties of normal subgroups. 
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8.3 Normal Subgroup 

 Definition : A subgroup H of a group G is called normal subgroup of G of every left 
coset of H in G is equal to the corresponding right coset of H in G i.e. aH = Ha  a  G For 
additive composition, above definition becomes, if a + H = H + a a G then H is called normal 
subgroup of G.  

 Normal subgroup is also known as invariant subgroups or say conjugate subgroups.  

Notes : 1 If H is a normal subgroup of G, then mathematically we write it as H  G. 

 2. When G is a abelian group. Then every subgroup H of G is a normal subgroup. 

 3. The subgroups Se f and G of any group G are always normal subgroups of G. 
These are called trivial normal subgroups of G. 

Example 1 : Consider 4Z is a subgroup of (Z, +) then write its left and right cosets and check 4Z 
is a normal subgroup of (Z, +) 

Solution : Considering the example of unit 7, where we have find the right cosets of 4Z in (Z, 
+). From here, we known that H, H+1, H+2, H+3 are right cosets of 4Z in (Z, +). 

 Let us find left cosets of 4Z in (Z, +)  [in the same line as in example of unit 7] 

 0th  = {0, ±4, 8±, ±12, ±16.......} = H 

 1+H  = {........, -11, -7, -3, 1, 5, 9, 13,.....} 

 2+H  = {........, -13, -9, -5, -1, 3, 7, 11,.....} 

 3+H  = {........, -9, -5, -1, 3, 7, 11, 15,.....} 

  H = H 

 Since  1+H = H+1 

  2+H = H+2 

  3+H = H+3 

 Thus every left coset of 4Z is a right coset of 4Z in (Z, +).  

Hence 4Z is a normal subgroup of (Z, +) 

Example 2 : Show that H = {-1, 1} is a normal subgroup of quaternion group  

Q8 = {±1, ± i, ± j, ± k} 

Solution : Cosets of H in Q8 are 

 H.1 = { (-1).1, 1.1} = {-1, 1} = 1.H 

 H.(-1) = { (-1)x(-1), (-1).1} = {1, -1} = (-1).H 

 H.(+i) = { (-1)x(i), (-1)xi} = {-i, i} = i.H 

 H.(-i) = { (-1)x-i, 1x-i} = {i, -i} = -i.H 

 H.(j) = { -1xj, 1xj} = {-j, j} = j.H 
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 H.(-j) = {-1x-j, 1x-j} = {-j, -j} = -j.H 

 H.(k) = { -1xk, 1xk} = {-k, k} = k.H 

 H.(-k) = {-1x-k, 1x-k} = {k, -k} = -k.H 

Here Ha = aH = {-a, a}  a  G. 

 Hence H {-1, 1} is normal subgroup of Q8. 

Example 3 : Let G = S3 the symmetric group on these numbers 1, 2, 3. Show that the 
subgroup H {II, (1 2 3), (1 3 2) is a normal subgroup of G. 

Solution : Here G = S3 = {I, (1 2), (1 3), (2 3), (1 2 3) (1 3 2)} 

 Also H {I, (1 2 3) (1 3 2)}  

Now, 

 I H = {I.I, I(1 2 3), I(1 3 2)} = {I, (1 2 3), (1 3 2} = HI 

 (1 2) H = 
1 2 1 2 1 2 3 1 2 1 3 2

,
2 1 2 1 2 3 1 2 1 3 2 1

I
       
       
       

 

  = 
1 2 1 2 3 1 2 3

,
2 1 3 2 1 1 3 2

     
     
     

 

  = {(1 2), (1 3), (2 3)} 

Now H (1 2) = 
1 2 1 2 3 1 2 1 3 2 1 2

, ,
2 1 2 3 1 2 1 3 2 1 2 1

I
        
        
        

 

  = 
1 2 1 2 3 1 3 2

, ,
2 1 1 3 2 3 1 2

      
      
      

 

  = {1 2, (2 3), (1 3)} 

 (1 2) H = H(1 2) 

Now, (1 3) H  = 
1 3 1 3 1 2 3 1 3 1 3 2

,
3 1 3 1 2 3 1 3 1 3 2 1

I
       
       
       

 

  = 
1 3 1 3 2 1 3 2

,
3 1 1 2 3 2 3 1

     
     
     

 

  = {(1 3), (2 3), (1 2)} 

Now  
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 H(1 3) = 
1 3 1 2 3 1 3 1 3 2 1 3

, ,
3 1 2 3 1 3 1 3 2 1 3 1

I
        
        
        

 

  = 
1 3 1 2 3 1 3 2

, ,
3 1 2 1 3 1 2 3

      
      
      

 

  = {(1 3), (1 2), (3 2)} 

 Therefore H ( 1 3) = (1 3) H 

Again (2 3) H  = 
2 3 2 3 1 2 3 2 3 1 3 2

,
3 2 3 2 2 3 1 3 2 3 2 1

I
       
       
       

 

  = 
2 3 2 3 1 2 3 1

,
3 2 1 3 2 2 1 3

     
     
     

 

  = {(2 3), (2 1), (3 1)} 

Now H(2 3) = 
2 3 1 2 3 2 3 1 3 2 2 3

, ,
3 2 2 3 1 3 2 3 2 1 3 2

I
        
        
        

 

  = 
2 3 1 2 3 1 3 2

, ,
3 2 3 2 1 2 3 1

      
      
      

 

  = (2 3), (1 3) (1 2)} 

 Therefore H (2 3) = 2 3 H. 

Also (1 2 3) H = 
1 2 3 1 2 3 1 2 3 1 2 3 1 3 2

, ,
2 3 1 2 3 1 2 3 1 2 3 1 3 2 1

I
        
        
        

 

  = 
1 2 3 1 2 3 1 2 3

,
2 3 1 3 1 2 1 2 3

     
     
     

 

  = {(1 2 3), (1 3 2), I} 

  ={I, (1 2 3) (1 3 2)} = H 

Now H (1 2 3) = 
1 2 3 1 2 3 1 2 3 1 3 2 1 2 3

, ,
2 3 1 2 3 1 2 3 1 3 2 1 2 3 1

I
        
        
        

 

  =  
1 2 3 1 3 2

1 2 3 , ,
3 1 2 1 3 2

    
    

    
 

  = {1 2 3),  (1 3 2) (I)} 
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  = H 

 Therefore, H(1 2 3) = (1 2 3) H 

Again (1 3 2)H = {(1 3 2) I, (1 3 2) (1 2 3), (1 3 2) (1 3 2)} 

  =  
1 3 2 1 2 3 1 3 2 1 3 2

1 3 2 , ,
3 2 1 2 3 1 3 2 1 3 2 1

      
      

      
 

  =  
1 3 2 1 3 2

1 3 2 , ,
1 3 2 2 1 3

    
    

    
 

  = {(1 3 2), I, (1 2 3)} 

  = H 

H (1 3 2) = {(1 3 2), (1 2 3) (1 3 2), (1 3 2) (1 3 2)} 

  =  
1 2 3 1 3 2 1 3 2 1 3 2

1 3 2 , ,
2 3 1 3 2 1 3 2 1 3 2 1

      
      

      
 

  =  
1 2 3 1 3 2

1 3 2 , ,
1 2 3 2 1 3

    
    

    
 

  = {(1 3 2), I, ( 1 2 3)} 

  = H 

 H(1 3 2) = (1 3 2) H. 

 Hence  a  S3, Ha = aH 

  H = {I, ( 1 2 3), (1 3 2)} is a normal subgroup of S3 

Example 4 : Show that H = {I, (1 2)} is not a normal subgroup of S3. 

Solution : Since S3 = {I, ( 1 2), (1 3), (2 3), (1 2 3), (1 3 2)} 

 H = {I, (1 2)} 

Now, HI = IH 

 (1 2) H = {(1 2) I, (1 2) (1 2)} 

  =  
1 2 1 2

1 2 ,
2 1 2 1

   
   

   
 

  =  
1 2

1 2 ,
1 2

  
  

  
 

  = {(1 2), I} 

  = H 
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 H (1 2) = {I (1 2), (1 2) (1 2)} 

  = {(1 2) I} = H 

  H(1 2) = (1 2) H 

Now (1 3)H = {(1 3) I, (1 3) (1 2)} 

  =  
1 3 1 2

1 3 ,
3 1 2 1

   
   

   
 

  =  
1 3 2

1 3 ,
3 2 1

  
  

  
 

  = {(1 3) (1 3 2)} 

Now H(1 3) = {I (1 3), (1 2) (1 3)} 

  =  
1 2 1 3

1 3 ,
2 1 3 1

   
   

   
 

  =  
1 2 3

1 3 ,
2 3 1

  
  

  
 

  = {(1 3), (1 2 3)} 

Since (1 3) H H (1 3) 

 So H = {I, (1 2)} is not a normal subgroup of S3. 

Self Check Exercises-1 

Q. 1 Check whether or not H = {I, (1 2), (3 4) is a normal subgroup of S4. 

Q. 2 Check whether or not H = {1, -1, i, -i} is a normal subgroup of Q8. 

8.4 Theorems BASDED on Normal Subgroups 

Theorem 1 : A subgroup H of group G is a normal subgroup of G iff ghg-1
 H for every  

hH, gG. 

Proof : Let H be a normal subgroup of G, to prove ghg-1
H. As H is a normal subgroup of G, 

then by definition of normal subgroup of G. 

 gH = Hg gG 

 Let hH and gG be any element. 

 gh Hg 

 Therefore gh = h.g for some h1H 

  ghg-1 = h1 
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 ghg-1
 H  [h1H] 

Conversely : Let H is a subgroup of G such that ghg-1
 H, hHgG to prove H is normal 

subgroup of G i.e. aH = Ha aG. 

 Let aG be any element, then aha-1
H  h H 

 Let ahaH be any element. Then 

 ah = aha-1a = (ah-1) a  Ha [ aha-1
H] 

  ah  Ha 

 aH< Ha.      ...(1) 

 Again, Let b = a-1 be any element of G 

 Then again using given hypothesis bhb-1
 H 

 But bhb-1 = a-1h(a-1)-1 = a-1 ha  H 

 Let ha Ha be any element Then 

 ha = (aa-1)ha = (aa-1h)a = a(a-1ha) aH. 

  ha aH 

 Ha <aH      ...(2) 

From (1) and (2), we have 

 aH = Ha  a  G 

 Hence H is a normal subgroup of G.  

Theorem 2 : Let H be a subgroup of a group G. Then the following statements are equivalent. 

 (i) g h g-1
H,   g G. h H. 

 (ii) g H g-1
H,   g G 

 (iii) g H = H g  gG. 

Proof : (i)  (ii) Since g h g-1
H,   g G. h H. 

 Let g h g-1 = h1 for some h1 H 

   g H g-1
H,  g G 

 (ii)  (iii) Let g H g-1
H,  g G 

 (g H g-1)g = H g 

 gH(gg-1) = H g 

 g H e = H g   ( H e = H) 

 g H = H g. 

 (iii)  (i) Let  g H = H g gG 
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   g h = h1 g for some h, h1 H 

   g h g-1 = h1 H 

 g h g-1
 H,   g G, h H 

 Hence (1) (ii) (iii)  (i) 

 Hence the given statements are equivalent. 

Theorem 3 : A subgroup H of a group G is a normal subgroup of G iff the product of two right 
cosets of H in G is again a right coset of H in G. 

Or 

Prove that a subgroup H of a group G is normal  

iff Ha Hb = H ab  a, b  G 

  (the composition is denoted multiplicatively) 

Sol. Let H be a normal subgroup of G and  

 Let H a, H b be two right cosets of H in G. Then 

 (H a (H b)  = H (a (H b)) 

   = H((a H) b) 

   = H (H a) b, since H is a normal subgroup of G so 

       a H = H a 

   = H (H (a b)) 

   = (H H) a b 

   = H a b, since H is a subgroup of G so HH = H 

 (H a) (H b) = H a b. 

 a, b  G  a b  G 

 H a b is a right coset of H in G.  

 Thus the product of two right cosets of H in G is again a right coset of H in G.  

Conversely, suppose H is a subgroup of a group G such that the product of two right cosets of 
H in G is again a right coset of H in G. 

 To show that H is a normal subgroup of G. 

 Let g G be any element. 

  g-1
 G, since G is a group. 

  H g, H g-1 be two right cosets of H in G. 

  (H g) (H g-1) is again a right cosets of H in G. 

 Since H is a subgroup of G, therefore e H, where e is the identity element of G. 
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 Since e 

  (e g) (e g-1)  (H g) (H g-1) 

  g g-1
 (H g) (H g-1) 

  e (H g) (H g-1) 

 Also H is a right coset of H in G and e  H. 

  (H g) (H g-1) and H are two right cosets of H, each containing e. 

  (H g) (H g-1) ∩ H . 

 Since the two right cosets of H in G are either disjoint or identical. 

  (H g) (Hg-1) = H. 

 Let h H be any element. 

  (h g) (h g-1)  (H g) (H g-1) 

  (h g) (h g-1)  H, since (Hg) (Hg-1) = H. 

  h (g h g-1)  H.                

  g h g-1
h-1 H. 

  h H and H is a subgroup  h-1
  h-1 H = H 

  g h g-1
 H. 

 This is true   g G and h H. 

 Hence H is a normal subgroup of G. 

Theorem.4 Let H am nd K be two subgroups of a group G. Then  

 (i) if H is a normal subgroup of G, then HK = KH is a subgroup of G. 

 (ii) if H and K both are normal subgroups, then HK = KH is a normal subgroup of G. 

Proof. (i) Given H is a normal subgroup of G. To show that HK = KH is a subgroup of G. 

 Let b  K be any element. Then H b = bH [  H   G] 

  H b = bH KH,   b  K  

  H K  KH.      

 Similarly, b H = H b  HK i.e. b H  HK,   b  K       

  KH  HK.                               ......(2) 

  from (1)  and (2), we get HK = KH. 

  By Theorem 2.1.8, HK (= KH) is a subgroup of G. 

 (ii) Let H and K be both normal subgroups of G. 

  By (i) HK = KH is a subgroup of G. To show that H is a normal subgroup of G. 
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 Let g G be any element. Then 

  g (HK) g-1 = g H (g-1 g) K g-1 = (g H g-1) (g K g-1)  HK. 

  [  H, K are normal subgroup  g H g-1
H, g K g-1

 K] 

 Hence HK  is a normal subgroup of G. 

Theorem 5. Every subgroup of abelian group is normal. 

Proof: Let H be a subgroup of an abelian group G.  

  gx = x g  x  G,  g G [as G is abelian] 

 In particular gh - hg   h H, g G 

  g h g-1 = hgg-1 = he = h 

  ghg-1 = h H 

  ghg-1  H  hHdgG 

 Hence by definition of normal subgroup H is normal subgroup of G. 

 The converse of above is not true. There are non commutative groups whose subgroups 
are normal. 

Example: Since Q8 is a non commutative group but its subgroup H2{-1,1} is a normal 
subgroup (as proved in example 2). 

 Let us consider some question to when we can use those theorems. 

Example 1: Show that the set H2 : , , , , , , 1
a b

a b c d E R S ad bc
c d

  
   

  
 is a normal subgroup 

of the group or 

 G = 
1

: , , , , , , 0
0 1

b
a b c d E R S t ad bc

  
   

  
 

Solution: To Prove H is a normal subgroup of G firstly we have to show that H is non 
empty set and subgroup then of G. We apply the theorem 1. 

 Since I = 
1 0

0 1

 
 
 

 be the identity element as 

 |I| = I 

  I  H 

  H is non empty subset of G. 

Let A = 1 1

1 1

a b

c d

 
 
 

 H s.+. a1d1 - c1 b1 = 1 = | | 
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 and B = 2 2

2 2

a b

c d

 
 
 

 H s.+. a2d2 - b2 c2 = 1 = |B| 

Also |A| = 1  0, so A-1 exists. 

So A A-1 = I 

  |A A-1| = |I| 

  
-1


  
-1


  
-1


 as |A-1| = 1 so A-1
 H. 

 Also |AB| = |A| |B| = 1.1 

  |AB| = 1 

 As |AB| = 1 so AB H  

 as A B  H and A-1
 H so H is a subgroup of a Now to prove, H is a normal subgroup of 

G. 

 Let A G be any elements 

 Since A  H  |A| = 1 

 and B  G  |B|  0 

 as |B|  0, so B-1 exists. 

 Now |BAB-1| = |B| |A| B-1| = |B|.1.
1

| |B
 = 1 

  BAB-1| = 1 

  BAB-1 
 H   A  H  B E G 

 Hence H is a normal subgroup of G. 

Question 2. Let G denotes the group of all non-singular upper triangular 2x2 matrices with 

real entries i.e. G = : , , , , , , 0
a b

a b c d E R and ad
c d

  
  

  
 show that H = 

1

0 1

b 
 
 

 1 b   R is a 

normal subgroup of G. 

Solution: Given G = : , , , , , , 0
0

a b
a b c d E R ad

d
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 and H = 
1

, , ,
0 1

b
b E R

  
  
  

 

 So H is a subset of G. 

 Now, to prove H is a subgroup of G. 

 Let A, B  H s.t A = 
1

0 1

b 
 
 

, B E R and B = 
1 ab

d d


 , C E R  

be two elements of H. 

 Then AB = 
1

0 1

c b 
 
 

, as b + c E  R so AB H 

 Also As |A|  0, so A-1 exists. 

 So, H is a subgroup of G. 

 Now to prove H is a normal subgroup of G. 

 Let A  H and B  G 

  A = 
1

0 1

b 
 
 

 b  R and B = 
0

a b

a

 
 
 

, a, b, d, , R, ad  0 

 As |B|  0 So B-1 exists. 

 So B-1 = 
0| |

d bAdj B

aB

 
  
 

1

1
0

b
ad

a

d

 
 
 



 

Then B A B-1 = 
0

a b

d

 
 
 

1

0 1

b 
 
 

1

1
0

b
ad

a

d

 
 
 



 

 = 
0

a b

d

 
 
 

1

10

b b
ad da

d

  


 

 

 = 
1

0
1

ab ba

ad d
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 = 
1

0 1

b baa d
  


 

 as, a, b, c,  R So 
1 ab

d d


  R 

 BAD-1
 H 

 Hence H is a normal subgroup of G. 

Self  Check Exercise - 2 

Q. 1 Show that Z (G), contra of a group is a normal subgroup of G. 

Q. 2 Let H be normal subgroup of group G. If x2
 H,   x  G then prove that H is 

normal subgroup of G.  

8.5 Properties of Normal Subgroup 

Property :- Section of two normal subgroups is a normal subgroup. 

Proof :- Let M and N be two normal subgroups of G So, M and N are subgroup of G 

  M ∩ N is also a subgroup of G. 

  Let h  M ∩ N and g G 

  h  M and h  N and g G 

  Since M and N are normal subgroups of G 

  ghg-1
M and ghg-1

 by theorem] 

  ghg-1
 M ∩ N   g G and h  M ∩ N 

  M ∩ N is a normal subgroup of G. 

Property 2. A normal subgroup H of a group G and K is a subgroup of a such that H  G. 
Then H is also a normal subgroup of K. 

Proof : Given H is a normal subgroup of G 

  H is a subgroup of G 

 Also K is a subgroup of G and H  K. 

  H is also a subgroup of K. 

 To prove  H is a normal  subgroup of K 

 Let X  K  x  G [  K  G 

 Since H is a normal subgroup of G 

  Hx = xH 

 So Hx = xH, x  K 
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 so H is also a normal subgroup of K. 

Property 3. A non empty subset H of a group G is normal subgroup of G (ga(gb)-1 H & a, b 
H  adgG. 

Proof : Let H is normal subgroup of G 

to prove (ga) (gb)-1
H. 

 Let H is normal subgroup of G. 

 Let a, b  H and g G 

 then (ga) (gb)-1 = ga (b-1 g-1) 

   = g (ab-1) g-1 

7
1

1

1 1

,

( )

.

a b H b H

ab H as H is

subgroup of a

g ab g H H

is normal subgroup of G



 

 





 

Conversely: Let (g a)-1 (g B)  H   a1 b  H1 g G 

to prove H is normal subgroup 

 H is subgroup of G 

 Let a1 b  H1then 

 a b-1 = e ab-1 e 

 = (e a) (b-1e) 

 = (ea) (eb) -1      e-1 = e 

  H      by given of g G 

       (g a) (e b) -1
 H 

       and e  G is identity of G 

  ab-1
H 

 So H is subgroup of G. 

H is normal subgroup of G 

 Let h H and g G. Also e, identity element of G 

  e  H 

 Given (gh) (ge) -1
H 

 gh (eg-1)  H    [  (ge)-1 = e g 

  g (he)g-1
 H    and e-1 = e 

  g h g-1
 H     he - h 
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 H is a normal subgroup of G. 

Property 4. If H is the only subgroup of order n in a group G, then H is normal subgroup. 

Proof: Let g G be any element. Then gHg-1 is a subgroup of G. 

 Also |H| = |ghg-1| 

 Also |ghg-1 = n, but H is only subgroup of order n 

 gHg-1 = H| 

 Hence H is a normal subgroup of G. 

Property 5. If H is a subgroup of G of index 2 in G. Then H is normal subgroup of G. 

Proof: Let H be a subgroup of G such that [G : H] = 2 

  The number of distinct left (or right) cosets of H in G is 2. 

 To prove H is normal subgroup of G. 

 Case I When x  H 

 Since x  H so x H = H = H x 

  x H = H x 

Case II : When x  H 

  x H H and H x  H 

 Given [G : H] = 2 

 So H U x H = G = x H U H [Union of all coset is group itself]. 

  x H = H x 

 Combining both of cases we find that 

 x H = H x & x  G. 

  H is normal subgroup of G. 

Using above property let us do some question  

Question:- Given an example of non-abelian group in which all subgroups are normal 

Solution: The Question group G = {± i, ± J, ± K, ± 1} 

  O (G) = 8 

 Let H be a subgroup of G. Then by Lagrange's theorem O(H) | O(G). 

  Subgroup of G must have order same as divisor of 8 and divisor of 8  
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are 1, 2, 4, 8 

  

 If O(H) = 1 then H = {e} 

 If O(H) = 8, then H = G 

 Since {e} and G are leivial subgroup of G. 

 Alsolivial subgroups are livial normal subgroup of G. 

Now of O(H) = 4 then index of G in H [G : H] = 
( ) 8

( ) 4

O G

O H
  = 2 

 So if index of G in H i.e. [G : H] = 2, So by property 5, the subgroup is normal. 

Again if O(H) = 2 then H = {11 - 1} 

 In this case x H = H x    x  G 

  All subgroups of this group are normal 

Question 2. Show that the set 3z from a normal subgroup of the group of integer under 
addition. 

Solution: Give (Z, +) is a group of integer under addition. 

 Now 3Z = {3n ; n  z} 

 Let x, y  3Z, then 

 x = 3n1, y = 3n2 for n1, n2 Z 

 Now x - y = 3n1 - 3n2 

  = 3 (n1 - n2) 

   3 Z    [  n1, n2 Z so n1-  n2 Z] 

So 3Z is a subgroup of Z. 

 To prove 3Z is normal subgroup 

 Let gZ and h 3Z- 

  gZ and h = 3n, n  Z 

 then g + h + (g) = g + 3n - g 

   = 3n 

  g + h - g  3Z 

 Hence 3Z is a normal subgroup of Z. 
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Self Check Exercises-3 

Q. 1 Prove that the intersection of any collection of normal subgroup is itself normal 
subgroup. 

Q. 2 Show that the set 5Z forms a normal subgroup of the group of integers under 
addition. 

8.6 Summary 

 Dear students, in this unit, we studied that  

 (1) If every left coset of H in G is equal to corresponding right coset of H in G i.e. aH 
= Ha, aa, than H is normal subgroup of G. 

 (2) If G is abelion group. Then every subgroup's normal subgroup. 

 (3) If nG. where H is subgroup of G then of ghg-1
H then H is normal subgroup of 

G 

 (4) H is a normal subgroup of G. H HaHb = Hab  a,b G.  

 (5) Intersection of two normal subgroup is a normal subgroup. 

 (6) If H is a subgroup of G of index 2, then H is normal subgroup of G. 

8.7 Glossary 

o Normal Subgroup:- Let G be a group. A Subgroup H of G is said to be a normal 
Subgroup of G if aH = Ha for all aG.  

o Right Coset:- A night coset of a subgroup H in a group G is a set of elements 
obtained by multiplying every element of H by a fixed element of from G on the 
right side. 

o Intersection of Subset:- N1∩N2 = (xG/nN, and nN2), where N1 and N2 be 
the subset of Group G. 

8.8 Answers to Self Check Exercise 

Self Check Exercises-1 

Q. 1 Apply definition of normal subgroup same as in question 4. 

Q. 2 Apply definition of normal subgroup same as in question 2. 

Self Check Exercises-2 

Q. 1 Prove theorem 1 for Z(a), i.e. ghg-1
Z(a) for xG and HH 

Q. 2 Prove ghg-1
H, nH and gG. 

Self Check Exercises-3 
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Q. 1 Generaliz the result of property 1. 

Q. 2 Same as question 2. 

8.9 References/Suggested Readings 

 1. Vijay k Khanna and S.K. Bhambri, A coures in Abstract Argebra 

 2. Joseph A. Gallian, Contemporary Abstract Argeora. 

 3. Fronk Ayers Is. Modern Algebra, Schaum's outline series. 

 4. A.R. Vasistha, Modern Argebra, KeishnaPrakaslal Media. 

8.10 Terminal Questions 

 1. Let T denotes the group of all non- singular upper triangular 3x3 matrices with 

real entries. Show that H = 

1

0 1 , , ,

0 0 1

a b

c a B C R

  
  

  
    

is a normal subgroup of G. 

 2. A cyclic subgroup T of a group G is normal in G then every subgroup of T is also 
normal in G. 

***** 
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Unit - 9 

Quotient Group 

Structure 

9.1 Introduction 

9.2 Learning Objectives  

9.3 Quotient Group 

 Self Check Exercise-1 

9.4 Theorem ON Quotient Group 

 Self Check Exercise-2 

9.5 Summary 

9.6 Glossary 

9.7 Answers to self check exercises 

9.8 References/Suggested Readings 

9.9 Terminal Questions 

9.1 Introduction 

Dear Students student in previous unit we studied about normal subgroup of a group. 
Normal Subgroup have some special significance because when a Subgroup H of G is normal, 
then the set of left (right) cosets of H in G is itself form a group. And from here we get another 
type of group which is known as Quotient group of G by H We can information about a group by 
studying one of its quotient group. So in this unit we will study about quotient group along with 
some properties and theorem related to quotient group.  

9.2 Learning Objectives 

After studying this unit students will be able to 

(1) define a quotient group 

(2) Find quotient group of a given group. 

(3) Prove and apply the theorems based on quotient group. 

9.3 Quotient Group 

 Definition : If G is a group and H is a normal subgroup of G, then the set G/H of all 
cosets of H in G is a group with respect to the multiplication of cosets i.e. (Ha) (Hb) = Hab 

 This group is known as quotient group or factor group of G by H. 

Note 1:- Under addition of coset, the composition is defined as 
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 (H + a) + (H + b) = H + (a + b) 

Note 2:- The identity element of quotient group G/H is H 

Note 3:- If H is normal subgroup of tinit group G than G/H forms a group of order 
( )

( )

O G

O H
. 

 Let us try to understand more about quotient group by solving some questions about this 
group.  

Question 1: Let Z be the additive group of integers Let H = 4Z be additive group of integer 
multiple of 4. Show that H is a normal subgroup of Z. Also write the elements of Z/H. Also write 
the composition table for Z/H. 

Solution:- Given Z be additive group of integers and H = 4Z 

 To show H is a normal subgroup of Z under addition. 

 Let g  Z, h Hh = 4n, nZ 

 then g + h + (-g) = g + 4n - g 

  = 4n 

  g + h + (-g) = 4n  H. 

 Hence 4z is a normal subgroup of Z. 

 In order to write the elements of Z/H or Z/4H, we have to write the set of all cosets of  

4H in G. 

 Since from (question of unit 7) we know that only distinct cosets of 4z in a all.  

H, H + 1, H + 2, H + 3. 

 So elements of Z/H = Z/4H = {H, H+1, H+2, H+3} 

 Composition table for Z/H or H/4H, Here H is identity for Z/H 

+ H H+1 H+2 H+3 

H H H+1 H+2 H+3 

H+1 H+1 H+2 H+3 H 

H+2 H+2 H+3 H H+1 

H+3 H+3 H H+1 H+2 

Question 2: Let G = {-1, 1, -i, i} be a group and H = {-1, 1} subset. Show that H is normal 
subgroup of G. Find the elements of G/H and prepare the composition table.  

Solution: Given G = {-1, 1, -i, i} 

  and H = {-1, 1} 
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  Since H  G and H is itself a group  

 So H is a subgroup of G 

 Since [G : H] = Index of G in H = 
( )

( )

O a

O H
 

    = 
4

2
  

 Since index of G in H is 2, So he Subgroup is a normal subgroup of a   

[Property of normal subgroup] 

 So, H is a normal subgroup of G. 

 Now, to find all the coset of H in G. 

 Since we known that (From question 2 of unit 7) 

 all cosets of H in G are H and Hi 

 So elements G/H = {H, Hi} 

 Composition table of element of G/H 

. H Hi 

H H Hi 

Hi Hi H 

 

Self Check Exercises-1 

Q. 1 Find all the elements of Z/H, where Z is a additive group of integers and H = 3Z. 

Q. 2 Find all the elements of Z/H, where Z is a Symmetric group on {1,2,3} and H = {I, (1, 
2)}. 

9.4 Theorem on Quotient Group 

Theorem 1. If H is a subgroup of an abelian group G, then the group G/H of all right cosets of 
H in G forms on abelian group under the composition defined by Ha.Hb = Hab. 

Proof: Given H is a subgroup of an abelian group G. Since a subgroup of an abelian group is 
normal. So H is a normal subgroup. 

 Now to prove G/H is an ablian group under the composition Ha.Hb = Hab. 

(1) ClosursProperty :Let a, b  G, then abG 

  Hab  G/H 

  Ha.Hb G/H 
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  Clasues property holds.  

(2) Associative Property: (Ha . Hb). Hc = (Hab) . HC 

 = H (ab)C 

 = Ha (bc) 

 = Ha (Hbc) 

 = Ha (Hb) (Hc) 

 = Ha (Hb Hc) 

   (Ha . Hb) .Hc 

 So, Associative property good. 

(3) Existence of identity:- 

 Let e be the identity of G 

 then He G/H 

 Now (Ha).(He) = H(ae) 

   = Ha 

   = H(ea) 

   = (He) (Ha) 

  He = H is identity of G/H. 

(4) Existence of inverse: for H a  G/H, We have aG 

  a-1
 G 

  Ha-1
 G/H 

 Now, (Ha) (Ha-1)  = H (aa-1) 

    = He 

    = Ho 

    = He 

    = H(a-1a) 

    = (Ha-1)(Ha) 

  (Ha)-1 = Ha-1
 G/H 

  Ha-1 is the inverse of Ha in G/H  

(5) Commutative Property : Let Ha, Hb  G/H, a, b  G. 

 Now (Ha) (HG) = Hab 

   = Hba 
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   = (Hb) (Ha) 

  (Ha) (Hb) = H (b) (Ha) 

   G/H is on abelian group. 

Converse may not be true i.e. 

 An example of non abelian group G and a normal subgroup H of G such that quotient 
group G/H is abelian 

 The group G = {± 1, ± i, ± j, ± k} is non abelian group of unit quaternion under 
multiplication defined as i2 = j2 = k2 = -1, jj = k = -ji, jk = i = -ki, ki = j = -ik 

 Let H = {1, -1, -i, -i} be a subgroup of G. 

 Then [G : H] = 
( )

( )

O G

O H
 

  = 
8

4
 

  = 2 

  [G : H] = 2 

 Since H is a subgroup of G of index 2 Hence it is a normal subgroup of G. 

 Then the quotient group G/H gives the set of all left right coset of H in G. then 

 G/H = {H, iH} 

 O (G/H) = 2 

 Since O(G/H) = 2, a prime number 

 Since a group of prime order is an abelian group 

 Hence G/H is aabelien quotient group of non abelian group. 

Theorem 2. Let H be a normal subgroup of a group G. Show that quotient group G/H is 
abelian it and only if for all x,yG, xy x-1y-1

N. 

Proof : Let H be a normal subgroup of G such that G/H is abelian. To prove, for all x,yg, xyx-1y-

1
H 

Now Hxy x-1y-1 = Hx Hy Hx-1Hy-1 [by defining of quotient Hab=HaHb group) 

 = HxHy (Hx)-1 (Hy)-1   (Hx)-1 = (Hx)-1 

 = Hx (Hx)-1 (Hy) (Hy)-1 [  G/H is an abelian group] 

 = H H    [  H is identity of G/H 

 = H 

  Hxyx-1y-1 = H 

  xyx-1y-1
H x, y  G 
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Conversely: Let for all x, yG, xyx-1y-1
H 

 To prove G/H is an abelian group 

 Since given xyx-1y-1
 H 

  Hxyx-1y-1 = H 

  xHy Hx-1Hy-1
 H 

  Hx Hx-1Hy Hy-1 = H 

  Hx (Hx)-1 (Hy) (Hy)-1 = H  

  (Hx) (Hy) (Hx)-1 = H (Hy) 

  (Hx) Hy = Hy Hx. 

  Hx Hy = Hy Hx 

  G/H is abelian group 

Theorem 3: Every quotient group of a cyclic group is cyclic. 

Proof: Let G = G = <a> be a cyclic group generated by an element a. 

  G is an abelian group 

  Every subgroup of G is is normal subgroup 

 Let H be a subgroup of G, which is normal, such that G/H is quotient group of G. 

 To prove G/H is a cyclic group generated by Ha. 

 Let Hx G/H be an arbitrary element where x  G. 

 But  G = <a> 

 So x = an for some integer n. 

  Hx = Han = Ha.a. ......... a,   G/H is quotient group.  

             n times 

  = Ha Ha. Ha. ......... Ha 

    n time 

  = (Ha)n 

  Hx = (Ha)n,   Hx G/H 

  G/H is a cyclic group generated by Ha. 

 Hence every quotient group of a cyclic group is cyclic. 

Remark : The converse of above theorem may not between, i.e. quotient group may be 
cyclic even if the group may not be cyclic.   

Theorem 4. If G is a group such that G/Z (a) is cyclic, where Z(a) is the contra of G. Then G is 
abelian.  
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Proof: Given Z(G) is the centre of G 

 Let H = Z (a) = {g G ; x = xg x  G} 

 Let G/H = <gH> be a cyclic group 

 Let a,b G be any two elements 

  aH, bH G/H by defining of quotient group 

 Therefore aH = (gH)m and bH = (gw)n, for, m, nZ [by defining of cyclic group] 

  aH = gmH and bH = gnH 

  a-1gm
H and b-1gn

H 

  g-maH and g-n b  H 

 Let g-ma = n1, g
-n b = h2 for h1, h2 H 

  a = gmn1 and b = gnh2 

 Now ab = gmh1. g
nh2 = gm (h1g

n)h2 

  = gm (gnh1)h2 

  = gm+n h1h2 

  ab = gmgnh1h2 = gm+nh1h2 

 Now ba = (gnh2) (g
mb1) = gn(h2g

m)h1 

     = gn(gmh2)h1 

     = gn+m h2h2 

  ba = gm+n h1h2 

  ab = ba 

Hence G is abelian  

Self Check Exercises-2 

Q. 1 Give an example of a group G and a normal subgroup H such that G/H is cyclic 
but G may not be cyclic 

Q. 2 Let H1 and H2 be two normal subgroups of a group G. Prove that G/H1 = G/H2 if 
and only if H1 = H2. 

9.5 Summary 

 Dear Students in this unit we studied that 

 (1) The set of all cosets of H in G is known as quotient group 

 (2) Identity element of a quotient group G/H is H. 

 (3) If H is a subgroup of an abelian group G then the quotient group G/H is also 
abelian.  
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 (4) If H is a normal subgroup of a group G then quotient group G/H is abelian it xyx-

1y-1
 H. 

 (5) Every quotient group of a cyclic group is cyclic  

9.6 Glossary  

o Quotient group :A Quotient group G/N is formed by dividing a group G by 
normal subgroup N, where elements are cosets of N in G with a defined group 
operation based on coset multiplication.  

o Cyclic group : A group G is cyclic if there exists an element  of g in G such that 
every element of G can be expressed as a power gn for some integer n. 

9.7 Answers to Self Check Exercise 

Self Check Exercises-1 

Q. 1 Do same as question 1 

Q. 2 Z/H = {H, H. (13), H. (2, 3)} 

Self Check Exercises-2 

Q. 1 Taking G = {±1, ±i, ±j, ±k} and H = {1, -1, i, -i} Here G/H is cyclic but G is not 
cyclic 

Q. 2 If N1 = N2  than nothing to prove. 

 Inversely of G/N1 = G/N2 to prove N1 = N2 we can prove this by using the concept 
that two cosets in G are either disjoint or identical. 

9.8 References/ Suggested Readings 

1. Vijay K. Khanna and S.K. Bhambri, A course in Abstract algebra. 

2. Joseph A. Gallian, Contemporary Abstract Algebra. 

3. Frank Ayrer Jr., Modern Algebra, Schaum's Outline Series. 

4. A. R. Vasistha, Modern Algebra, KeishnaPrakasham Media. 

9.9 Terminal Questions 

 Q. 1 If H, K are normal subgroups of a group G and HCK, then show that K/H is a 
normal subgroup of G/H. 

 Q. 2 Give an example of verify that if the quatient group G/H is abelian then G may 
not be abelian. 

***** 



202 
 

Unit - 10 

Special Subgroups 

Structure 

10.1 Introduction 

10.2 Learning Objectives  

10.3 Subgroup Generated by Subset of A Group 

 Self Check Exercise-1 

10.4 Commutator  Subgroup 

 Self Check Exercise-2 

10.5 Summary 

10.6 Glossary 

10.7 Answers to self check exercises 

10.8 References/Suggested Readings 

10.9 Terminal Questions 

10.1 Introduction 

Dear student in this unit we will study about some special type of subgroup on the basis 
of their formulation. In this unit we will study about subgroup which is generated by a subset of a 
group along with its pro property. Also, commutator subgroup will be discussed, which is an 
other form of a subgroup. 

10.2 Learning Objectives 

After studying this unit, students will be able to 

(1) define subgroups generated by subset of a group.  

(2) solve question based on subgroup generated by subset of a group. 

(3) define commutator subgroup. 

(4) solve question based on commutator susbgroup. 

10.3 Subgroup Generated by Subset of a Group  

 Definition : A subgroup N of a group G is said to be generated by a non empty subset S 
of G of H is the smallest subgroup of a containing S. 

 The smallest subgroup of G containing S is called subgroup generated by S and is 
denoted by {s} = H 
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Theorem 1 : If S is any subset of a group G, then smallest subgroup of G containing S exists 
and is unique.  

Proof : Let F B the family of all sub groups of a which contain S. 

 F = {H : H is a subgroup of G containing S} 

 The family F is not empty since atleast G belong to this family. 

     [  G is itself a subgroup of G] 

 Let K be the intersection of the family F. 

 i.e. K =  
H

H F
 

 Since auditory intersection of subgroups is a subgroup, so k is a subgroup of G. 

 Also S  H  H F 

  S  
H

H F
 = K 

 Therefore K is a subgroup of G containing S. 

 Now let H be any subgroup of G containing S 

  HF 

 
H

H F
 H 

  K  H 

 Therefore, K is the smallest subgroup of G containing S. 

  K is a subgroup of G generated by S and is equal to intersection of all subgroups of G 
containing S. 

Uniqueness  

 Let K1 and K2 be two smallest subgroups of G containing S. 

 Then we have K1 K2 and K2 K1 

   K1 = K2 

Theorem 2 : Let S is a subset of a group G. Then the set of elements of G expressible as 
products of positive and negative integral powers of finite number of elements of S is the 
smallest subgroup of G containing M. 

Proof : Let H be the set of those elements of G which can be expressed as product of positive 
and negative integral powers of finite number of elements of S. Let a, b  G then clearly  
ab-1

 H. 

 so, by critical of a subgroup H is a subgroup of G. clearly S  H. 
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 Also of K is any subgroup of G containing S, then definitely H must contained in K. 

 Hence H is the smallest subgroup of G containing S. 

 Let us take following examples to have more understanding of subgroup generated by a 
subset of a group. 

Question 1 :  G = {I, w, w2} is a subgroup generated by s = {w}  

Solution : Given G = {I, w, w2} be the group of cube root of unity. 

 Let S = {w} is a non empty subset of G.  

 Let H be a subgroup of G generated by S. 

  S H 

  w  H 

  w2 = w.w.H   H is a subgroup of G. 

 w3 = w.w.w = 1  H 

 Therefore, H contains all elements of G. 

  G  H and H  G 

  G = H 

  G = <S> 

Question 2 : Let {±1, ±i, ±j, ±k} be the group of quaternions and S = {i, j}. Then show that G is a 
subgroup generated by S.  

Solution : Given G = {±i, ±j, ±k, ±1} and  

 S = {i, j} 

 The S  G  

 Let H = <S> be subgroup of G generated by S. 

  S  G 

  i, j  H 

 So, i2 = i.i = -1  H, 

 i H, i3 = i.i.i = -i H 

 Similarly j  H  -j  H 

 also K = i j  H 

  K3
 H  K2.K  H -K H 

  H contains all elements of G. 

  G  H 

 also H G 

  G = H = < S > 
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Self check Exercise-1 

Q. 1 In the group (Z, +) the subgroup generated by 2 and 7 is? 

10.4 Commutator Subgroup 

 Definition : Let G be a group consider the set  

S = {a b, a-1 b-1; a, b  G} and K = {S1, S2...............Sn, Si S,} 

m is arbitrary. Then k is known as the commutator subgroup of group G. 

 If a, b  G, G is a group then a b a-1 b-1 is called a commutator of a, and b in G. 

 If S denotes the set of all commutors in G and G1 denotes the subgroup of G generated 
by S. Then G1 is called commutator subgroup of G or devided subgroup of G. 

Theorem 1 : A group G is abelian if and only of the commutator subgroup of G is the Trivial group. 

Proof : Let G be an abelian group 

  a, b,  G, a b = b a 

  a b b-1 a-1 = e 

 Therefore commutator subgroup whose elements will be the finite product of e's is the trivial 
group. 

Conversely : Let the commutator  subgroup be the trivial group. Then for any e  G, b  G 

  a b a-1 b-1
 {e} 

  a b a-1 b-1 = e 

  a b = b a    a, b  G 

  G is abelian. 

Theorem 2 : The commutator subgroup G1 of G is a normal subgroup of G. 

Proof : Let a  G1 and x  G be any element 

 Then x a x-1 = (xa x-1a-1) a 

 Now x a x-1 a-1
 G1 and a  G1 is a subgroup of G 

 (x a x-1 a-1 ) a G1 

 x a x-1
 G1

 a  G1, x  G 

 So G1 is a normal subgroup. [by dyiningof  normal subgroup.] 

Theorem 3 : Let G1 be the commutator subgroup of G. Then G1 is the smallest normal 
subgroup of G such that G/G1 is abelian. Also of H be any normal subgroup of G then G/H is 
abelian H G1

 H. 

Proof : To prove G/G1 is abelian group. 

 Let a G1, b G1 be any two element of G/G1, where a, b  G 

 Now a b a-1 b-1 
 G1 
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  (a b)(a b)-1 
 G1 

  (a b) G1 = b a G1  [  a H = b H iff ab-1 
 H] 

  (a G1) (b G1) = (b G1) (a G1) [  G1 is normal subgroup) 

  G/G1 is abelian group. 

 Now, to show G1 is the smallest normal subgroup of G such that G/N is abelian. 

 Let a, b  G be any element 

 Then  a H, b H  G/H, since G/H is abelian 

  (a H) (b H)  = (b H) (a H) 

  (a b)H  = (b a) H  [  H is normal in G] 

  a b (b a)-1  N 

  a b a-1b-1  N 

 i.e. H contains all the commutators of G. 

 i.e. H > G1 i.e. G1< H. 

 Hence G1 is the smallest normal subgroup of G such that G/G1 is abelian. 

 Also if H is normal subgroup of G such that G/H is abelian then G1
 H. 

 Conversly, let G1
 H then a b a-1b-1

 H  a1 b  G 

[by definition of commutator] 

  a b (b a)-1  H 

  a b H  = b a H 

  a H b H = b H aH 

  G/H is abelian  

 Hence the proof. 

Self check Exercise-2 

Q. 1 If G has not proper normal subgroup then G = G1. 

10.5 Summary 

 In this unit we studied that the  

 1. The smallest subgroup of a containing non empty subset S is known as subgroup 
generated by a subset of a group. 

 2. Subgroup generated by a smallest is equal to interaction of all subgroups of G 
containing S. 

 3. If a, b  G then a b a-1b-1 is called a commutator of a, b in G. 
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 4. A group is abelian iff the commutator subgroup is the bivial group. 

 5. Commutator subgroup is a normal subgroup. 

10.6 Glossary  

o Commutator element : Let G be a group. The commutator element [g, h] of g 
and h in G is defined as [g, h] = ghg-1h-1. 

o Commutator subgroup : The commutator subgroup consists of all elements of 
the forms ghg-1h-1 for g, h G. 

10.7 Answer to self check exercise  

Self Check Exercise - 1 

Q. 1 Z 

Self Check Exercise - 2 

Q. 1 The only normal subgroup of group G are {e} and G which are trivial subgroup. 

 Gives G1 = {e} so G1 = G only. 

10.8 References/ Suggested Readings 

1. Vijay K. Khanna and S.K. Bhambri, A course in Abstract algebra. 

2. Joseph A. Gallian, Contemporary Abstract Algebra. 

3. Frank Ayrer Jr., Modern Algebra, Schaum's Outline Series. 

4. A. R. Vasistha, Modern Algebra, KeishnaPrakasham Media. 

10.9 Terminal Questions 

 Q. 1 Find the commutator subgroup of G = {± 1, ± i, ± k, ± j} 

 Q. 2 Find the commutator subgroup of S3. 

 Q. 3 Find the commutator subgroup of D4. 

***** 
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Unit - 11 

Homomorphism and Isomorphism of Group 

Structure 

11.1 Introduction 

11.2 Learning Objectives  

11.3 Homomorphism  

 Self Check Exercise-1 

11.4 Isomorphism and Isomorphic Group  

 Self Check Exercise-2 

11.5 Kerncl of Homomorphism  

 Self Check Exercise-3 

11.6 Summary 

11.7 Glossary 

11.8 Answers to Self Check Exercises 

11.9 References/Suggested Readings 

11.10 Terminal Questions 

11.1 Introduction 

Dear students, till yet we have not discussed about functions from one group to another 
group. In this unit we will discuss we will discuss various properties of function like preservation 
of composion, one and onto between group. On the basis of these properties we will define 
homomorphism, isomorphism and automorphism of groups. 

11.2 Learning Objectives 

After studying this unit, students will be able to 

1. define homomorphism in group.  

2. verify whether a function between groups is a homomorphism or not. 

3. obtain the Kernal and image of any homomorphism of group. 

4. define isomorphism in group 

5. verify whether a function between groups is an isomorphism or not. 

6. define automorphism in group.  

7. verify whether a function between group is an automorphism or not. 
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11.3 Homomorphism   

 The functions between groups, which preserve the algebraic structure of their domain 
group, are known as group homomorphism. The term homomorphism is first introduced by 
mathematician Klein in 1893. The term homomorphism is divided term greek word 'homo' and 
'morph', which togather means 'same shape'. A homomorphism is a mathematical tool for briefly 
expressing precise structural correspondences. It is a function between groups satisfying a few 
natural properties.  

 Domain Group : The group from which a function is originated is known as domain 
group. 

 Co domain Group : The group into which the function maps is known as co domain 
group. 

 Definition : Let G and G1 be any two group with binary operation * and *1 respectively. 
Then a mapping ƒ : G G1 is said to be homomorphism if 

  a, b  G, ƒ (a * b) = ƒ (a) *1
ƒ (b)  

 Homomorphic Image :  Let G and G1 be two group with mapping ƒ : G  G1, then 
group G1 is called homomorphic image of the group G, if ƒ is homomorphism and onto. 

 Let us try to save some questions to have better understanding of homomorphism. 

Example 1 : Let G = {1, -1, i, -i}  be a group under multiplication and I = group of all integers 
under addition. Then prove that ƒ : I → G is a homomorphism where ƒ(n) = inn I. 

Solution : Here domain group is I and its binary operation is addition whereas co domain group 
is G and m binary operation is multiplication. 

 Also given ƒ(n) = in n  I 

 Let m, n  I, then 

 ƒ(m) = im and ƒ(n) = in 

 Now ƒ(m+n)  = im+n 

   = im.in 

   = ƒ(m) .ƒ(n) 

  ƒ(m+n) = ƒ(m).ƒ(n) 

 Hence ƒ: I → G is a homomorphism. 

Example 2 : Let G = {a, a2, a3, ....... d2} is a cyclic group under multiplication and its subgroup 
G1 = {a2, a4, a6 ........a12} where ƒ(an) = a2n. Prove that ƒ is homomorphism. 

Solution : Here G is a group under multiplication and G1 is the subgroup, so the binary 
operation on G1 will be multiplication. 

 Now let an and am be two elements of G, such that ƒ(an) = a2n and ƒ(am) = a2m 

 Then ƒ(an am) = ƒ(an+m) [base is same so power can be added] 

   = a2(n+m) [ ƒ(an) = a2n 
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   = a2m+2m    

   = a2n.a2m 

   =ƒ(an).ƒ(am) 

  ƒ(an.am) = ƒ(an).ƒ(am) 

Example 3 : Let Z be the group of all integers under addition and E be the group of even 
integers under addition. 

 Then show that the mapping ƒ : Z → E defined by ƒ(x) = 2x is a homomorphism. 

Solution : Given Z and E are group of all integers and group of integers, under addition 
respectively.  

 Let x, y  Z such that  

  ƒ(x)  = 2x and ƒ(y) = 2y 

 Now ƒ(x+y)  = 2 (x+y) 

= 2x + 2y 

= ƒ(x) + ƒ(y) 

 ƒ(x+y) = ƒ(x) + ƒ(y) 

 Hence ƒ is a homomorphism. 

Endomorphism : A homomorphism from G to G is called an endomorphism. 

Self Check Exercise - 1 

Q. 1 Let Z be the group of all integer under addition and G = {2n, n  Z} be a 
group under multiplication then ƒ : Z → G such that ƒ(n) = 2n  n  Z  

 Show that ƒ is homomorphism. 

Q. 2 Let Z be the group of integers under addition and G = {-1, 1} be the group 
under multiplication. Show that the mapping ƒ : Z→G defined by  

 ƒ(n) 
1 if n is even

,
1 if n is odd

n Z





 

 is a homomorphism. 

11.4 Isomorphism and Isomorphic Group 

 Let G and G1 be two groups. Let we are intersected to map from G to G1 that relate 
group structure of ƒ: G→G1. G to the group structure of G1. An isomorphism is an example of 
structure relationship. If we known all about group G and known that ƒ is isomorphism, we 
immediately know all about group structure of G1, as it is structurally just a copy of G.  

 The term isomorphism is derived from Greek word isos and morph means equal term or 
shape.  
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Isomorphism : Let G and G1 be any two groups with binary operation * and *1 respectively. 
Then a mapping ƒ : G→G1 is said to be isomorphism if  

 1. ƒ is homomorphism  

 2. ƒ is one-one i.e. distinct elements in G have distinct ƒ-images in G1 

 3. ƒ is onto i.e. for every y, there is a x such that ƒ(x) = y. 

Isomorphic Group : Two groups G and G1 are called isomorphic group if there exists a 
mapping ƒ : G →G1 such that ƒ is homomorphism, one-one and onto. 

 If G is isomorphic to G1 then we write G  G1 

 Let us by following question on isomorphic to have more understanding of this. 

Question 1 : Let be the group of all real numbers under addition and R+ is the multiplicative 
group of positive real numbers. Prove that the mapping ƒ : R → R+ defined by ƒ(x) = ex is an 
isomorphism. 

Solution : In order to show that given mapping is isomorphism we have to show that mapping is 
homomorphism and one to one and onto. 

ƒ is homomorphism  

 Let x1, x2 R such that  

  ƒ(x1) = ex1 and ƒ(x2) = ex2 

 Now ƒ(x1+x2) = ex1+x2 

   = ex1. ex2 

   = ƒ(x1) .ƒ(x2) 

  ƒ(x1+x2) = ƒ(x1) .ƒ(x2) 

 Hence ƒ is homomorphism  

ƒ is one-one : 

  Let x1, x2 R. Then  

   ƒ(x1) = ƒ(x2)  

   ex1= ex2 

  taking log both side 

  log ex1 = log ex2 

 
 x1 log e = x2 log e 

  x1 =  x2 

ƒ is onto 

 Let y  R+ i.e. y is any positive real number.  

Then log y is real number  log y  R 
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Now ƒ(log y) = elogy = y 

Thus  y R+ = 7  log y  R such that ƒ (logy) = y. 

So each element of R-1 is the ƒ-image of some element of R. Thusƒ is onto. 

Since  ƒ(x1) = ƒ(x2)  x1 = x2 means two elements in R have the same ƒ-image in R+ 
only if they are equal. Consequently distinct elements in R have distinct ƒ-image in R+. 
Thereforeƒ is one-one and onto. 

Since ƒ is homomorphism and one-one and onto. Hence ƒ is an isomorphism. 

Question 2 : The additive group of integers Z and additive group of integral multiple of 5 under 
map ƒ : Z → 5 Z defined by ƒ(n) = 5n  n Z is an isomorphism. 

Solution : Given map is ƒ : Z → 5 Z defined by  

ƒ(n) = 5n  n Z  

ƒ is isomorphism. 

 Let n, m  Z such that  

  ƒ(n) = 5n and ƒ(m) = 5m. 

Then ƒ(m+n)  = 5(m+n) 

  = 5 m + 5n 

  =ƒ(n) + ƒ(n) 

ƒ(m+n)  = ƒ(m) + ƒ(n) 

ƒ is homomorphism  

ƒ is one-one : 

 Let m, n  Z then 

 ƒ(m)  = f(n) 

 5m = 5n 

 m = n 

So, ƒ is one-one 

ƒ is onto 

 Let y  5 Z 

  y = 5 n, n  Z 

 Since n  Z, so ƒ(n) = 5n = y 

 Thus each element of 5 z is a ƒ-image of same element of Z. Thusƒ is onto. 

 Since ƒ is homomorphism, one-one and onto. Hence ƒ is an isomorphism. 



213 
 

Question 3 : Let G be the group of ordered pair of real number under operation (a, b) + (c, d) = 
(a+c, b+d)  (a, b)(c, d)  G. Let R be the group of real number under addition let ƒ : G → R 

defined by ƒ(a, b) = a  (a, b) G. Check that ƒ is an isomorphism or not. 

Solution : Given G is an group of order pair of real number under addition and R is group of 
real number under addition.  

 To show ƒ : G → G is an isomorphism we have to prove  

 1. ƒ is homomorphism  

 2. ƒ is one-one 

 3. ƒ is onto 

ƒ is homomorphism 

 Let (a, b) (c, d)  G then 

 ƒ(a, b) = a and ƒ(c, d) = c 

Now ƒ [(a, b) + (G d)] = ƒ (a + c, b + d) [by defining of G 

   = a + c   [by dying f (a, b) = a 

   = ƒ (a, b) + ƒ (G d) 

  ƒ [(a, b) + (, d) = ƒ (a, b) + ƒ (c, d) 

 So ƒ is homomorphism.  

ƒ is one-one:- 

 Let (a, b), (c, d)  G Then 

 = ƒ (a, b) = ƒ (c, d) 

 = a = c, but a and c are distinct  

 so a c 

 Let x = (1, 2) and y (1, 3) 

 ƒ (1, 2) = ƒ (1, 3) 

 1 = 1 

 But (1, 2)(1, 3)

 Since different element has same image. So ƒ is not one-one. So ƒ is not isomorphism.  

Epimorphism:- A homomorphism which is onto is called epimorphism.  

Example 4:-Let C and R be the group of complex number and real number under addition. 
Then the map ƒ : c   R defined by  (x + iy) = xxƒiyC. Prove that ƒ is epimorphism, not 
isomorphism.  

Solution:-Since C and R be the group of complex and real number under addition respectively.  

 Given ƒ: C   R such that + (x + iy) = x. 
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 To prove ƒ is epimorphism, we have to prove ƒ is homomorphism and ƒ is onto. 

ƒ is homomorphism :- Let 31, 32  

 ƒ (31) = ƒ (a + ib) = a and ƒ (32) = ƒ (c + id) =  

 Now 31 + 32 = (a + ib) + (c + id) 

  = (a + c) + i (b + d) 

  ƒ (31 + 32) = ƒ[(a + c) + i (b + d)] 

  = a + c 

  = ƒ(a + ib) + ƒ (c + id) 

  = ƒ (31) + ƒ (32) 

  ƒ (31 + 32) = ƒ (31) + (32) 

  ƒ is homomorphism. 

ƒ is not one - one 

 Let 31 = 1 + 2i 

  32 = 1 3i 

  31, 32  

 then ƒ (31) = ƒ (H2i) = 1 

  ƒ (32) = ƒ (1 + 3i) = 1 

  ƒ (31) = ƒ (32) 

 but 3132 

 So, ƒ is not one - one. 

ƒ is onto :- 

 Let r R 

 Then r = r + io  C 

 so ƒ (r + io) = r  [by defining of ƒ] 

 So every element of co domain is animage of same element of domain. So ƒ is onto. 

 Since ƒ is homomorphism, and onto but not one-one Question So ƒ is epimorphism but 
not isomorphism 

Question 5:-Let Z and E be group of integers and even integers under addition respectively. 
The mapping ƒ : Z   E defined by ƒ (x) = 2x xisomorphism or not.  

Solution : ƒ is homomorphism [Check question 3] 

 To prove ƒ is onto 

 Let y  E be any element 
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 Then y = 2x, x  Z by defining ƒ : Z   E ƒ(x) = 2x 

  ƒ (x) = 2x = y 

 Since every element of codomain is an image of some element of domain. So ƒ is onto.   

 Hence ƒ is epimorphism.  

 Hence ƒ is epimorphism.  

To prove ƒ is one-one  

 Let x1 y  Z such that ƒ(x) = 2x and ƒ (y) = 2y 

  ƒ (x) = ƒ (y) 

  2x = 2y 

  x = y 

  ƒ is one - one 

 So ƒ is isomorphism.  

Question 6:- Show that additive group of complex number a + ib, a, b  z is isomorphic to 
multiplicative group of rational numbers, {2a 3b, a, b  Z} 

Solution:- Let G = {a + i b ; a, b  Z} be the additive group of complex numbers.   

 and G1 = {2a 3b, a, b  Z} be the multiplicative group of rational number.  

 Let ƒ : G   G   by is defined by  

  ƒ (a + i b) = 2a 3b
 a + i b  G, a, b  I 

 To prove G is isomorphic to G1 we have to show  

 (1) ƒ is homomorphism 

 (2) ƒ is one one 

 (3) ƒ is onto 

(1) ƒ is homomorphism:- Let x, y  G be any two element then x = a + ib, y = c + id, a, b, 
c, d  Z 

 Then ƒ (a + ib) = 2a 3a = ƒ (x) 

 and ƒ (c + id) = 2c 3d = ƒ (y) 

 Now ƒ (x + y) 

  ƒ [(a+ib) + (c + id)] = ƒ [(a+c) + i (b+d)] 

  = 2a+c 3b+d 

  = 2a 2c 3b 3d 

  = (2a. 3b) (2c. 3d) 

  = ƒ (a +i b) ƒ (c + i d) 
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  = ƒ (x) ƒ (y) 

 = ƒ (x + y) = ƒ (x) ƒ (y) 

 So ƒ is homomorphism. 

2. ƒ is one - one:-  

Let x, y  G such that 

  ƒ (x) = ƒ (y) 

  ƒ (a + ib) = ƒ (b + id) 

  2a 3b = 2c . 3d 

  
2 3

2 3

a b

c d  = 1 

  2a-c 3b-d = 1 = 2030 [  anything raise to power 0 is 1] 

  a - c = 0 and b - d = 0 

  a = c and b = d 

  a + ib = c + id 

  x = y 

 So ƒ is one - one. 

3. ƒ is onto:- 

Let y  G1 be any element, then ƒ a, b  Z such that 

  y = 2a 3b 

 Thus corresponding to every y  G1, ƒ a + ib G such  

that ƒ (a + ib) = 2a 3b 

  ƒ is onto 

 Since ƒ is homomorphism, one-one and onto  

 So ƒ is isomorphism 

 and G is isomorphic to G1. 

Automorphism: A homomorphism from G G which is one-one and onto is known as 
automorphism. How note that domain and codomain groups are same.  

Question 7. Let R+ be the multiplicative group of stoutly position real numbers. Prove that the 
mapping ƒ R+  R+ defined by ƒ(x) = x2

 x  R+ is automorphism.  

Solution: Given ƒ + R+  R+ 

  defined as ƒ((x) = x2
 x  R+ 

 To show ƒ is automorphism, we have to show  
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 1. ƒ is homomorphism or endomorphism 

 2. ƒ is one = one 

 3. ƒ is onto 

ƒ is homornorphism/endomorphism 

 Let x, y R+ such that ƒ((x) = x2, ƒ(y) = y2 

 Now, ƒ(xy) = (xy)2 

  = x2 y2 

  = ƒ(x). ƒ(y) 

  ƒ(xy) = ƒ(x). ƒ(y) 

 So ƒ is homomorphism. 

ƒ is one-one:- 

Let x, y  R+ then ƒ(x) = x2 and ƒ(y) = y2 

 such that ƒ(x) = ƒ(y) 

  x2 = y2 

  x = y 

  ƒ is one-one 

ƒ is onto :-  

Let for any x  R+  x  R+ such that 

  ƒ  x  =  
2

x = x 

  ƒ  x  = x 

 So ƒ is onto. 

 Since ƒ : R+  R+, is homomorphism, one-one and onto So, ƒ is auto morphism i.e. 
isomorphism of R+ onto itself. 

Question 8:- Show that the mapping  :   c  given by (x + iy) = x = iy, is an automorphism. 
Here c is the additive group of complex number. 

Solution:- Given ƒ :   c defined by  (x + iy) = x - iy 

 ƒ is homomorphism = Let 31, 32 here 

  31 = a + iy and 32 = c + id 

 then ƒ(31) = a = ib and ƒ(32) = c - id 

 Now ƒ (31 + 32) = ƒ   ( )a ib f c id      
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  = ƒ   ( )a c i b d      

  = (a + c) - i (b + d) 

  = (a - ib) + (c - id) 

  = ƒ (31) + ƒ (32) 

  ƒ (31 + 32) = ƒ (31) + ƒ (32) 

  ƒ is homomorphism 

ƒ is one-one:-  

Let 31, 32,  c such that 

  ƒ (31) = ƒ (32) 

  a - ib = c - id 

 Using equality of complex numbers 

  a = c, b = d 

  a = ib = c + id 

  31 = 32 

 So ƒ is one - one 

ƒ is onto : 

Let 3  c  a + ib c, then a - ib c  

such that ƒ (a + ib) = a - ib 

  ƒ is onto 

 So ƒ is automorphism.  

Self Check Exercise - 2 

Q. 1 Let R+ be multiplicative group of all positive real numbers and R be additive 
group of all real numbers. Then show that the mapping ƒ : R+  R defined 
by ƒ(x) = logx x  R+ is an isomorphism. 

Q. 2 Prove that multiplicative group of all matrices 
a b

b a

 
 
 

, a, b, c, d are real 

number not both equal to zero, is isomorphic to group of non zero complex 
number a + ib, a, b  R, a2 + b2

 0 under multiplication.  

Q.3 Prove that a group is abelian the mapping ƒ : G   G1 defined by ƒ(x) = x-1 
is an automorphism.  

Q.4 Prove that if for a group ƒ : G G is given by ƒ(x) = x3, x  G is an 
isomorphism, then G is abelian.  
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11.5 Kernel of Homomorphism : 

Let G and G1 be two groups and ƒ : G   G1 be a homomorphism. Then kernel of ƒ is 
defined as  

 Kernel to ƒ = {x G :ƒ (x) = e1} where e1 is identity element of G1 

 Kernal of ƒ is denoted by Kerƒ 

Image of Homomorphism:- A group G1 is called homomorphic image of a group G is there 
exists a mapping ƒ : G   G1 such that ƒ is homomorphism and onto. 

 Let us try to find kerpel of homomorphism for some functions as given below: 

Question 1: Find Kernel of ƒ, for ƒ : 2   G defined by ƒ(n) = 2n, n  Z, where  is the group of 
integer under addition and G = 2n, n  Z, is a group under multiplication. 

Solution:- First to show that ƒ : Z   G is ƒ is homomorphism  

 Let m, n  Z 

 Such that ƒ (m) = 2m and ƒ (n) = 2n 

 Now ƒ (m + n) = 2m+n 

   = 2m. 2n 

   = ƒ(m). ƒ(n) 

  ƒ (m+n) = ƒ (m). ƒ (n) 

 So ƒ is homomorphism. 

 Since ƒ : Z   G 

 Since G = n, is a group under multiplication, n  Z 

 Since 2o = I  G will act as identity element of group G  

 Now using the defining of karnel of homomorphism 

 Ker ƒ = {n Z :ƒ (n) = 1} 

  = {n  Z, ƒ (n) = 2n = 1 = 2o} 

  = {n z ; n = 0} 

  = { 0} 

  Ker ƒ = {0} 

Question 2: Given ƒ : Z  defied by ƒ(x) = 2x  x  Z is homomorphism. Find kernal of ƒ. 
Here Z is set of integers and E is set of even integer under addition. 

Solution:- Given ƒ : Z   E is a homomorphism. 

 To find kernel of ƒ. By definition of kernel of homomorphism, the identity element of E i.e. 
set of even integer under addition is 0. 

 So Ker ƒ = {x Z :ƒ (x) = 0} 
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  = {x Z : 2x = 0} 

  = {x Z : x = 0} 

 Ker ƒ = {x} 

Self Check Exercise - 3 

Q. 1 Find Kernel of ƒ for all the questions done in the section of homomorphism 
and isomorphism.  

11.6 Summary 

 Dear Students in this unit, we studied that 

 1. If ƒ : G   G1, and this mapping preserver the Compositions in G and G1 then ƒ 
is homomorphism. 

 2. If ƒ : G G, then the homomorphism from G to G is known as endomorphism 

 3. If ƒ : G   G1, then the homomorphism which is one-one then it is known as 
monomorphism 

 4. If ƒ : G   G1, then the homomorphism which is onto is known as opimorphism.  

 5. If ƒ : G   G1, then the homomorphism which is one-one and onto is known as 
isomorphism. 

 6. If ƒ : G G, then the homomorphism which is one-one and onto is known as 
automorphism.  

 7. If ƒ : G   G1, is the homomorphism then Ker ƒ = {x  G : ƒ (x) = e1} where e1 is 
identity element of group G1. 

11.7 Answers to Self Check Exercises  

Self Check Exercise -1 

Q. 1 ƒ : Z   G  

then for n1, n2  Z 

ƒ (n1 + n2) = ƒ (n1). ƒ (n2) 

Q.2  Prove ƒ (n1 + n2) = ƒ (n1) ƒ(n2), n1, n2 Z 

for there different cases  

1.  when n1, n2 are even 

2.  when n1, n2 are odd 

3.  when one of n1, n2 is even and other is add. 

Self Check Exercise - 2 

Q. 1 Show that ƒ is homomorphism, one-one and onto 

Q. 2 Cheek the properties of homomorphism, one-one and onto. 
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Q.3  To prove ƒ is automorphism how that ƒ is homomorphism, one-one and onto 
from G to G i.e. fro in same group G. 

Q.4  Show that ƒ is homomorphism, one-one and onto. 

Self Check Exercise 3 

Q. 1 Ker ƒ = {4} 

Q. 3 Ker ƒ = {0} 

Q. 4 Ker ƒ {0} 

Q. 2 Ker ƒ {0} 

Q.3 Ker ƒ = {(o, b) : (b  R} 

11.8 Glossary 

o Domain Group: The group from which a function is originated is known as 
domain group. 

o Epimorplism: A homomorphism which is onto is called epimorplism.  

o Kernal of homomorplism: Let ƒ : G - G1 be a homomorplism. The Kernal of ƒ = 
{x G : F(n) = e1} where e1 is identity of G1. 

11.9 References/Suggested Reading  

 1. Vijay K. Khanna and S.K. Bhambari, A course in Abstract Algebra  

 2. Joseph A Gallian, Contemporary Abstract Algebra   

 3. Flank Ayers Jr. Modern Algebra, Schaunis outline Series 

 4. A.R. Varistha, Modern Algebra, Krishna Perkashan Media. 

11.10 Terminal Questions 

 Q.1 If G is the multiplicative group of nxnnon singular real matrices and R+ be the 
multiplicative group of non zero real numbers, then show that the mapping ƒ : G 
  R+ defined by ƒ(A) = |A|,  G is a homomorphism, onto. Also find kerƒ. 

 Q.2 Prove that every cyclic group of order n is isomorphic to the group of nthroot of 
unity under multiplication.  

**** 
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Unit - 12 

Theorems On Homomorphism 

Structure 

12.1 Introduction 

12.2 Learning Objectives  

12.3 Theorems on Homomorphism 

 Self Check Exercise - 1 

12.4 Summary 

12.5 Answers to Self Check Exercise 

12.6 Glossary 

12.7 References/Suggested Readings 

12.8 Terminal Questions 

12.1 Introduction 

Dear Students, though on isomorphism is a special case of homomorphism. Yet oath the 
concepts have totally different roles. Homomorphism act as investigative tool in group theory. 
We may understand the cocept homomorphism by wing this analogy between homomorphism 
and photography. A photograph of a person cannot tell us about the person's exact height, 
weight or age. But from photograph we are able to decide that a person is tall or short, heavy or 
thin, old or young, male or female. In the same way homomorphic image of a group gives us 
some information about the group. By several homomorphic images of a group we can know 
more about the group. So dear student in this unit we shall prove some results about relation 
between homomorphism and different types group in the form of some theorem. 

12.2 Learning Objectives  

 After studying this unit student will be able to 

 (1) Prove some basic theorems on homomorphism  

 (2) State and prove first theorem on homomorphism  

 (3) Apply theorems of homomorphism in group 

12.3 Theorems on Homomorphism  

 Theorem 1:- Let ƒ is homomorphism of G into G1. ƒ : G   G1 is a homomorphism then 
ƒ (e) = e1 when e and e1 are identity elements of G and G1 respectively. Or, then ƒ caries the 
identity of G into identity of G1 

 Given ƒ G   G1 

Proof:- Let g G 
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 then ƒ (g)  G1 

 As e1 is identity element of group G1i e e1
 G1 Since G1 is a group, so closed under 

multiplication.  

 So ƒ (g). e1 = ƒ (g) 

  = ƒ (ge) [as e is identity of group G] 

  ƒ (g). e1 = ƒ (ge) 

 Since ƒ is a homomorphism  

 ƒ (g) . c1 = ƒ (ge) = ƒ (g). ƒ (e) 

 Since G1 is a group, So Cancellation law holds   

  e1 = ƒ (e) 

  ƒ (e) = e1 

Theorem 2 : If ƒ is a homomorphism of G into G1 i.e. ƒ : G   G1 ten F (g-1) = [ƒ (g)]-1 g G 

Proof : Given ƒ : G   G1 is a homomorphism 

 Let g G, Since G is a group, So every element has a inverse. Let inverse of of is 
sg-1. 

 So G, g-1
 G 

 Since ƒ is a homomorphism 

 ƒ (g) .ƒ (g-1) = ƒ (g g-1) 

  = ƒ (e) 

  = e1  [Using theorem 1] 

 Also ƒ (g-1) ƒ (g) = ƒ (g-1g) 

  = ƒ (e) 

  = e1 

  ƒ (g) .ƒ (g-1) = e1 = ƒ (g-1) .ƒ (g) 

  [ƒ (g)]-1 = ƒ (g-1)  1

.a b e

thenb a

 
 

 
 

 Hence proved  

Theorem 3:- Let ƒ is a homomorphism of G into G1 i.e. ƒ : G   G1 with Kernel K, then Kernel 
ƒ is normal subgroup of G. 

Proof : Given ƒ : G   G1 is a homomorphism with key = Kunelƒ = {x  G ; ƒ (x) = e1} 

 

 Since G and G1 are group; Let e and e1 be identity elements of G and G1. 
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 We have to show that Ker ƒ = k is normal subgroup of G. We first prove that k is a 
subgroup of G and then will prove k is a normal subgroup of G. 

K is a subgroup of G:- 

 Since e is identity of G and by theorem 1, 

 ƒ (e) = e1, e  G. 

 So k . 

 Let x, y  k be any two elements. 

 So by definition of k, ƒ f (x) = e1 

  ƒ (y) = e1 

 Since y  k 

 Now ƒ (y-1) = [ƒ (y)]-1 

  = (e1)-1 

  ƒ (y-1) = e1 

  y-1
 k 

 ƒ (xy-1) = ƒ(x) ƒ (y-1)  [ ƒ is homomorphism] 

  = ƒ (x) [ƒ (y)]-1  [Using theorem 2] 

  = e1 (e1)-1 

  = e1e1 

  = e1 

 ƒ (xy-1) = e1 

 
 xy-1 K  x, y  k 

Hence k is a normal subgroup of G. 

K is normal subgroup of G 

 Let g G and, x  k be any element 

 ƒ since x  k ƒ (x) = e1 

So ƒ (g x g-1) = ƒ (g) ƒ (x) ƒ (g-1)  [  ƒ is homomorphism] 

  = ƒ (g) e1 [ƒ (a)]-1  [  ƒ (g-1) = [ƒ (g)]-1 

  = ƒ (g) [ƒ (g)]-1 

  = e1 

  ƒ (g x g-1) = e1 

  g x g-1
 k 
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 They g x g-1
 k when g G and x  k 

 Hence k = kerƒ is normal subgroup of G. 

Theorem 4:The homomorphism ƒ : G   G1 is an isomorphism if and only if kerƒ = {e} i.e. kerƒ 
consist only identity element of G. 

Proof:-Given ƒ : G   G1 is a homomorphism of G to G1. Let e and e1 be identity element of G 
and G1 respectively. Also let kernel ƒ is given by k. Let ƒ is an isomorphism to prove kerƒ = {e} 
Since ƒ is an isomorphism, so ƒ is one-one, onto homomorphism.   

 Let a kerƒ 

 then by definition of kerƒ, ƒ (a) = e1 

  ƒ (a) = e1 = ƒ (e)  [  Theorem 2 ƒ (e) = e1] 

  a = e 

 Thus a kerƒ a = e 

 So e is the only element of G which belongs to kerƒ. 

 Thus kerƒ = {e} 

Conversely:-If kerƒ = {e} then to show ƒ is isomorphism of G to G1 it is sufficient to prove ƒ is 
one-one. 

 Let a, b  G, then ƒ (a) = ƒ (b) 

  ƒ (c) [ƒ (b)]-1 

  ƒ (a) ƒ (b-1) = e1 [  [ƒ (b-1)] = [ƒ(b)-1] and ƒ (b). [ƒ(b)]-1 = e 

  ƒ (a b-1) = e1  [ ƒ is homomorphism] 

  ab-1
kerƒ  [by defining of kerƒ] 

  ab-1 = e  kerƒ = {e} 

  ab-1 b = eb 

  a = b 

  ƒ is one - one 

 Hence ƒ is isomorphism of G into G1. 

Theorem 5: Let H be a normal subgroup of a group G. Also let ƒ : G   G/H be a map 
defined by ƒ (x) = Hx x  G. Then ƒ is a homorphism of G onto G/H with H as kernel of ƒ. 

Proof: Given the mapping ƒ : G   G/H is defined by ƒ (x) = H x x G. 

  H x is any element of G/H, for x  G. 

 So the mapping is onto. 

 ƒ is Homomorphism G   G/H 
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 Let a, b  G Then, ƒ(a) = Ha and ƒ(b) = Hb 

 ƒ (ab) = Hab [by defining ƒ (x) = Hx 

  = (Ha) (Ha) [  H is normal] 

  = ƒ (a) ƒ (b) 

  ƒ (a b) = ƒ (a) ƒ (b) 

  ƒ is homomorphism of G onto G/H. 

 So every quotient group of a group is a homomorphic image of that group.  

Now to prove kerƒ = H 

 Let kerƒ be the kernel of homomorphism ƒ. Also we know that identy element of quotient 
group G/H is the coset of H 

 So kerƒ = {y G ;ƒ (y) = H} 

 = {y G ; H y = H} 

 = { y G, y  H} 

 = H  [  H is subgroup of G.] 

 So Ker ƒ = H 

 Hence proved 

Theorem 6 : Every homomorphic image of a group is isomorphic to some quotient group of G. 

 This is also known as fundamental theorem on Homomorphism.  

 Let G and G1 be two group and ƒ : G   G1 is homomorphism G onto G1. If H is the 
kernel of ƒ. Then G/H G1.  

Proof : Since H is kernel of ƒ, and kernal of ƒ is a normal subgroup. So H is a normal subgroup 
of a group G.  

 So, G/H = {Ha ; a  G} is a quotient group under the composition, (Ha) (Hb) = Hab  Ha, 
Hb  G/H  [by defining composition, (Ha) (Hb) = Hab  Ha, Hb  G/H  [by defining]  

Let us define a map ƒ : G G/H by 

 ƒ (a) = Ha ; a  G 

 To prove ƒ is homomorphism and onto 

ƒ is homomorphism : 

Let a, b  G such that ƒ (a) = Ha, ƒ(b) = H (b) 

  ab  G  [  G is a group] 

 Now ƒ (ab) = Hab 

  = (Ha) (Hb) [  H is normal Subgroup of G] 
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  = ƒ (a) ƒ (b) 

  ƒ (ab) = ƒ (a) ƒ (b) 

 So, ƒ is homomorphism 

ƒ is onto : 

Let X  G/H be any element 

  X = Ha ; for some a  G such that  

  ƒ (a) = Ha = X 

  ƒ is onto. 

 So, ƒ : G   G/H is homomorphism and onto. 

  G/H is homomorphic image of G. 

Conversely: Let group G1 is the homomorphic image of G. So, there exist a map ƒ : G   G1 
such that ƒ is homomorphism and onto. 

 Let  H = kerƒ 

  H is normal subgroup of G. 

  G/H forms a quotient group. 

 Let ƒ : G/H   G1 by 

  (Ha) = ƒ (a),  Ha  G/H 

 If Ha  G/H1 then a  G [by defining of Quotient group] 

  ƒ (a)  G1 

  ƒ (Ha)  G1  [ ƒ : G   G1] 

To show  is well defined homomorphism, one one and onto. 

 is well defined : 

 Let   Ha, Hb  G/H and onto. 

 Ha = Hb 

  ab-1
 H, here H is the Kernel of F. 

  ƒ(an-1) = e1  {e1  is identity element of G1} 

  ƒ(a) ƒ(b-1) = e1  [ ƒ is homomorphism] 

  ƒ(a) [ƒ(b)]-1 = e1 [ ƒ(a-1) = [ƒ(a)]-1 [by theorem 2] 

 ƒ(a) [ƒ(b)]-1ƒ(b) = e1 ƒ (b) [multiplying both side by ƒ(b) 

 ƒ(a)  = ƒ(b)  [ ƒ(b-1)] ƒ(b) = e and e1
ƒ(b) = ƒ(b)] 

 (Ha)  =(Hb) 
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So  is well defined  

 is homomorphism 

 Let Ha, Hb  G/H, a, b  G 

 Now  (Ha.Hb)  =  (H ab) 

    = ƒ (ab) 

    = ƒ(a) ƒ (b)  [ ƒ is homomorphism] 

    =  (Ha) . (Hb) 

  (Ha.Hb) =  (Ha) .  (Hb) 

   is homomorphism of G/H into G1 

 is one-one 

 Let Ha, Hb  G/H such that  

   (Ha)   =  (Hb) 

  ƒ(a)   = ƒ (b) 

 ƒ(a) [ƒ(b)]-1 = ƒ(b) [ƒ(b)]-1  [multiplying both side by [ƒ(b)]-1 

 ƒ(a) ƒ(b-1) = e1   [  [ƒ(b)]-1ƒ(b-1) and ƒ(b) (ƒ(b)]-1 = e1]  

 ƒ(ab-1) = e1    [ ƒ is homomorphism] 

 ab-1
 Ker ƒ    [by defining of Ker ƒ] 

 ab-1
 H    [ H = Ker ƒ] 

 Ha = Hb    [ H is normal subgroup of G] 

  is one - one. 

Some Results Related to Homomorphism  

 If ƒ G →G1 be a homomorphism. Then  

 1. For any subgroup H of G, ƒ(H) is a subgroup of G1. 

 2. For any subgroup K1 of G1; ƒ
-1 (K1) is a subgroup of G containing Ker ƒ and  

ƒ
-1(K1) is normal in G whenever K1 is normal in G1.  

 3. If ƒ is onto, then for any normal subgroup K of G, ƒ(K) is normal subgroup of G1. 

 Let us do some questions related to these theorems for their application part.  

Question 1 : Let ƒ and g be homomorphism from G to G1.  

Show that H = {x  G; ƒ(x) = g(x)} is a subgroup of G. 

Solution : Given ƒ. g are homomorphism from G to G1 

 Let e and e1 be the identity element of G and G1 respectively, then 
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 ƒ(e) = g(e) = e1  [ ƒ : g →G1 and g : G → G1] 

  e  H   by using defining of H. 

  H 

 H is non empty set. 

 To show, H is a subgroup of G, we have to prove xy-1
 H for x, y  H. 

 So let x, y  H be any two elements. 

 So by defining of H, ƒ(x) = g(x) and ƒ(y) = g(y) 

 Now ƒ(xy-1)  = ƒ(x) ƒ(y-1)  [ ƒ is homomorphism] 

    = ƒ(x) [ƒ(y)]-1  [ ƒ(y-1) = [ƒ(y)]-1 as ƒ is homomorphism] 

    = g(x) [g(y)]-1  [  g is homomorphism so g(y-1) = [g(y)]-1] 

    = g(xy-1)  [  g is homomorphism] 

  ƒ(xy-1) = g(xy-1). 

 so for, x, y  H, ƒ(xy-1) = g(xy-1) 

  xy-1
 H 

 Hence H is a subgroup of G. 

Question 2 : Find all subgroups of Z/21Z 

Solution : Let K be a subgroup of Z/21Z 

 Then K = H/21Z, for some subgroup H of Z 

 satisfying 21Z  H. 

 As H is a subgroup of Z, such that 21Z  H, then  

 H/21Z is a subgroup of Z/21Z. 

 In order to find all subgroup of Z that contain 21Z, we have to find positive divisor of 21 

 Since, 1, 3, 7, 21 are only positive divisor of 21 

 So Z, 3Z, 7Z and 21Z are only subgroup of Z that contain 21Z 

 Hence Z/21Z, 3/21Z, 7Z/21Z and 21Z/21Z {e} are the only subgroup of Z/21Z. 

Question 3 : Show that the group 6Z/30Z  Z5 where  

 Z5 = {[0], [1], [2], [3], [4], +5}  bea additive group of residue classes module 5. 

Solution : Let ƒ : 6Z → Z5 be a mapping defined as ƒ(6Z) = [n]  n  Z 

 To show ƒ is homomorphism and onto 

ƒ is homomorphism  

 Let m, n  Z, then 6m, 6n  6Z 
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 So, ƒ(6m + 6n)  = ƒ (6(m+n)) 

    = [m + n] 

    = [m] + [n 

    = ƒ(6m) + ƒ(6n) 

  ƒ is homomorphism 

ƒ is onto 

 For [n] Z5, n Z 

  6n  6Z such that ƒ(6n) = [n] 

  ƒ is onto 

 Using fundamental theorem of homomorphism  

  6Z/Ker ƒ Z5. 

 Now, to show Ker ƒ = 30Z 

 Since [0] is identity element of Z5 

 Since Ker ƒ = {6n  6Z, ƒ(6Z) = [0]} 

   = {6n  6Z, [n] = [0]} 

   = {6n  6Z; n is a multiple of 5} 

   = {6n  6Z, n= SK, K  Z} 

   = {6.5 K  6Z} 

   = {30 Z} 

  Ker ƒ = 30Z 

Hence 6Z/30Z  Z5. 

Self Check Exercise-1 

Q. 1 Find all the subgroups of Z/24Z. 

Q. 2 Show that the group 4Z/12Z  Z3. 

Q. 3 Show that GL(21R) /SL(21R)R. 

12.4 Summary 

 Dear Students in this unit, we studied that 

 1. If ƒ : G   G1 is homomorphism, then ƒ carries the identity of G into identity of 
G1. 

 2. If ƒ : G   G1, is homomorphism, then ƒ(g-1) = [ƒ(g)]-1. 

 3. If ƒ : G   G1, is homomorphism, then Ker ƒ is normal subgroup of G. 
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 4. If ƒ : G   G1, is homomorphism is isomorphism iffkerƒ = {e}' 

 5. Every homomorphic image of a group is isomorphic to same quotient group of G. 

12.5 Answers to Self Check Exercises  

Self Check Exercise -1 

Q. 1 Z/24Z, 2Z/24Z, 3Z/24Z, 4Z/24Z, 6Z/24Z, 8Z/24Z, 12Z/24Z, 24Z/24Z 

Q.2  Same as Question 3. 

Q. 3 Same as Question 3. 

12.6 Glossary 

o Homomorphism : Let G and G1 be the two group with binary operation * and *1 
respectively. Then a mapping ƒ : G → G1 is said to be homomorphism is  a, b  
G, ƒ(a*b) = ƒ(a)*1

ƒ(b). 

o Isomorphism : A mapping ƒ : G - G1 is said to be isomorphism, is ƒ is 
homomorphism and ƒ is one-one and onto also. 

12.7 References/Suggested Reading  

 1. Vijay K. Khanna and S.K. Bhambari, A course in Abstract Algebra  

 2. Joseph A Gallian, Contemporary Abstract Algebra   

 3. Flank Ayers Jr. Modern Algebra, Schaunis outline Series 

 4. A.R. Varistha, Modern Algebra, Krishna Perkashan Media. 

12.8 Terminal Questions 

 Q.1 Prove that every group is isomorphic to a permutation group. 

 Q.2 Any infinite cyclic group is isomorphic to additive group of integers.  
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Ring 

Structure 
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13.2 Learning Objectives  

13.3 Ring (Definition and Examples) 

 Self Check Exercise-1 

13.4 Properties of Ring 

 Self Check Exercise-2 

13.5 Summary 

13.6 Glossary 

13.7 Answers to Self Check Exercises 

13.8 References/Suggested Readings 

13.9 Terminal Questions 

13.1 Introduction 

Dear student, in previous unit we studies about group which is an algebraic structure 
equipped with one binary operation. Here in this unit we shall study ring, which is again an 
algebraic structure equipped with two binary operations. In this unit we will study the definition of 
ring along with same examples and will prove some theorems base on ring.  

13.2 Learning Objectives  

 After studying this unit, students will be able to 

 1. define ring 

 2. give examples of ring. 

 3. can prove a given algebraic structure with defined binary operation is a ring 

 4. prove the theorem base on ring. 

13.3 Definition of Ring 

 Let R be a non-empty set in which there are defined two binary operations called 
addition and multiplication, denoted by '+' and '.' respectively, then the algebraic structure (R1 + 
.) is called a ring if the following axioms are satisfied : 

Axioms of additions  

1. Closure property : a, b  R, a + b  R. 
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2. Associative property : a, b, c  R, a +(b+c) = (a+b)+c 

3. Existence of additive identity : a  R,  and element OR such that a + 0 = a 
= 0+a. 

4. Existence of additive inverse : a  R,  - aR such that a+(-a) + a. 

5. Commutative under addition : a, b  R, a + b = b+a. 

Axioms of Multiplication 

 6. Closure Property : a, b  R, a.b R 

 7. Associative Property : a, b, c  R, a(bc) = (ab) c 

Axiom of distributivity  

 Multiplication is distributive with respect to addition i.e.  a, b, c  R 

a.(b+c)  =a.b + a.c  Left distributive law 

and  

 (b+c).a = b.a + c.a  Right distributive law 

 So any algebraic structure with two binary operation satisfies above properties is known 
as a ring. 

Note 

1. From the definition, it is clear that a ring is cumulative or abelian group under 
addition and semi group under multiplication which satisfies distributive property. 

2. The element O  R is the additive identity. It is known as zero element of  the ring. 
As identity element is unique, So every ring has a unique  zero element.  

Ring with Unity : If a ring possesses multiplicative identity. They it is known as ring with unity. 
Mathematically, if in a ring R1 there exists an element denoted by 1 such that aR, a.1 = 1.a = 
a, then R is called a ring with unity. The element IR, is called the unit element of the ring.  

Commutative Ring : If in a ring R, the multiplication composition is also commutative i.e.  a, b 
 R a. b = b. a then R is called a commutative ring. 

To have more understand of ring let us take following examples: 

Example: The set I of all intergers is a ring with respect to addition and multiplication of 
integers. This ring is known as ring of integers.  

Solution: Axions of addition 

(1) Closure Property:- 

 a, b  I, a + b  I, as sum of two integers is an integer. 

(2) Associative Property:- 

Associative property holds in integers, so if  a, c  I a + (b + c) = (a + b) + c. 
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(3) Existence of additive identity:- 

 Since 0  I, so a I 

 a + 0 = 0 + a = a. So, 0 is additive identity  

(4) Existence of additive inverse:- 

  I, there exist – a  I, such that  

 a + (- a) = 0 = (- a) + a 

 So, -a is additive inverse of a. 

(5) Commutative property:- 

 Commutative property holds in integers. So  a, b  I a + b = b + a. 

 So I is an abelian group. 

 Axioms of multiplication 

(6) Closure Property under multiplication:- 

 Since product of two integer is again an integer so a, b  I, ab  I 

 So, set of integer is closed under multiplication. 

(7) Associative property:- 

 Associative law holds in integer under multiplication so  a, b, c I, a(bc) = (ab) 
c. 

 Axioms of distributivity 

(8) Since multiplication of interger is distributive with respect to addition of integers, 
so  a, b, c  I 

  a (b + c) = ab + ac 

and (b + c) a = ba + ca. 

So the set of integer I is a ring under addition and multiplication. 

Remark: The set I is a commutative ring with Unity. 

Since 1  I, so a I a.1 = a, so 1 act as multiplicative identity. So the set I is ring with 
Unity. 

Again multiplication is commutative in integers i.e.  a, b  I  

 a.b = b.a. 

 So, the set I is a commutative ring with unity. 

Example 2: Let the set ] [i], set of all complex number a + ib, where a and b are integer. Then 
show that the set ] [i] is a ring under addition and multiplication of complex number. 
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This ring is known as ring of Gaussian integers.  

Solution:Give ][i] = {a + ib ; a.b I}  

Since element of ][i] are complex number, so all properties of complex numbers are two 
for the set ][i]. 

Axioms Under Addition 

(1) Closure Property:- 

Let x, y  ][i], such that   

x = a + ib 

y = c + id, a, b, c, d  I 

 Then x + y = (a + ib) + (c + id) 

  = (a + c) + i(b + d) 

  ][i]  [ a + c  I, b + d  I 

 Hence ][i] is closed under addition. 

(2) Associative Property:- 

Let x, y, z  ][i] such that  

 x = a + ib 

 y = c + id 

 z = c + if, a, b, c, d, e, f  I 

Then (x + y) + z =      a ib c id e if        

 =      a c b d e if        

 = (a + c + e) + I (b + d + f). 

as addition is associative for integers, so 

    a c e i b d s             

      a ib c e i d f         

      a ib c id e if         

 = x + (y + z) 

 Hence (x + y) + z = x + (y + z) 

 So Associativity holds in ][i] 
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(3) Existence of additive identity:- 

 Let x = a + ib ][i], a, b  I. 

 we know that 0  I, so 0 + i0  ][i] such that 

 x + 0 = (a + ib) + (0 + i0) = (a + 0) + I (b + 0) 

  = a + ib 

  = x 

  = 0 + x 

 Hence 0 + i0 is the additive identity of ][i]. 

(4) Existence of additive inverse: 

 Let x = a + ib ][i], a, b  I, then -a, -b  I such that xa + ib +  a i b      = 

   a a i b b            

 = 0 + i0 

 = 0 

 =    a i b a ib        

(5) Commutative under addition 

 Let x, y  ][i] such that 

  x = a + ib 

  y = c + id, a, b, c, d  I 

 Then x + y = (a + ib) + (c + id) 

  = (a + c) + I (b + d) 

  = (0 + a) + I (d + b) [ addition is commutative for integers] 

  = (c + id) + (a + ib) 

  = y + x 

 So x + y = y + x 

 Hence ][i] is commutative under addition 

 Hence -a + I (-b) is the additive inverse of a + ib = x. 

 Axioms under multiplication 

(6) Closure Property:- 

Let x, y  ][i] such that 
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  x = a + ib 

  y = c + ib, a, b, c, d  I. 

 Then x.y = (a + ib) (c + id) 

  = ac + ibc + iad + i2bd 

  = ac – bd + I (bc + ad)  [ i2 = -1] 

  = (ac – bd) + I (bc + ad) 

 as a, b, c, d are integers so ac – bd I and bc + ad I 

 sox.y = (ac – bd) + I (bc + ad)  ][i] 

So ][i] us kissed under multiplication. 

(7) Associative Property:- 

 Let x, y, z  ][i] such that 

  x = a + ib 

  y = c + id 

  z = e + if 

then x.(y.3) = (a + ib).    .c id e if     

  = (a + ib). [ce + ide + ief + i2df] 

  = (a + ib).    ce df i de cf      [ i2 =-1] 

  = a(ce – df) + I a(de + cf) + ib (ce – df) 

   + ib . I (de + cf) 

  = (ace – adf) + I (ade + acf) + I (bce – bdf) 

- bde – bcf 

x. (y.z) = (ace – adf – bde – bcf) + I (ade + acf + bce – bdf) 

Now (x.y)z =      .a ib c id e if      

 = [ac + ibc + iad + i2bd] (e + if) 

 = [ac – bd + I (bc + ad)] (e + if) 

 = ace – bde + I (bce + ade) + I (acf – baf) +i2 (bcf + adf) 

  (x.y).z = (ace – bde – bcf -adf) + I (bce + ade + acf – bdf) 

 So x.(y.z) = (x.y).z 

 So associativity holds in ][i] 
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(8) Distributive Property:- 

Let x, y, z  such that 

  x = a + ib 

  y = c + id 

  z = e + if , a, b, c, d, e, f,  I 

 Then x.(y+z) = (a + ib) .    c e i e if      

  = (a + ib) -    c e i d f      

  = a (c + e) + I a (d + f) + ib (c + e) + i2b (d + f) 

  = ac + ac – bd – bf + I (ad + af + bc + be) 

 x.(y + z) =        ac bd ae bf i ad bc af bc              

 Now x.y + x.z = (a + ib) (c + id) + (a + ib) (e + if) 

   = ac + iad + ibc + i2bd + ac + iaf + ibe + i2bf 

   = (ac – bd) +I (ad + bc) + (ae – bf) + I (af + bc) 

  x.y + x.z =        ac bd ac bf i ad bc af be              

  Hence x(y + z) = x.y + x.z 

  Hence ][i] is a ring. 

Example 3: Prove that the set G = 2a b , a, b  Q where Q is the set of rational number, is a 
ring. 

Solution: Properties | axioms under addition. 

 (1) Closure Property: Let x, y  G such that  

  x = 2a b , y = 2c d , where a, b, c, d  Q. 

  Now x + y =  2a b  +  2c d  

   = (a + c) + (b + d) 2  

as set of rational number is closed under addition  

so x + y = (a + c) + (b + d) 2  G  x, y  G.  

 Hence G is closed under addition. 

(2) Associative Property: 

Since the set of rational number is associative under addition and G is a subset of Q,  
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So G =  2, ,a b a b Q   is associative under addition. 

(3) Existence of identity:  

Sin  0  G, as  

0 = 0 0 2  

then for x  G, x + 0 = 2a b +0 = 2a b  = x. 

 Similarly 0 + x = x 

 So, 0 is additive identity of G 

(4) Existence of inverse: 

Let x = 2a b , a, b  Q 

 then -a, - b  Q. 

 How – x = -a + (-b) 2 G 

 Such that x + (-x) = 2a b + (-a) + (-b) 2  

  = (a + (-a) + (b + (-b) 2 ) 

  = 0 + 0 2  

  = 0 

 Similarly (-x) + x = 0 

 So -x is inverse of x. 

(5) Commutative Property:  

Let x = 2a b , y = 2c d  G 

 then x + y =  2a b  +  2c d  

  = (a + c) + (b + d) 2  

  = (c + a) + (d + b) 2  [as rational number holds commutative property 

  = +  2c d +  2a b  

  = y + x 

 Thus commutative property holds in G. 

Axioms under multiplication 
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(6) Closure Property 

 Let x, y  G 

 x = 2a b  and y = 2c d , a, b, c, d  Q 

 then x.y =  2a b  2c d  

  = ac + bc 2  + ad 2  + 2bd 

 xy = (ac + 2bd) + (bc + ad) 2  

 as a, b, c, d  Q then ac + 2bd  Q and bc + ad  Q 

Hence x y  G 

 Hence G is closed under multiplication. 

(7) Associative Property: 

Let x, y, z  G, such that 

 x = 2a b , y = 2c d , z = 2e f  

 where a, b, c, d, e, f  Q 

Since set of rational number is associative under multiplication so that G as  

 (xy) z =    2 2a b c d   2e f  

  =     2 2ac bd bc ad    2e f  

  = ace + 2bde + (bce + ade) 2  

   +2 (bcf + adf) 

 = (ace + 2bde + 2bcf + 2adf) + 2 (bce + ade + acf + 2bdf) 

Now, x(yz) =  2a b    2 2c d e f   

  =  2a b {ce + de 2  + cf 2 +2df} 

  =  2a b  {ce + de 2 +cf 2 +2df} 

  =  2a b     2 2ce df d cf    

  = ace + 2dfa + (ade + acf) 2 + (ceb + 2dfb) 2  
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   +2(deb + cbf) 

  = (ace + 2dfa + 2deb + 2cbf) 2 (ade + acf + ceb + 2dfb)  

  = (ace + 2bde + 2bcf + 2adf) 2  (bce + ade + acf + 2bdf) 

Hence (xy)z = x(yz) 

Hence multiplication is associative in G. 

(8) Distributive Property 

Let x, y.z G such that x = x = 2a b , y = 2c d , z = 2e f  

where a, b, c, d, e, f  Q 

Then x. (y + z) =  2a b .    2 2c d e f   
 

 

 =  2a b     2c e d f   
 

 

 = (ac + ae) + (ad + af) 2 + (bc + be) 2  

  + 2 (bd + bf) 

 = (ac + ae) + (ad + af) 2  + (bc + be) 2  

   +2 (bd + bf) 

 = (ac + ac + 2bd + 2bf) + (ad + af + bc + be) 2  

Now, xy + xz =  2a b  2c d  +  2a b  2e f  

 = ac + ad 2 + 2bd + bc 2  + ac + af 2  + bc 2  + 2bf 

 = (ac + ac + 2bd + 2bf) + (ad + bc + af + be) 2  

Hence x.(y + z) = xy + xz. 

Similarly we can prove (y + z) . x = yx + zx. 

Hence G Hidds distributive property. 

So, G is a ring. 

Example 7: Show that set of rational number Q is a ring under the composition defined as 

 a  b = a + b – 1 and a ʘ b = a + b – ab  a, b  Q 

Solution: Axions under addition 

(1) Closure Property 

  Let a, b  Q then a  b = a + b – 1  Q.  

  Hence a  b is closed under addition. 
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(2) Associative Property: 

  Let a, b, c  Q 

  then (a  b)  c = (a + b – 1)  c 

   = a + b – 1 + c – 1 

   = a + b + c – 2 

 and a(b  c) = a  (b + c – 1) 

   = a + b + c – 1 – 1 

   = a + b + c – 2 

  (a  b) c = a (b  c) 

 So Associative property holds under addition. 

(3) Existence of identity: 

  Let a  Q then we to find on element e  

such that ae = a = ca 

  Since ae = a + e – 1 

   if we take e = 1, then a + e – 1 = a, so that a  e = a 

  Hence, here 1 = e will act as identity element as 1  Q. 

(4) Existence of inverse: 

  Let a  Q than we have to find on element b  Q  

such that a  b = e = 1 b  a  

  = a + b – 1 = 1 

  = b = 1 + 1 – a 

  b = 2 – a  Q 

 Hence  a  Q  b = 2-a which act as identity element for a such that 

  a  b = b  a. 

(5) Commutative Property: 

   a, b  Q, a  b = a + b – 1 

  and b  a = b + a – 1 

    = a + b – 1 

  Hence a  b = b  a 

  Hence commutative property holds. 
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  Axions of multiplication 

(6) Closure Property: 

   a, b  Q, a ʘ b = a + b – ab 

  as a, b  Q, a + b, ab  Q and a + b – a b  Q 

  So Q is closed under multiplication. 

(7) Associative Property: 

   a, b, c  Q 

  a ʘ (b ʘ c) = a ʘ (b + c – bc) 

   = a + b + c – bc – a(b + c – bc) 

   = a + b + c – bc – ab – ac + abc 

  a ʘ (bʘ c) = a + b + c – bc – ab – ac + abc. 

 How (a ʘ b) ʘ c = (a + b – ab) ʘ c 

   = a + b – ab + c – (a + b – ab) c 

   = a + b – ab + c – ac – bc + abc 

  (a ʘ b) ʘ c = a + b + c – ab – ac – bc + abc. 

 Hence aʘ (bʘ c) = (aʘ b) ʘ c 

 So associative property holds 

(8) Distributive property 

 For all a, b, Q 

 aʘ (b  c) = aʘ (b + c - 1) by using the defining of a  b 

 = a + b + c – 1 – a(b + c – 1) using the defining of a ʘ b  

 = a + b + c – 1 – ab – ac + a 

aʘ (b  c) = 2a + b + c – ab – ac – 1 

Now,    (a ʘ b)  (a ʘ c) = (a + b – ab)  (a + c – ac) 

  = a + b – ab + a + c – ac – 1 

(a ʘ b) + (a ʘ c) = 2a + b + c – ab – ac – 1 

So we get aʘ (b  c) = (a ʘ b)  (a ʘ c) 

Similarly (a  c) ʘ a = (b ʘ a)  (c ʘ a) 

Hence the given set of ration number under given defined operation forms a ring.  
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Self Check Exercise – 1 

Q.1 Prove that set Q, set of rational numbers is a commutative ring under 
addition and multiplication, with unit element. 

Q.2 Prove that the set R1 set of real number is a comitative ring with unity. 

Q.3 The set c, of complex numbers is a commutative ring with Unity, prove 
this statement. 

Q.4 The set 2z, of even integers is a commutative ring without unity. 

13.4 Properties of Ring 

Theorem 1: Rules of multiplication 

Let a, b, and c belongs to a ring R then 

1. ao = oa = 0 

2. (-a) (-b) = ab 

3. (-a) (-b) = ab 

4. a(b – c) = ab- ac 

5. (b – c) a = ba – ca 

If R has a unity element 1 then 

6. (-1) a = -a 

7. (-1) (-1) = 1 

Proof: 1. Since R is a ring, so distributive property holds, also R is a group under addition with o 
as additive identity. So we can write 

 a.o + a.o = a(o + o) = a.o + = a.o + o 

 a.o + a.o = a.o = a.o + o 

 using Cancellation Law we get 

  a.o = 0 

 Similarly we can get o.a = 0 

2. Taking a(-b) + ab = a(-b + b) [using distributive properly] 

  = a.o 

 a(-b) + ab = 0 

  a(-b) = -(ab) 

Similarly we can prove (-a)b = -(ab) 

3. Taking (-a) (-b) = - (-a)b [using 2] 

  = - (-ab)  [using 2] 
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  = ab   [minus times mitrus equation plus] 

 So (-a) (-b) = ab 

4. Taking a(b – c) = a [b + (- c)] 

  = ab + a(-c)  [using distributive property] 

  = ab – ac  [using 2] 

Hence a(b – c) = ab – ac 

5. Taking (b – c)a = [b + (-c)] a 

  = ba + (-c) a   [using distributive property) 

  = ba – ca  [using 2)  

 So (b - c) a = ba – ca 

 If R is a ring with unity i.e. 1 is multiplicative identity of R then 1.x = x = x.1 

6. (-1) a = 1(1a) [using 2 

  = -a  [ 1 is multiplicative identity of R] 

 (-1) a = -a 

7. (-1) (-1) = -(-1) 1 [using 2 and using is unity of R] 

  = -(-1) 

  = 1 

 So (-1) (-1) = 1 

Theorem 2: If the ring R has a multiplicative identity then it is unique. 

Theorem 3: If a ring has a multiplicative obverse then it is also unique. 

Let try some more examples of ring. 

Example 1: Let R be a ring such that x2 = x x R then prove that  

1. x + x = 0  x  R 

2. x + y = 0  x = y 

3. xy = yx x y  R 

Solution: 1. Given  x  R, x2 = x 

 Since R is a ring, So R is closed under addition 

So  x  R, x + x  R 

Now (x + x)2 = x + x [ given x2 = x] 

 (x + x) (x + x) = x + x 

 (x + x) x + (x + x) x = x + x 
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 (x2 + x2) + (x2 + x2) = x + x 

 (x + x) + (x + x) = (x + x) 

Since R is a ring so it has o as additive identity 

So x + o = x, using this, we get 

 (x + x) + (x + x) = (x + x) + 0 

using left Cancellation Law, 

 x + x = 0 

So  x  R x + y = 0 

2. Given   x  R x + y = 0 

  x + y = x + x  [using 1] 

  using by Cancellation Law, we get 

  y = x 

  x = y 

So if R is a ring with x2 = x then x + y = 0  x = y 

3. Let xyR, as R is a ring so x + y  R 

 Now (x + y)2 = x + y  [ x2 = x given] 

  x2 + xy + yx + y2 = x + y 

  (x2 + y2) + (xy + yx) = x + y [using commutative property] 

  (x + y) + (xy + yx) = x + y 

Since R is a ring so having as additive identity. 

 (x + y) + (xy + yx) = (x + y) + 0 

using left cancellation law 

 xy + yx = 0 

 xy = yx. [using 2 i.e. x + y = 0  x = y] 

Hence R is a commutative ring. 

Self Check Exercise – 2 

Q.1 Let R be a ring and a, b, c, d  R then prove that  

 1. (a + b) ( c + d) = ac + bc + ad + bd 

 2. (a – b) (c – d) = ac – bc – ad + bd 
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 3. (a + b)2 = a2 + ab + ba + b2 

 4. (a – b)2 = a2 – ab – ba + b2 

 5. (a + b) (a – b) = a2 – ab + ba – b2 

Q.2 If R is a system satisfying all the conditions for a ring with unit element with the 
possible exception x + y = y + x x1 y  R. Then prove that the axiom x + y = y + x 
also holds in R. 

13.5 Summary  

In this unit we studied about 

 1. ring and its properties, along with some examples. 

 2. a ring is an abelian group and a semi group which satisfies distributive law. 

 3. multiplicative identity i.e. unity element and multiplicative inverse of group is 
unique.  

13.5 Glossary 

 Ring with Unity: If a ring possesses multiplicative identity. Then it is ring with 
unity. 

 Commutative Ring: In a RingR, the multiplication composition is also 
commutative, i.e. a b  R a.b = b.a 

13.7 Answer to Self Check Exercises  

Self Check Exercise – 1 

Q.1 Do the same as in example 1 

Q.2 Do the same as in example 1 

Q.3 Do the same as in example 1 

Q.4 Do the same as in example 1. 

Self Check Exercise – 2 

Q.1 Use distributive properties to prove there. 

Q.2 Using the fact that 1 is unity of ling i.e. multiplicative identity and using distributive 
law. 

13.8 Suggested Readings/References 

 1. Vijay K. Khanna and S.k. Bhambri, A course in Abstract Algebra. 5thEdition. 

 2. Jaseph A. Gallian, contemporary Abstract Algebra, 8th Edition. 

 3. Frank Ayres Jr, Modern Algebra, Schqum's outline series. 

 4. A.R. Vasistha, Madren Algebra, Krishna Prakashan Media. 

13.9 Terminal Questions 
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 1. Prove that the set R =   1 1|a b a b R is a comitative ring under addition and 

multiplication of ordered pairs defined as  

  (a1b) + (c1d)) = (a + c, b+ d) 

  (a1b) (c1d)= (ac, bd)  (a1 b), (c1d)  R. 

 2. Prove that the set R =   1 1|a b a b R is a ring under the addition and 

multiplication of orders paris defined as   

(a1b) + (c1d) = (a + c, b + d) 

(a1b) – (c1d) = (a - bd, bc + ad) (a1b) (c1d) R 

 3. Prove that the set G of all real valued functions of x defined on [011] is a ring 
under the addition and multiplication defined as below: 

  (f + g) (x) = f(x) + g(x)  x  [011] 

  (fg) (x) = f(x) +g(x)  x  [011], where f1 g G. 

 4. Prove that <R, + ,.> is a commutative ring, under usual addition and multiplication 
defined by a  b = a.b + b.a 

 5. Show that the set of real number R is a ring under the composition  and ʘ 
defined by a  b = a + b + 1 and a ʘ b = a + b + ab  a1 b  R 

___ 
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Unit - 14 

Some Special Rings 

Structure 

14.1 Introduction 

14.2 Learning Objectives  

14.3 Ring of Matrices 

 Self Check Exercise-1 

14.4 Ring of Integer Modulo n 

 Self Check Exercise-2 

14.5 Ring with Zero Divisor 

 Self Check Exercise-3 

14.6 Summary 

14.7 Glossary 

14.8 Answers to Self Check Exercises 

14.9 References/Suggested Readings 

14.10 Terminal Questions 

14.1 Introduction 

Dear student, in this unit we will study about some special types of ring, like ring of 
matrices where the element of ring is matrix and ring of integer modulo n. In this unit we 
will try prove that set of matrix and set of integer modulo n forms a ring and solve same 
examples related to ring of mortices and ring of integer modulo n.  

14.2 Learning Objectives:  

After studying this unit, students will be able to 

 1. define ring of matrices 

 2. Solve question related to ring of matrices 

 3. define ring of integer modulo n. 

 4. Solve numerical related to ring of integer modulo n. 

14.3 Ring of Matrices: 

 Definition: The set M of all nn matrices over real/ratind/complex/integer is a non 
commutative ring with unity under addition and multiplication of matrices. This ring is known as 
ring of matrices. 
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Examples: Prove that the set M of all nn matrices over real is or non-commutative ring with 
unity under addition and multiplication of matrices.  

Solution: Let M be the set of nn matrices. Let A, B, C be any element of M. So A, B, C be 
square matrices of order n over reals, such that  

 A = ij n n
a


   ; B = ij n n

b


   , C = ij n n
c


   , 

 aij, bij, cij R,   I   n,  jn. 

Properties under addition 

1. Closuer Property: 

Let A,BM, then A + B = ij n n
a


   +  ij n n

b


    

  = ij ija b ij ij n n
a b


    

  as aij, bijR, so aij + bij R 

 A + B  M. 

Hence addition is closed for the set M. 

2. Associative Properties 

 For A,BM, we have 

 A + (B + C) = ij n n
a


   + ij n n

b


   + ij n n
c


   , 

  = ij n n
a


   + ij ij n n

b c


    

  =  ij ij ij
n n

a b c


  
 

 

  =    
n n

aij bij cij


      Associativepropertyholdinreals  

  = (A + B) + C 

 A + (B + C) = (A + B) + C 

3. Existence of identity:- 

For AM,  OM,  

 O = [o]nnsuch that 

 A + O = [aij]nn + [O]nn 

  = [aij + O]nn 

  = A 

 Similarly O + A = A 
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 Hence A + O = A = O + A,  

 So O = [O]ijis the additive identity of the set M. 

(4) Existance of inverse:- 

 Let A = [aij]nn,aijR then 

  -A = [-aij]nn, -aijR such that 

 A + (-A) = [aij]nn+ [-aij]nn 

  =  
n n

aij aij


     

  = [O]nn 

  = O 

 A + (-A) = O 

 Similarly (-A) + A = O 

 Hence A + (-A) = (-A) + A = O 

 So, (-A) is the additive inverse of AM. 

(5) Commutative Property:- 

 Let A, BM such that A = [aij]nn, B = [bij]nn ,aij, bijR 

 Then A + B = [aij]nn + [bij]nn 

  = [aij + bij]nn 

  = [bij + aij]nn   lnadditionofrea umberiscommutative  

  = [bij]nn + [aij]nn 

  A + B = B + A 

 Hence Commutative Property hold in the set M. 

Axioms under Multiplication 

(6) Closure property:- 

Let A, B M such that 

 A = [aij]nn, B = [bjjk]nn  

 Then AB = [aij]nn [ajj]nn 

  = [cik]nn 

  = 
1

n

j

aij bjk R


  

 Hence ABM 
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 So the set of all nnmatri as is closed under multiplication.  

(7) Associative Property:- 

Let A, B, C  M where A = [aij]nn 

B = [Bjk]nn, c = [ckp]nn, aij, bjjk, ckpR, be three elements of M.  

 Let AB = [aij]nn [bjk]nn 

  = 
1

n

j

aij bjk


  

  = [dik]nn 

 and BC = [bjk]nn [ckp]nn 

  = 
1

n

jk kp
k

b c


  

  = [ejp]nn 

Now, to prove (AB)C = A (BC) 

 We will prove this by taking an arbitrary element of both side, as we know that two 
matrias are equal if the order of matrices is same and Corresponding element is also equal or 
same. 

i.e. (I,p)th element of (AB)C = (I,p)th element of A(BC) 

Taking (I,p)th element of (AB)C = (ith row of AB) (pth column of C).  

  = 
1 1

n n

ij jk kp
j k

a b c
 

  
  

  
   

  = 
1 1

n n

ij jk kp
k j

a b c
 

 
 
 

   

  = 
1 1

n n

ij jk kp
k j

a b c
 

  

Now, (I,p)th element of A(BC) = (ith row of a) (pthcolumn of BC) 

  =  
1

n

ij
j

a


 . 
1

n

jk kp
k

b c


 
 
 
  

  = 
1 1

n n

jk kp ij
j k

b c a
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  = 
1 1

n n

jk kp ij
j k

b c a
 

  

   = 
1 1

n n

ij jk kp
k j

a b c
 

  

 Hence A (BC) = (AB) C 

 So Associative property holds in M. 

(8) Distributive Property:- 

Let A = [aij]nn, B = [Bjk]nn 

 and c = [cjk)nn be three elements of M then. 

 To prove A – (B +C) = AB + AC 

 Taking B + C = [Bjk]nn + [cjk)nn 

  B + C = [bjk + Cjk]nxn 

 Therefore (I, k) element of A(B + C) =  
1

n

ij jk jk
k

a b c


  

    =  
1

n

ij jk ij jk
k

a b a c


  

    = 
1 1

n n

ij jk ij jk
k k

a b a c
 

   

 = (I, k)th element of AB + (ik)th element of AC 

 = (I, k)thelement of (AB + AC) 

Hence A(B + C) = AB + AC 

Hence distributive property holds in M. 

Hence the set of matrices of order nn form a ring under usual matrix multiplication and 
addition. 

Non-Commutative ring:- 

 Now, to prove set of matrices is a non-commutative ring since we know that matrix 
multiplication is not commutative in general. So ring of matrices is non commutative ring.  

Ring with Unity 

Since we know that in the set of matrices we have identity matrix Inn such that AM, 
IM, AI = IA = A 

 So identity matrix I act as multiplicative identity or unity for this ring. 

 So ring of matrices is a non commutative ring with unity. 
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 Let us try to solve some examples related to ring of matrices. 

Example 2: Prove that the set of all matrices of the form 
o x

o y

 
 
 

; x,yR, with matrix addition 

and multiplication is a ring. Also check about the commutative property for this ring. 

Solution: Given R = , ,
o x

x y R
o y

  
  

  
 

Axioms under addition 

(1) Closure Property:  

Let A = 1

1

o x

o y

 
 
 

, B = 2

2

o x

o y

 
 
 

, x1, x2, y1 y2R be any two elements of R then 

A + B = 1

1

o x

o y

 
 
 

 + 2

2

o x

o y

 
 
 

 

 = 1 2

1 2

o x x

o y y

 
 

 
 

 As x1, x2, y1 y2 are real so x1 + x2 + y1 + y2 are also real.  

 Hence A + B  R 

  
So R is closed under addition 

(2) Associative Property:- 

Let A = 1

1

o x

o y

 
 
 

, B = 2

2

o x

o y

 
 
 

, C = 3

3

o x

o y

 
 
 

 be any three elements of R  

where x1, x2, y1, y2, x2, y3 R, then  

 (A + B) + C = 31 2

31 2

o xo x o x

o yo y o y

      
       

      
 

  = 31 2

31 2

o xo x x

o yo y y

   
   

   
 

  = 1 2 3

1 2 3

o x x x

o y y y
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 Since x1, x2, x3, y1, y2, y3 R and additions set of real numbers is associative under 
addition so  

 (A + B) + C = 
 

 
1 2 3

1 2 3

o x x x

o y y y

  
 

  
 

  = 1

1

o x

o y

 
 
 

 + 2 3

2 3

o x x

o y y

 
 

 
 

  = 1

1

o x

o y

 
 
 

 + 32

32

o xo x

o yo y

   
   

    
 

 =  + (B + C) 

Hence (A + B) + C = A + (B + C) 

So Associativity hold in given set. 

3. Existence of identity 

Let AR such that A = 
o x

o y
, we know that in matrix  

we have O = 
o o

o o
R such that 

 A + O = 
o x

o y
+

o o

o o
 

  = 
o x

o y
 

  = A 

 Similarly O + A = A 

 So O = 
o o

o o
 act as additive identity for AR. 

4. Existence of inverse:- 

For each A = 
o x

o y
, x, y R  

we have B = 
o x

o y




, -x,-yR such that 
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  A + B = 
o x

o y
 + 

o x

o y




 

  = 
( )

( )

o x x

o y y

 

 
 

  = 
o o

o o
 = identity element 

So, B = 
o x

o y




 will act as inverse element for A. 

5. Commutative Property:- 

Let A = 1

1

o x

o y
, B = 2

2

o x

o y
, x1, y1, x1, y2R 

 then  A + B = 1

1

o x

o y
 + 2

2

o x

o y
 

   = 1 2

1 2

o x x

o y y




 

   = 2 1

2 1

o x x

o y y




  [addition is dosed in real numbers] 

   = 2

2

o x

o y
 + 1

1

o x

o y
 

 So A + B = B + A 

  Commutative property holds under addition. 

 Axioms under multiplication 

6. Closure Property:  

Let A = 1

1

o x

o y
 and B = 2

2

o x

o y
, x1, x2, y1, y2R then 

 A. B = 1

1

o x

o y
2

2

o x

o y
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  = 1 2

1 2

0 0 0

0 0 0

x y

y y

  
 
  

 

  = 1 2

1 2

0

0

x y

y y

 
 
 

 

as x1, x2, y1, y2R So x1, y2, y1, y2R 

So AB R 

 R is closed under multiplication. 

7. Associative Property:  

Let A = 1

1

o x

o y
, B = 2

2

o x

o y
,  C = 3

3

o x

o y
 be any three elements of R,  

where x1, y1, x2, y2, x
3, y3

R then 

Now (AB) C = 31 2

31 2

00 0

00 0

xx x

yy y

      
      
      

 

  = 31 2

31 2

00

00

xx y

yy y

  
  

   
 

  = 1 2 3

1 2 3

0

0

x y y

y y y

 
 
 

 

 as x1, x2, x3, y1, y2, y3R and y1 y2 y3R  

 So (AB) C = 
 

 
1 2 3

1 2 3

0

0

x y y

y y y

 
 
 

R 

Now A(BC) = 31 2

31 2

00 0

00 0

xx x

yy y

     
     

      
 

  = 1

1

0

0

x

y

 
 
 

2 3

2 3

0

0

x y

y y

 
 
 

 

  = 1 2 3

1 2 3

0

0

x y y

y y y

 
 
 

 

So, we get (AB)C = A(BC) 
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Hence matrix multiplication is associative in R. 

8. Distributive Property:- 

Let A = 1

1

o x

o y
, B = 2

2

o x

o y
,  C = 3

3

o x

o y
 where x1, x2, x3, y1, y2, y3 

are any three element of R.  

 A (B+C) = 31 2

31 2

00 0

00 0

xx x

yy y

     
     

      
 

  = 1

1

0

0

x

y

 
 
 

2 3

2 3

0

0

x y

y y

 
 

 
  

  = 
 

 
1 2 3

1 2 3

0

0

x y y

y y y

 
 

 
 

  A (B+C) = 1 2 1 3

1 2 1 3

0

0

x y x y

y y y y

  
 

  
 

Now AB + AC = 1

1

0

0

x

y

 
 
 

2

2

0

0

x

y

 
 
 

+ 1

1

0

0

x

y

 
 
 

3

3

0

0

x

y

 
 
 

 

  = 1 2

1 2

0

0

x y

y y

 
 
 

 + 1 3

1 3

0

0

x y

y y

 
 
 

 

  = 1 2 1 3

1 2 1 3

0

0

x y x y

y y y y

  
 

  
 

So A (B+C) = AB + AC 

 Hence distributive property holds in R.  

So, the set R = 
0

, ,
0

x
x y R

y

  
  

  
 is a ring. 

To check the commutative property: 

Let A = 1

1

0

0

x

y

 
 
 

 and B = 2

2

0

0

x

y

 
 
 

, x1, x2, y1, y2R 
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then AB = 1

1

0

0

x

y

 
 
 

2

2

0

0

x

y

 
 
 

 

 = 1 2

1 2

0

0

x y

y y

 
 
 

 

Now BA = 2

2

0

0

x

y

 
 
 

1

1

0

0

x

y

 
 
 

 

 = 2 1

2 1

0

0

x y

y y

 
 
 

 

Since AB  BA, So the set R = 
0

, ,
0

x
x y R

y

  
  

  
 form a non commutative ring. 

Self Check Exercise-1 

Q.1 Let M be a set of all 22 matrices with their element as integers, then 
show that M is a ring under usual matrix addition and multiplication. 
Check the unity element of ring. 

Q. 2 Let M be the set of all 22 matrices over rational then show that M is a 
ring with unity.  

14.4 Ring of Integers Modulo n.  

Definition: 

The set Zn = {0, 1, 2, ……. n-1} under addition modulo n and multiplication modula n 
form a ring which is commutative. This ring is known as ring of integedmodula. This is a finite 
ring.  

Examples: Show that the set Zn = {0, 1, 2, ……. n-1} form finite a commutative ring under 
addition modulo n and multiplication modulo n.  

Solution: Given set is Zn = {0, 1, 2, ……. n-1}, n > 1 for addition modulo n composition we have, 
for all a, b Zn 

 a ˆ
n  b = Least non- negative remainder 'r' when a + b is divided by n. i.e. a + b = r (mod 

n) and for multiplication modulo n, 

 a n b = least non-negative remainder 'r' when a  b is divided by n. i.e. ab = r (mod n) 

 Now, to prove Zn form a ring; 

Axioms under Addition 
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1. Closure Property:- 

Let a, b Zn then a, b Zn, a < a, b < n, then 

 a +n b = Least non-negative remainder 'r' when a + b is divided dy n 

 Since for r, 0 < r < n 

  = r Zn 

 So, a +n b Zn. 

 So Zn is closed under addition. 

2. Associative Property:- 

Let a, b, c,  Zn then 

 (a +n b) +n c = least non negative remainder when (a + b)+c is divided by n 

  = Least non negative remainder when a + (b + c) is divided by n. 

 Hence (a +n b) +n c = a +n (b +n c) 

 So associative property hold in Zn. 

3. Existence of identity:- 

a Zn, 0 < a < n, when we add 0 i.e. a + o or o + a have the remainder a  

when divided by n. So 

  a +n o = a = o +n a 

 So O Zn act as identity element of Zn. 

4. Existence of inverse:- 

O Znthen o is the inverse of itself. Also for all O Zn, a  o, we have n – a Znsuch that  

  a +n (n – a) = O 

  and (n – a) +n a = o 

 Hence (n – a) is the inverse element of a Zn 

5. Commutative property:  

Since the least non negative remain remains the same if we divide a + b by n or b + a by 
n. So commutativity holds in Zn. Mathematically. 

  a +n b = b +n a.  

Axioms Under Multiplication 

 Here composition is a n b = least non-ve remainder when ab is divided by n  

6. Closure Property 
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 For a, b  Zn i<r , b < n 

 a n b = least non-ve remainder when ab is divided by n 

  = r, o < r < n 

 a n b  Zn. 

 So Zn is closed under multiplication. 

7. Associative Property: 

 a, b, c  Zn, the least non negative remainder remains the same  

if (ab)c or a(bc) is divided by n.  

  (a n b) n c  a n (b n c) 

 So associativity holds in Zn. 

8. Distributive Property:- 

 a, b, c  Zn 

 a n(b nc) = a n (b + c)  [ b nc  b + c (modn) 

  = least non negative remainder when a (b + c) 

  = ab + ac is divided by n. 

  = ab n ac 

  = (a n b) n (a n c)  [ ab  a n b (mod n) ac  a n b (mod n) 

 Similarly (b n c) n a = (b n a) n (c n a) 

  Hence distributive property holds. 

 So, Zn is a ring. 

To prove Zn is a commutative ring. 

 Let a, b  Zn 

 then a n b = least non negative remainder when a.b is divided by n. 

  = Least non-negative remainder when b.a is divided by n 

 Hence a n b = b n a 

 So Zn is a commutative ring. 

Example 2: Show that the set Zn = {1, 1, 2, 3, 4, 5} is a commutative ring with respect to 
addition modulo 6 and multiplication modulo 6.. 

Solution: Given Z6 = {1, 1, 2, 3, 4, 5}  

 then addition modulo 6 is defined as if a, b  Z6.  
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then a 6 b = least non negative remainder when a + b is divided by 6 

 In order to prove Z6 is a ring, firstly to prove Z6 is an abelian group under addition 
modulo 6. Hence the composition table is  

+6 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

From composition table, we can say that (using the concept of unit) 

 1. Z6 is closed under addition 

 2. Z6 holds associative property 

 3. 0 is additive identity of Z6 

 4. every element of Z6 has a inverse. 

  inverse of 0 is 0 

  inverse of 1 is 5 

  inverse of 2 is 4 

  inverse of 3 is 3 

  inverse of 4 is 2 

  inverse of 5 is 1 

 5. As the composition is symmetrical about the main diagonal. Hence it is 
commutative.  

  So Z6 is an abelian group. 

Now to prove Z6 is a semi group under multiplication 

+6 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 
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4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

7. Since the element of composition table are element of Z6, so Z6 is closed under 
multiplication modulo 6. 

8. Since elements of Z6 are real number and real numbers are associative under 
multiplication. So the least non negative remainder when (a  b)  c is divided by n 

 = the least non negative remainder when a (b  c) is divided by n 

 Hence associative property hold in Z6. 

(8) Let us prove it by taking any three element of Z6. 

 Since 1, 2, 3  Z6. 

 then 1 6 (2 +6 3) = 1 6 5 

   = 5 

 Also (1 6 2) +6 (1 6 3) = 2 +6 3 

    = 5 

+5 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

From composition table, it is clear that 

1. All the element of composition table are element of Z5 

 So Z5 is closed under addition modulo 6. 

2. The element of Z5 are real numbers and associative property holds in real numbers. So 
the least non negative remainder when a + (b + c) is divided by 5 

 = the least non negative remainder when (a + b) +c is divided by 5 

 So associative property hold in Z5 

3. Here 0 is the additive identity of Z5 

4. Every element of Z5 has its inverse as  
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 inverse of 0 is 0 

 inverse of 1 is 4 

 inverse of 2 is 3 

 inverse of 3 is 2 

 inverse of 4 is 1 

5. Since elements of composition table are symmetrical about the main diagonal. So Z5 is 
commutative.  

 So 1 6(2 +63) = (1 6 2) +6 (1 6 3) 

 Similarly we can prove it for every element of Z6 

 Hence Z6 holds distributive property 

 So Z6 = {0, 1, 2, 3, 4, 5} is a ring. 

 Now to prove Z6 is a commutative ring. 

 Since from the composition table of Z6 under multiplication modulo 6, it is clear that 
elements are symmetric about the main diagonal. Hence it is commutative under multiplication 
modulo 6. 

Therefore Z6 is a commutative ring under addition modulo 6 and multiplication modulo 6. 

Example 3: Show that Z5 = {0, 1, 2, 3, 4} is a commutative ring under addition and multiplication 
modulo 5. 

Solution: Since given Z5 = {0, 1, 2, 3, 4} and +5 and 5 is defined for a, b  Z5 as  

 a +5 b = least non negative remainder when a + b is divided by 5. 

 a 5 b = least non negative remainder when a  b is divided by 5 

 To prove Z5 is a ring, firstly to prove Z5 is a commutative or abelian group. We will prove 
this by using composition table as.  

Hence Z5 is on abelian group. 

Now to prove Z5 is semi group under multiplication modulo 5. The composition table is  

+5 0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 
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6. Since all the element of composition table are the element of Z5, so Z5 is closed under 
multiplication modulo 5. 

7. Since the element of Z5 are real numbers and real numbers are associative under 
multiplication. So 

 The least non negative remainer 'r' when (a.b)c is divided by n for a, b, c  Z5 

 = The least non negative remainder 'r' when a. (b.c) is divided by n. 

 So (a n b) n c = a n (b n c) 

 Hence Z5 is associative under multiplication. 

8. Distributive Property:- 

 Let us prove it by taking any three element of Z5 

 Since 2, 3, 4  Z5 

 then 2 5 (3 +5 5) = 2 5 3 

   = 1 

 Now, 2 x5 3 + 2 x5 5 = 1 + 0 

 So 2 x5 (3 +5 5) = 2 x5 3 + 2 x5 5 = 1 

 Similarly we can prove this for other elements 

 Hence Z5 is a ring under addition and multiplication modulo 5. 

 Now to prove Z5 is commutative. 

 Since the elements of Z5 are real numbers and real numbers are commutative under 
multiplication. So 

 The least non negative remainder when a  b is divided by n. 

 = the least non negative remainder when b  a is divided by n. 

 Hence Z5 is a commutative ring. 

Self Check Exercise – 2 

Q.1 Prove that Z7 is a commutative ring under addition and multiplication modulo 7. 

Q.2 Prove that Z9 is a commutative ring under addition and multiplication modulo 9. 

14.5 Ring with or Without Zero Divisor 

In the above section-2 we studied that set of all 22 matrices over real forms a ring. Let 

us consider two elements of such ring, M. i.e. A = 
1 0

0 0

 
 
 

 and B = 
0 0

1 0

 
 
 

 

Here A  0 and B  0 
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But AB = 
1 0

0 0

 
 
 

0 0

1 0

 
 
 

 

 = 
0 0

0 0

 
 
 

 

 = 0 

We, see that product of two non zero elements of the set of 22 matias, M is a zero 
element of M. i.e. additive identity of M.  

 AB = 0, A  0, B  0 

 So, a new term comes here i.e. zero Divisor  

Zero Divisor 

A non-zero element of the ring R is called a zero divisor or divisor of zero if there exists 
an element  0 R such that either ab = 0 or ba = 0. 

So, from above example AB = 0, A  0, B  0 

 A = 
1 0

0 0

 
 
 

 is a zero divisor of ring M, which is itself non zero. 

Also BA = 
0 0

1 0

 
 
 

1 0

0 0

 
 
 

 = 
0 0

1 0

 
 
 


1 0

0 0

 
 
 

 

So, in a ring R it is also possible that AB = 0 but BA  0 for A  0, B  0. 

Ring With Zero Divisor  

If in a ring R there exist non-zero elements a and b such that ab = 0, then R is said to be 
a ring with zero divisor.  

Ring Without Zero Divisor  

If in a ring R, the product of two non zero elements of R is zero then either 0 = 0 or b = 0. 

In this unit, we only discuss ring with zero divisor.  

Let us take following examples to have more understanding of ring with zero divisor.  

Example 16:- Set of 22 matrices with their elements are integers, under usual addition and 
multiplication of matrices, is a ring with zero divisor.  

Solution: We can easily prove that set of 20 merrier, M is a ring (Ring of matrices). 

Let us take matrix A = 
2 2

4 0

0 0


 
 
 

and B = 
2 2

0 0

0 5


 
 
 

 be any two elements of  

set of 22 matriar, M 
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 Since A = 
4 0

0 0

 
 
 

 0, non zero element of M 

 B = 
0 0

0 5

 
 
 

 0 non zero element of M 

Now, AB = 
4 0

0 0

 
 
 

0 0

0 5

 
 
 

 

  AB = 
0 0

0 0

 
 
 

 

Since AB = 
0 0

0 0

 
 
 

 = 0, but A  0 and B  0 

So using the definition of ring with zero divisor, i.e. product of two non zero element is 
zero, the set of all 22 matrices is a ring with zero divisors.  

Example 2: The set Z6 =  0,1,2,3,4,5 is ring with zero divisor under addition modulo 6 and 

multiplication modulo 6. 

Solution: Since Z6 is a Commutative ring (Proved in ring of integer modulo n) 

 Since, 2, 3  Z6, are non zero elements of Z6. Also 0 is the zero element or additive 
identity of Z6 

 Taking 2 6 3 = Least non negative remainder when 23 is devided by 6 

  = 0 

 So 2 6 3 = 0 

 i.e. product of two non zero elements is equal to zero element of ring. 

 Again taking 3, 4  Z6 

 3 6 4 = Least non negative remainder when 34 is divided by 6 

  = 0 

  3 6 4 = 6 

i.e. product of two non zero elements is equal to zero element of ring.  

So, Z6 is a ring with zero divisor 

Self Check Exercise - 3 

Q.1 Check Whether or not Z8 is a ring with zero divisor. 

Q.2 Give an example of ring with zero divisor.  
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14.6 Summary 

 In this unit we studied about : 

 1. ring of matrias with examples  

 2. ring of integer modulo n with examples 

 3. ring with zero divisor with examples.  

14.7 Glossary 

 Non-Commutative Ring:- In a Ring R, it is said to be non-commutative ring, if the 
multiplication is not commutative. i.e. a, b  R s.t a.bb.a. 

 Zero divisor :- A non-zero element of the Ring R is called zero divisor if there 
exist an element b  0  R such that either ab = 0 or ba = 0. 

 Ring without zero divisor - If in a ring R, the product of two non-zero elements of 
R is zero, i.e. ab = 0, there either a = 0 or b = 0. 

14.8 Answer to Self Check Exercises 

Self Check Exercise - 1 

Q.1 Can be solved on the same line as of example 2. 

Q.2 Can be solved on the same line as of example 2 

Self Check Exercise - 2 

Q.1 Can be solved on the same line as of example 4 

Q.2 Can be solved on the same line as of example 5 

Self Check Exercise - 3 

Q.1 as 2, 4,  Z8 and 2 8 4 = Least non negative remainder when 24 is divided by 8 
= 0, Hence Z8 is a ring with zero divisor.  

Q.2 Z9 is a ring with zero divisor.  

14.9 References/Suggested Readings 

 1. Vijay K. Khanna, and S.K. Bhambri, A course in Abstract Algebra.  

 2. Joseph A. gallian, Contemporary Absteract Argebro. 

 3. Frank Ayres. Jr, Modern Argebra, Schaum's Outline Series.  

 4. A.R. Vasistha, Modern Algebra, Keishna Prakashan Media.  

14.10 Terminal Questions 

 1. Give an example of a Commutative ring with unity. 

 2. Give an example of a non Commutative ring with unity. 

 3. Give an example of ring with zero divisor. 

***** 
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Unit - 15 

Integral Domains 

Structure 

15.1 Introduction 

15.2 Learning Objectives  

15.3 Ring Without Zero Divisor 

 Self Check Exercise-1 

15.4 Can Cellation Laws In Ring 

15.5 Integral Domains 

 Self Check Exercise-2 

15.6 Summary 

15.7 Glossary 

15.8 Answers to Self Check Exercises 

15.9 References/Suggested Readings 

15.10 Terminal Questions 

15.1 Introduction 

Dear student, in this unit we will study about some ring having certain charactersties like 
ring without zero divisor and integral domain. We will use some examples to have proper 
knowledge of these special types of ring.  

15.2  Learning Objectives:- 

 After studying this unit, students will be able to 

 1. define ring without zero divisor 

 2. give examples and prove questions related to ring with zero divisor.  

 3. define integral domain  

 4. give example and prove questions related to ring with zero divisor. 

15.3 Ring Without Zero Divisor 

 As in previous unit we have discussed about ring with zero divisor, here we will study 
about ring without zero divisor  

 As a ring without zero divisor is a ring when the product of ro two non zero element of R 
is zero. Mathematically, if ab = 0  a = 0 or b = 0. 
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Let us try following example to have more cleanly of ring without zero divisor.  

Example 1:- The ring of integers is a ring without zero divisors.  

Solution: As we know that set of integers from a ring also product of two non zero integers 
cannot be equal to zero integer. Hence ring of integers is a ring without zero divisor.  

Example 2: The set of real number R is a ring without zero divisor 

Solution: As again product of two non zero real numbers cannot be equal to zero 

Example 3: Show that ring Z5 =  0,1,2,3,4  is a ring without zero divisor.  

Solution: Since Z5 is a ring. 

 As Z5 =  0,1,2,3,4  

 In order to prove Z5 is a ring without zero divisor  

we have to check that ab = 0  a = 0 or b = 0. 

 So, taking the non zero elements of Z5 

 1 5 2 = Least non negative remainder when 12 is divided by 5 = 2 

 1 5 3 = Least non negative remainder when 13 is divided by 5 = 3 

 1 5 4 = Least non negative remainder when 14 is divided by 5 = 4 

 2 5 3 = Least non negative remainder when 23 is divided by 5 = 1 

 2 5 4 = Least non negative remainder when 24 is divided by 5 = 3 

 3 5 4 = Least non negative remainder when 14 is divided by 5 = 2 

So there are no such non zero element in Z5 such that There product is zero element of Z5. 

 Hence Z5 is a ring without zero divisor 

Example 4: Show that the ring Z1 is a ring without zero divisor 

Solution: Since Z1 =  0,1,2,3,4,5,6 , how we have to check that is there any non zero element 

in Z1 such that there product is zero. So 

 1 7 2 = 2  

 1 7 3 = 3 

 1 7 4 = 4 

 1 7 5 = 5 

 1 7 6 = 6 

 2 7 3 = 6 

 2 7 4 = 1 

 2 7 5 = 3 
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 2 7 6 = 5 

 3 7 4 = 5 

 3 7 5 = 1 

 3 7 6 = 4 

 4 7 5 = 6 

 4 7 6 = 3 

 5 7 6 = 2 

So there are no such non zero elements in Z1 such that there product is zero 

Hence Z7 is a ring without zero divisor 

Self Check Exercise - 1 

Q.1 Show that Z11 is a ring without zero divisor 

Q.2 Show that Z13 is a ring without zero divisor 

Q.3 Show that ring of rational and complex number are ring without zero divisor.  

15.4 Cancellation Laws in Ring 

 If R is a ring, then R is an abelian group under addition and semi group under 
multiplication, with which obeys distributive property. As R is an abelian group under addition, 
so by the properties of group, Cencellation Law holds in ring also for addition. For multiplication 
Composition, Cencellation Law for ring holds only if.  

 A  0, ab = ac  b = c, left Cencellation Law  

and a  0, ba = ca  b = c, right Cencellation Law. 

Theorem 1 - A ring R is without zero divisor if and only if the cencellation laws holds in R, or  

 R is without zero divisor Cencellation Laws holds in R. 

Proof:- Let R is without zero divisor to prove Cencellation Law holds in R. 

 Since R is without zero divisor. Let a, b, c be any three elements of  

R such that a  0, ab = ac  

 ab - ac = 0 

 a(b - c) = 0 

as R is without zero divisor and a  0  b - c = 0 

      b = c 

Hence we have proved if a  0, ab = ac  b = c 

So left Cencellation Law holds. 
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Similarly we can prove right Cencellation Law, 

Conversely:- If cencelletion Laws holds in ring then ring is without zero divisor.  

 Suppose that Cencellation Laws holds in ring R. If possible  

 Let ab = 0, a  0, b  0 in R, i.e. R is a ring with zero divisor 

 As Cencellation Law holds so, a  0, ab = a.0  b = 0 

 Which is a contradiction, 

 Hence R is a ring without zero divisor 

15.5 Intergral Domain (ID):- 

 A ring is known as integral domain if it is  

 1. commutative ring  

 2. has unit element  

 3. is without zero divisor  

Example: The ring of integers is an integral domain 

Solution: Since set of integers form a ring, which is Commutative.  

 Also II, act as unit element. So ring of interger has unity. 

 Also if a, b are two integers such that ab = 0, then either a = 0 or b = 0. 

 So ring of integers is an intgeal domain. 

Example 2: The algebraic structure (C, +, .), set of complex number under addition and 
multiplication of Complex number is an integral domain  

Example 3: Set of rational number and set of real number under usual addition and 
multiplication are integral domain.  

Example 4: Show that Z5 is an integral domain. 

Solution:- Since we have earlier proved that Z5 =  0,1,2,3,4  is a ring, which is commutative. 

Also we have proved that Z5 is a ring without zero divisor (Example 3). Also Z5 =  0,1,2,3,4  

 Since 1  Z5 such that  a,  Z5, 1 5 a = a = a 5 1, Hence 1 is unity of Z5. 

 Since Z5 is a Commutative ring, having unity element and is a ring without zero divisor 

 Hence Z5 is an integral domain.  

Example 5: Show that Z6 is not an integral domain.  

Solution: As Z6 =  0,1,2,3,4,5  is a Commutative ring (proved)  

 Also  a,  Z6, 1  Z6, such that  

 a 6 1 = 1 6 a = a 
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 So 1Z6 act as unity element of Z6 

 So Z6 is a Commutative ring with unity. 

 Again, 2, 3  Z6, and and are non zero elements of Z6 

 So 2 6 3 = Least non negative remainder when 23 is divided by 6 

  = 0 

  2 6 3 = 0  

 Similarly, 3, 4  Z6 and are non zero element of Z6 

 So, 3 6 4 = Least non negative remainder when 34 is divided by 6 

  = 0 

 So  3 6 4 = 0 

 So, in Z6, product of two non zero elements is zero. Hence Z6 is a ring with zero divisor 

 Since Z6 is a commutative sing with unity but is a ling with zero divisor 

 So Z6 is not an integral domain 

Example 6: Let R1 and R2 be integral domains. Is R1R2 is an integral domain? 

Solution: Since we know that  

 R1 R2   1 2, : ,a b a R b R   

 Since R1 and R2 are integral domains 

  R1 and R2 are rings 

 So R1 R2 is a ring. 

 Since (a, 0), (0, b)  R1 R2 for a  0  R1 and b  0  R2 

 Also (a, 0) . (0, b) = (0, 0) 

i.e. Product of two non zero element is zero. So R1 R2 is a ring with zero divisor. So R1 R2 is 
not an integral domain.  

Self Check Exercise - 2 

Q.1 Prove that ring of Gaussian integers Z[1] =  , ,a ib a b z   is an integral 

domain. 

Q.2 The ring Z[x] of polynomials with integer coefficients is an integral domain  

Q.3 The ring z z =  2, ,a b a b z  is an integral domain. 

Q.4 the ring ZP of integrals modulo a prime p is an integral domain. 

Q.5 The ring ZB of integers modulo B is not an integral domain,  
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15.6 Summary: 

 Dear students in this unit, we studied about 

 1. The ring without zero divisor with their examples. 

 2. R is a ring without zero divisor iff Cancellation Law holds in R. 

 3. A commutative ring with unity, without zero divisor is known as integral domain.  

15.7 Glossary:- 

 Integral domain:- A commutative ring with unity is said to be integral domain if it 
has no zero divisor. 

 Ring with zero divisor:- In a ring R,  

 non-zero element a and b such that ab = 0 

left Cancellation law + If. a, b, c  R, then  

  a  0, ab = ac  b = c  

15.8 Answers to Self Check Exercises 

Self Check Exercise - 1 

Q.1 Since in Z11 there is no any non zero elements such that their product is zero 
(As in example 4) 

Q.2 In Z13 there is no non zero elements such that their product is zero (As in 
example 4) 

Q.3 Since product of two non zero rational/Complex number cannot be equal zero. 
So ring of rational and Complex numbers are ring without zero divisor 

Self Check Exercise - 2 

Q.1 Since product of two Complex number cannot be equal to zero. 

Q.2 Product of two non zero polynomial cannot be equal to zero polynomial 

Q.3 Let x1 y  2z be any two non zero elements and such that x = a1+ b1 2 , a1, a2, 
b1, b2 are integral. Which are non zero. 

 Since product of two non zerointegeu cannot be equal to zero. 

Q.4 Z8 =  0,1,2,3,4,5,6,7  

  2, 4  Z8, are non zero elements of Z8 

  Also 2 8 4 = best non negative remainder when 24 is divided by 8 

  Product of two non zero element is zero 

  So Z8 is have zero divisor 

  So Z8 is not an integral domain.  
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15.9 Reference/Suggested Readings 

 1. Vijay K. Khanna and S.K. Bhambri, A course in Abstract Algebra,  

 2. Joseph A Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayres Jr. Modern Algebra, Schaum's Outline Series.  

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.  

15.10 Terminal Questions 

1. Let R1 and R2 be two rings. Show that R1 R2 is an integral domain iff one of R1 
or R2 is an integral domain and the other contains only a zero elements 

 

***** 
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Unit - 16 

Division Ring And Field 

Structure 

16.1 Introduction 

16.2 Learning Objectives  

16.3 Unit Element of A Ring 

 Self Check Exercise-1 

16.4 Division Ring 

 Self Check Exercise-2  

16.5 Field  

 Self Check Exercise-3 

16.6 Summary 

16.7 Glossary 

16.8 Answers to Self Check Exercises 

16.9 References/Suggested Readings 

16.10 Terminal Questions 

16.1 Introduction 

Dear student, in this unit we will study about one other characteristic of ring, i.e. inverse 
of an element or unit element. One the basis of unit or inverse of an element we can defined a 
division ring and fields. So division rings and fields are again some special types of ring.   

16.2 Learning Objectives: 

 After studying this unit student will be able to  

 1. define unit element of a ring 

 2. find the unit or inverse of an element of ring. 

 3. Define division ring 

 4. solve question related to division ring. 

 5. define field 

 6. solve questions related to field.  

16.3 Unit Element 

Since a ring is a abelian group, so inverse of each element exist under addition. But, 
under multiplication we have to check either verse of element exists or not. So for inverse of 
element under multiplication the term unit is defined.  
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Definition 

Let R be a ring with unity. Then an element aR is said to be unit or inversibly if there 
exists bR such that ab = 1 - ba. In this case we can also write b = a-1. 

 Let us try following examples to have understanding of unit element. 

Example 1: Find the unit elements or inversible element of the ring of all integers.  

Solution: The elements of ring of integers are  ....... 3, 2, 1,0,1,2,3.......   we can easily check 

that 1 is unity or multiplicative identity of ring of integers. Also, in the ring of integers only two 
elements are there which are inversible or having unit. These elements are 1 and -1  

 as 1  1 = 1 

  -1  -1 = 1 

 Let 3  Z then 3-1 = 1
3  Z is not an integer 

 So 1 and -1 are only unit elements of ring of all integers.  

Example 2: Find the units of Z7, which is commutative ring with unity. 

Solution: Since Z7 =  0,1,2,3,4,5,6 . We will find the inversible element of units of Z7 using 

composition table. 

 Since composition table of Z7 is as  

X-1 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 

2 0 2 4 6 1 3 5 

3 0 3 6 2 5 1 4 

4 0 4 1 5 2 6 3 

5 0 5 3 1 6 4 2 

6 0 6 5 4 3 2 1 

Since 1 is multiplicative identity. Using cermposition table, we can write 

  1 7 1 = 1  

 2 7 4 = Least non negative remainder when 24 is divided by 7 = 0 

∴ 4 is inverse of 2 
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∴ 2 is a unit or inversible element.  

Similarly we can write 

 3 7 5 = 1 

 4 7 2 = 1 

 5 7 3 = 1 

 6 7 6 = 1 

 Hence 1, 2, 3, 4, 5, 6 are units of Z7 or we can say inverse of there element exists.  

Example 3: Write the units of ring of all nn matrices with elements as real numbers. 

Solution: Since the inverse of a matrix exist if it is non singular i.e. its determinant is non zero. 
Hence all nn matrices with element as real number, which are non singular are inversible 
elements or unit of ring of all nnmatricer.  

Example 4: Find unit elements of Commutative ring with unity Z8. 

Solution: Since Z8 =  0,1,2,3,4,5,6,7  

 The composition table of Z8 under multiplication is  

X-8 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 

2 0 2 4 6 0 2 4 6 

3 0 3 6 1 4 7 2 5 

4 0 4 0 4 0 4 0 4 

5 0 5 2 7 4 1 6 3 

6 0 6 4 2 0 6 4 2 

7 0 7 6 5 4 3 2 1 

Since 1 is identity element under multiplication. So from the table we find that  

 1 8 1 = 1 

 3 8 3 = Least non negative integer when 33 = 9 is divided by 8 = 1 

 5 8 5 = Least non negative integer when 55 = 25 is divided by 8 = 1 

 7 8 7 = Least non negative integer when 77 = 49 is divided by 8 = 1 
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 So in Z8, 1, 3, 5, 7 are unit or inversible element. 

 as, 2, 4, 6 does not multiplicative inverse so 2, 4, 6 are not units in Z8. 

Example 5: Find units of Z6. 

Solution: Z6 =  0,1,2,3,4,5  

 The composition table of Z6 is. 

X-6 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

From composition table we can say that only 1 and 5  

are inversible elements as 1 6 1 = 1 and 5 6 5 = 1 

 So only units of Z6 are 1 and 5 

Example 6: Find units of Z[1]. 

Solution: Let a+ib Z[i]., a, b  Z 

 Let a+ib is a unit. Then 

 (a + ib)-1 = 
1

a ib
 

 = 
1

a ib


a ib

a ib




 

 = 
  

a ib

a ib a ib



 
 

 = 2 2

a ib

a b




 (a+b)(a-b) = a2 - b2 

 = 2 2

a

a b
+ 2 2

b
i

a b

 
 

 
 



280 
 

Now, (a + ib)-1  Z [i] iff 2 2

a

a b
 and 2 2

b

a b




are integers  

 i.e. a2 + b2 = 1 

 Putting b = 0, a2 = 1  a + 1 

Now putting values of a and b in a + ib 

 When b = 0, a = + 1 so unit is + 1 + 0 = + 1 

 When a = 0, b = + 1, so unit is 0 +i = +i 

 So units of Z[i] are +11 -11 i, -i 

Example 7: Check that -7 + 4 3  is a unit in 3Z  

Solution: Since 3Z  =  3, ,a b a b z   

 Let -7 + 4 3  is a unit in 3Z  

 Using definition, i.e. a  R is a unit. If  b  R such that  

 a.b = 1 then a-1 exists.  

 Since -7 + 4 3  is a unit so  
1

7 4 3


  exists.  

 So.  
1

7 4 3


  = 
1

7 4 3 
 

 = 
1

7 4 3 


7 4 3

7 4 3

 

 
 

 = 
   

22

7 4 3

7 4 3

 

 
 

 = 
7 4 3

49 48

 


 

 = 
7 4 3

1

 
 

 7 4 3 3Z    

So 7 4 3   is a unit in 3Z . 

Example 8: find the units of 2Z   =  2 ; ,a i b a b z  under usual addition and 

multiplication.  
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Solution: Let 2 ; ,a i b a b z   is a unit element of  2Z   

 Then  
1

2a i b


  = 
1

2a i b
 

 = 
1

2a i b


2

2

a i b

a i b




 on 

 = 
 

2
2

2

2

a i b

a i b




   (a + b) (a - b) = a2 - b2 

 = 
 2 2

2

2

a i b

a b



 
    i2 = -1 

 = 
2 2

2

2

a i b

a b



 
 

 = 2 22

a

a b
+ 

 
2 2

2

2

i b

a b




 

 = 2 22

a

a b
 + 2i

 
2 22

b

a b

 
 

 
 

Now,  
1

2a i b


  2Z  iff 2 22

a

a b
 and 2 22

b

a b




are integers. 

 i.e. a2 + 2b2 = 1 

 This is possible only if b = 0 and a2 = 1 

 ∴ a = + 1 

 So, 1 and -1 are the only units of 2Z   

Self Check Exercise - 1 

Q.1 Find the unit in Z12 

Q.2 Find the units of ring R =  3, , .a b a b Z    

Q.3 Check that 7 4 3  , 2 3 , 5 3 3 , 3 2 3   is a unit in 3Z  or 
not. 

Q.4 Check that 1 2  is a unit of 2Z  or not. 
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16.4 Division Ring or Skew Field 

Definition:- A ring R with atleast two elements is called a division ring or a skew field if it  

 1. has unity 

 2. is such that each non zero element possesses multiplicative inverse. 

 Here it is interstingti note that a ring is an abelian group under addition holding 
distributive property along with semi group under multiplication. So a ring under multiplication is  

   (1) Closed under multiplication 

   (2)  Associatively holds 

For division ring  (3) has unity i.e. multiplicative identity exists 

   (4) non zero element has inverse.  

 So looking on above condition we can say, if R is a division ring, then the set of all non 
zero elements of R from a group under multiplication.  

Example 1: The ring Q, ring of rational number is a division ring. 

Solution: Since 1 Q will act as unity of the ring i.e. multiplicative in identity and   x = p
q Q. 

 y = q
p  such that xy = 1 = yx i.e. every non zero element has its inverse. So the ring Q is a 

division ring.  

Example 2: The ring R, ring of real number is a division ring.  

Solution: Ring of real number has unity. Also  a  R, 
1

a
 R such that a.

1

a
 = 

1

a
.a = 1 

 So every non zero element has its inverse. So ring of real number is a division ring. 

Example 3: The ring C, ring of complex number is a division ring.  

Solution: Ring of complex number has 1+0 i C, which act as multiplicative identity i.e. unity of 
the ring.  

Also, if a + i b  C, a, b  R, then 
1

a ib
 C    

 Such that (a + ib). 
1

a ib
 = 1 = 

 
1

a ib
.  a ib  

 Elence ring of complex number is a division ring.  

Self Check Exercise - 2 

Q.1 Check that (z, + i) is a division ring or not.  



283 
 

 

16.5 Field  

 Definition:- A ring R with at least two element is called a field if,  

 (1) has unity 

 (2) every non zero element has its multiplicative inverse.  

 (3) it commutative.  

 We can see that division ring has (1) and (2) property.  

So we can say that commutative division ring is a field. Let us try following examples 
based on division ring.  

Example 1: The set of real numbers is a field.  

Solution:- As we have proved in example 10, that the set of real number is a division ring. Also 
real number are commutative under multiplication. So the set of real number form a field.  

Example 2: The set of rational number is a field.   

Solution: Since set of rational number is a division ring (Example 9) Also rational numbers are 
commutative under multiplication. So the set of rational numbers form a field.  

Example 3: The set of complex number is a field.  

Solution: As set of complex number is a division ring (Example 11) Also complex number are 
commutative under multiplication. So the set of complex number form a field.  

Note:- (1) Set of natural number is not a field as N =  1,2,.............. so it does not has 

additive identity.  

 (2) Set of integers is not a field. As Z =  3, 4 1,0,1,2,3.......    

 Let a = 2  Z, we can not find an element b  Z such that a. b = b - a = 1 

 i.e. all non zero elements has no multiplicative inverse so set of integer is not a field.  

Theorem 1: Every field is an integral domain.  

Proof:- Let F is a field. Then F is a commutative ring with unity and all non zero element have 
inverse. To prove every field is an integral domain, we have to prove that field has no zero 
divisors or field is without zero divisor.  

 Let a, b be any two element of field F, with a  0 such that ab = 0 

 Since a  0 so a-1 exist as F is a field.  

 Also we have ab = 0 

  a-1 (ab) = a-1 (0) 

  (a-1a)b = 0 

  1 . b = 0 [  a-1 a = 1] 
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  b = 0  [1. b = b] 

Similarly if b  0, such that ab = 0 

 as ab = 0 

  (ab) b-1 = 0 b-1 

  a(bb-1) = 0 

  a. 1 = 0 

  a = 0 

Thus if F is a field, then for a, b  F, ab = 0  a = 0 or b = 0. 

Hence F has no zero divisor or F is without zero divisor. So F is an integral domain.  

The converse of this theorem is not true. i.e. every integral domain is not a field. We will 
prove this statement in next example.  

Example 4: Show that Ring of integers is an integral domain but it is not a field. 

Solution: Since ring of integer is an integral domain as product of two non zero integer cannot 
be equal to zero. So ring of integer is an integral domain. 

 But, ring of integer has unity and is commutative under multiplication but every integer 
other than 1 and -1 does not have multiplication inverse. So ring of integers is not a field 

Note:- (1) For a field F, unity and zero are distinct elements 1  0 

 (2) A field has no zero divisor. Therefore in a field the product of two non zero 
element will again be a non zero element.  

A division ring has no zero divisor. 

Finite/Infinite Ring 

The number of elements in a ring is called order of ring. If number of element on order of 
ring is finite then it is known as finite ring otherwise it is called an infinite ring.  

Theorem 2: Every finite integral domain is a field.  

OR 

 A finite Commutative ring without zero divisor is a field.  

Proof:- Let R be a finite integral domain 

 Then by definition of integral domain, R is a finite commutative ring without zero divisors.    

 First two show that R has unit element. 

 Let R =  1 2, ,........ na a a be distinct elements of R. 

 Let a  R be any non zero element. 

 Then by using closures property under multiplication, the elements aa1, aa2, ........ aan 
are in R. 
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 Now to prove that these elements are distinct,  

 Let aai = aaj where 1 <i, j < n 

  aai - aaj = 0 

  a(ai - aj) = 0 

Since R is an integral domain, so product of two elements is equal to zero even when elements 
are non zero i.e. 

 a  0 (given), (ai - aj) = 0 

   ai - aj = 0 

   ai = aj 

   i = j 

Hence the elements aa1, aa2, ........... aan are all distinct and are n in number.  

Since we initially taken R =  1 2, ,........ na a a and R has also n elements of the form  

R =  1 2, ,........ naa aa aa , where a  R so ak (1 < k < n) such that  

a = aak, (1) as R has only n distinct element. 

 Let ai  R {1 <i< n} be any element. 

 ∴ ai = aaj  for same j, i< j < n  ....2 

Now akai = ak(aaj)  using 2 

 = (aka)aj (using associative property) 

 = (aak)aj (using commutative property) 

 = aaj  using (1) i.e. aak = a 

 = ai  using (2) 

as R is commutative so, akai = aiak = ai ai R 

 Hence ak is the unit element of R 

Since the unit element of ring is unique and we denoted it by 1. 

Now 1  R =  1 2, ,........ naa aa aa therefore  al, 1 < l < n such  

  that 1 = aal = al a,  

 Which shows that a is invertible with respect to multiplication. 

 Thus every non zero element of R is invertible with respect to multiplication. Hence R is 
a filed.  

Theorem 3: the ring Zþ of integers modulo a prime þ is a field iff þ is a prime. 

Proof: Let Zp be a field, to show þ is a prime. 
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 Let þ is not a prime. 

 Then  a, b such that þ = ab where 1 < a, < b < þ. By definition of composting of 
multiplication modulo þ a þ b = least non negative remainder when ab is divided by þ 

 = 0 as ab = þ 

  a þ b = 0 

 as a  0, b  0, so Zp as zero divisor  

  Zp is not an integral domain 

 Which leads to a contradiction because we suppose Zp is a field So Zp is an integral 
domain. 

 Hence our supposition is wrong that þ is a not a prime  

 Hence þ is a prime. 

Coveristy :- Let þ is a prime, to prove Zp is a field.  

 Let a, b Zp such that   

 a þ b = 0 

 ab is a multiple of þ 

 þ /a or  þ/b  þ is a prime. 

 a = 0 or þ = 0 

 So a þ b = 0 if a = 0 or b = 0 

 i.e. Zp ring without zero divisor 

 So Zp is integral domain. 

 AlsoZp =  0,1,2,......... 1   has finite number of element and finite integral domain is 

field. 

 Hence Zp is a field. 

To have more understanding of field let us take following examples. 

Example 4: Show that the set G =  0,1,2,3,4  Forms a field with respect to addition and 

multiplication modulo 5. 

Solution: Since G =  0,1,2,3,4  

 Here Composition of addition and multiplication are defined as a +5 b = Least non 
negative remainder when a+b is divided by 5. 

and 

 a 5 b = Least non negative remainder when ab is divided by 5. 

Now, Composition table under +5 is  
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X-5 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

Axioms under addition:- 

 1. Closure properties:- Since all entries (in each column) are the element of G. So 
G is closed under addition. 

 2. Associative property:- Since the element of G are integers, so the least non 
negative remainder remains the same if (x+y)+z or x+(y+z) is divided by 5 

  So Associative property holds. 

 3. Existence of identity:- Here 0 is the identity element of G as x  G x +5 0 
= x = 0 +5 x. 

 4. Existence of inverse:- Here 0 is inverse of itself. 

  Inverse of 1 is 4, inverse of 2 is 3, inverse of 3 is 2 Hence every element has its 
additive inverse.  

 5. Commutative Property:- Since element of composition table are symmetrical 
about main diagonal. Hence G is commutative.  

 Hence G is an abelian group under addition. 

Axioms under multiplication  

Composition table for X5 

X-5 0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 
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Closure Property 

As the element of composition table are element G. Hence G is closed under 
multiplication  

Associative Property: 

As integers are associative under multiplication.  

So the least non-negative remainder when a(bc) is divided by 5  

= the least non-negative remainder when (ab)c is divided by 5 

Hence associative property holds in G. 

Existence of identity:- 

Since 1  G and  a  G  

 a 5 1 = a = 1 j a. Hence 1 will act as identity element of G. 

Existence of inverse:- 

From composition table it is easily seen that inverse of 1 is 1, is 

 inverse of 2 is 3 

 inverse of 3 is 2 

 inverse of 4 is 4 

Here we have to check the inverse of only non zeroelernt.   

Commutative Property 

Since integers are commutative under multiplication. So 

 The least non negative remainder when ab is divided by 5 

 = The least non negative remainder when ba is divided by 5 

Hence commutative property holds in G. 

Distributive Law 

Since 'X5' is distributive in R with respect to '+5'. If a, b, c are any elements of R then 

 a 5 (b +5 c) = (a 6 6) +6 (a 6 c) 

 as the least non-negative remainder when a(b+c) is divided by 5 

 = the least non negative remainder when (ab)+(bc) is divided by 5. 

Hence G  0,1,2,3,4  is a field. 

Example 5: Find the root of x2 + 3x - 4 in Z1 Z6 and Z4. 

Solution: Let f (x) = x2 + 3x - 4 

  = x2 + 4x - x - 4 
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  = x(x + 4) -1 (x + 4) 

  f (x) = (x + 4) (x - 1) 

(1) To find root of f (x) = x3 + 3x - 4 = (x + 4) (x - 1) in Z 

  (x + 4) (x - 1) = 0 

 x = -4, 1 in Z 

(2) The roots of x2 + 3x - 4 in Z6 

 Since Z6 =  0,1,2,3,4,5,6  

 So f (x) = 0 in Z6iff (x + 4) (x - 1) = 0 in Z6 

 taking values of x from Z6, we get 

 x = 0, (0 + 4) (0 - 1) = - 4 

 when, x = 1, (1 + 4) (1 - 1) = 0   0 (mod 6) 

 x = 2, (2 + 4) (2 - 1) = 6   0 (mod 6) 

 x = 3, (3 + 4) (3 - 1) = 4   2 (mod 6) 

 x = 4, (4 + 4) (4 - 1) = 12   0 (mod 6) 

 x = 5 (5 + 4) (5 - 1) = 36   0 (mod 6) 

So only x = 1, 2, 4, 5 satisfies the condition (x + 4) (x - 1)   o (mod 6) 

So roots in Z6 are 1, 2, 4 and 5 

(3) The roots of x2 + 3x - 4 in Z4 

 Since Z4 =  0,1,2,3  

 So f (x) = 0 in Z4iff (x + 4) (x - 1) = 0 in Z4 

 Considering the same as above, x = 1, 2 are the roots of x2 + 3x - 4 in Z4. 

Example 6: Solve the equation f (x) = x2 - 5x + 6 = 0 in the ring Z12. 

Solution: Since Z12 =  0,1,2,3,4,5,6,7,8,9,10,11  

 Given, f (x) = x2 - 5x + 6 

 = x2 - 3x - 2x + 6 

 = x(x - 3) - 2(x - 3) 

 = (x - 3) (x -2) 

So the roots of f (x are given by (x - 3) (x - 2) = 0 

Taking the value of x from Z12, we get  
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 When x = 1, (1 - 3) (1 - 2) = 2   0 (mod 12) 

 When x = 2, (2 - 3) (2- 2) = 0   0 (mod 12)  

 When x = 3, (3 - 3) (3 - 2) = 0   0 (mod 12)  

 When x = 4, (4 - 3) (4 - 2) = 2   2 (mod 12) 

 When x = 5, (5 - 3) (5 - 2) = 6   6 (mod 12) 

 When x = 6, (6 - 3) (6 - 2) = 12   (0 mod 12) 

 When x = 7, (7 - 3) (7 - 2) = 20   8 (mod 12) 

 When x = 8, (8 - 3) (8 - 2) = 30   6 (mod 12) 

 When x = 9, (9 - 3) (9 - 2) = 42   6 (mod 12) 

 When x = 10, (10 - 3) (10 - 2) = 56   8 (mod 12) 

 When x = 11, (11 - 3) (11 - 2) = 72   0 (mod 12) 

 So only, x = 2, 3, 6 and 11 satisfies the condition (x - 3) (x - 2) = 0 in Z12 

So the root of f (x) = x2 - 5x + 6 = 0 are 2, 3, 6 and 11. 

Self Check Exercise - 3 

Q.1 Prove that Z7 is a field 

Q.2 Prove that Z8 is not a field. 

16.6 Summary: 

In this unit we studied about  

 1. the unit element of ring which is  also known as inversible element of ring. 

 2. the division ring which is a ring having multiplicative identity and all non zero 
elements have their inverse under multiplication.  

 3. the field which is a commutative division ring. 

To Summarized all 

Under addition 

 1. Closures property 

 2. Associative property 

 3. Existence of Identity 

 4. Existence of inverse 

 5. Commutative under addition under multiplication  

 6. Closure property 

 7. Associative property 
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 8. Distributive property 

 9. Existence of identity 

 10. Existence of inverse of all non zero element 

 11. Commutative under multiplication  

16.7 Glossary:- 

 Unit element:- Let R be the ring with unity. Then an element a  R is said to be 
unit if  bR such that ab = 1 = ba. 

 Division Ring:- A rring R with unity is said to be division ring such that each non 
zero element possesses multiplicative inverse.  

16.8 Answers to Self Check Exercises  

Self Check Exercise - 1 

Q.1  1,5,7,11  are units of Z12 

Q.2 1 and -1 

Q.3 -7 + 4 3 , 2 3  are units only 

Q.4 Yes 

Self Check Exercise-3 

Q.1 As Z7 is a finite integral domain, so is a field. 

Q.2 As every all non zero element does not have inverse. So not a field.  

16.9 References/Suggested Readings 

 1. Vijay k. Khanna, and S.K. Bhambri, A course in Abstract Algebra 

 2. Joseph A. Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayrer Jr, Modern Algebra, Schaumn's Outline Series 

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.  

16.10 Terminal Questions 

 1. Give an example of a division ring which is not a field 

 2. Prove that 2a =  2 , ,a b a b Q   where Q is set of rational, is a field under 

usual addition and multiplication  

 3. Show that the set of rational Q is a field under the compositions  and (.) defined 
as  

  a  b = a + b - 1 and a (.) b = a + b - ab  a, b  Q. 

***** 
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Unit - 17 

Properties of Ring Element 

Structure 

17.1 Introduction 

17.2 Learning Objectives  

17.3 Idempotent Element 

 Self Check Exercise-1 

17.4 Nilpotent Element 

 Self Check Exercise-2  

17.5 Characteristic of Ring 

 Self Check Exercise-3 

17.6 Boolean Ring 

 Self Check Exercise-4 

17.7 Summary 

17.8 Glossary 

17.9 Answers to Self Check Exercises 

17.10 References/Suggested Readings 

17.11 Terminal Questions 

17.1 Introduction 

Dear student, in this unit we will study about some properties of ring element such as 
idempotent element and nilpotent element, on the basis of which we will define a special type of 
ring i.e. Boolean ring. We will also study about the characteristic of ring and do some examples 
to find characteristic of ring. 

17.2 Learning Objectives:- 

 After studying this unit student will be able to 

 1. define idempotent and nilpotent element of ring 

 2. define Boolean ring with its properties 

 3. do prove a given ring is Boolean or not. 

 4. define and find the characteristic of ring.  
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17.3 Idempotent Element of a Ring 

Definition:- An element x in a ring R is said to be idempotent if x2 = x. 

Example 1: Prove that A = 

1 0 0

0 1 0

0 0 0

 
 
 
  

 is an idempotent element of M3(R), the ring of real 

matrices of order 33. 

Solution: Since we know that an element is said to be idempotent element if x2 = x for x  R. 

So we have to prove that A2 = A for A  M3 (R). 

Given A = 

1 0 0

0 1 0

0 0 0

 
 
 
  

 

how, A2 = 

1 0 0

0 1 0

0 0 0

 
 
 
  

1 0 0

0 1 0

0 0 0

 
 
 
  

 

 = 

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

      
 
     

 
       

 

 = 

1 0 0

0 1 0

0 0 0

 
 
 
  

 

 = A 

Hence A is an idempotent element of M3(R) 

Self Check Exercise-1 

Q. 1 Prove that  A = 

2 2 4

1 3 4

1 2 3

  
 
 
 
   

 is on idempotent dement of M3R. 

17.4 Nilpotent Element  

 An element x in a ring R is called nilpotent element if xn = 0, for some positive integer n. 
The smallest positive integer satisfying xn = 0 is called degree of nilpotency of the element x.  
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Example 1 : Prove that  A = 

1 1 3

5 2 6

2 1 3

 
 
 
    

 is a nilpotent element of m3(R), the right of real 

matrices of order 3x3. 

Solution : since we know that an element of a ring is nilpotent of xn = 0. So we have to find that 
power of A for which An = 0 

 Given A = 

1 1 3

5 2 6

2 1 3

 
 
 
    

 

 A2 = 

1 1 3

5 2 6

2 1 3

 
 
 
    

1 1 3

5 2 6

2 1 3

 
 
 
    

 

=  

1 5 6 1 2 3 3 6 9

5 10 12 5 4 6 15 12 18

2 5 6 2 2 3 1 6 1 9

      
 
     

 
          

 

 

 A2 = 

0 0 0

3 3 9

1 1 3

 
 
 
    

 

Now A3 = 

0 0 0

3 3 9

1 1 3

 
 
 
    

1 1 3

5 2 6

2 1 3

 
 
 
    

 

 = 

0 0 0

3 16 18 3 6 9 9 18 27

1 5 6 1 2 3 3 6 9

 
 
     

 
          

 

 = 

0 0 0

0 0 0

0 0 0

 
 
 
  

 

 Since A3 = 0 

 So, A is nilpotent element of M3(R) and the degree of nilpotency is 3. 
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Theorem 1 : The sum of two nilpotent element of a commutative ring is also nilpotent.  

Proof : Let R be a commutative ring and a, b  R be two nilpotent elements of ring such that  
am = 0 and bn = 0 for some positive integers m and n.  

Now (a+b)m+n = am+n+ 
1

m n

c


 am+n+1 b + .....  + 
m n

n
c


am+r bn ...... 
1

m n

n
c



an-1 bn+1 + ----+bm+n 

using Binomial expensin 

=   1

1

m n m n
m n n n

r
a a c a b c b b

 
      + 

 1

1

m n
n n n n

n
b a c a b b





      

as am = 0 and bn = 0, so 

(a+b)m+n = 0 + 0 

 = 0 

Hence sum two nilpotent element of a commutative ring is also nilpotent. 

Theorem 2 : Show that in a ring R, a non zero idempotent cannot be nilpotent. 

Solution : Let x R be a non zero idempotent element then by definition of idempotent x2 = x.  

 If x is also nilpotent element then there exists an integer n >1 such that  

 xn = 0       (1) 

 But since  x2 = x, so 

   x3 = x.x2 

      = x.x 

      = x2 

   x3 = x  

  x4   =   x2.x2 

        =   x.x 

         = x2 

  x4 = x  

 similarlyxn = x      (2) 

 So from (1) and (2) x = 0, which is a contradiction that x is a non zero element of ring R. 

 Hence, a non zero idempotent cannot be nilpotent. 

Theorem 3 : Prove that a ring R has no zero nilpotent elements if and only if the solution of the 
equation x2 = 0 in R. 
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Solution : Let R has non zero nilpotent element then by definition  

 xn = 0 

 So the equation x2 = 0 has only one solution i.e. x = 0 in R 

Conversely : 

 Let x2 = 0  x = 0 in R 

 If possible, let a be a nilpotent element in R. 

 a least positive integer n such that an = 0 

 If n < 2 then a = 0  

 Let n > 2, then n must be odd, for otherwise by hypotheses an/2 = 0, which contradict the 
condition that n is minimal. 

 Let n = 2m+1. Then m > 0 and m+1<n 

 Now (am+1)2 = a2m+2 

   = a2m+1 . a 

   = an . a 

   = a .a   an = 0 

   = 0  

  am+1 = 0, which again contradict the condition that n is minimal.  

 Hence xn = 0, for n the least position integer which completes the proof.  

Example 2 : Show that in an integral domain R with unit y the only idemponents are zero and 
unity. 

Solution : Let a  R be an idempotent element of R 

 Then by definition a2 = a  

   a2-a =0 

   a(a-1) = 0 

   a = 0 or a = 1 

 Because R is an integral domain i.e. a ring without zero divisor. So product of two 
element is zero only if one of them is zero. 

Example 3 : If a is a nilpotent element of the competative ring R, then prove that 

 1. ar is nilpotent  r R 

 2. a is either zero or a zero divisor 

 3. 1+a is unit in P 
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 4. u+a is a unit in R where u R is a unit. 

Solution : (1) Given a is nilpotent element in a computative ring R. so 

  am = 0, where m is least positive integer > 1 

 To prove ar is nilpotent, r R. 

 (ar)m = am rm 

  = 0.rm 

  = 0 

  (ar)m =0 

 Hence ar is nilpotent. 

(2) If m = 1, a1 = 0  a = 0, a is zero itself. 

 if m > 1 then am = 0 

   a am-1 = 0 

   a is a zero divisor. as a  0 so am-1
 0 

(3) Let b = 1 - a + a2 ---- +(-1)m-1 am-1 

 then (1+a)b = (1+a) [1-a+a2 ----- +(-1)m-1 am-1] 

 = 1 - a + a2 ---- +(-1)m-1 am-1 + a - a2 + a3 ---- +(-1)m-1 am 

 = 1 - (-1)m-1 am 

 = 1 - (-1)m-1 0   [  am = 0 

 = 1 - 0 

 = 1 

 (1+a) b = 1 

 So 1+a is unit. 

(4) Let u R is a unit, 

 then u-1
 R and uu-1 = 1 u-1u  [by definition of unit 

  u-1a is nilpotent in R  [using (1) 

  (1+u-1a) is a unit in R  [using (3) 

 = u(1+u-1a) is a unit R.  [using 3 

 = u + a is a unit in R 

 Hence proved. 
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Self Check Exercise - 2 

Q. 1 Show that A = 

0 0 1

0 0 0

0 0 1

 
 
 
  

is a nilpotent element of m3(R). 

17.5 Characteristic of A Ring 

Definition  

 If in a ring R,  a positive integer m such that ma = 0  a  R, then R is called a ring of 
finite characteristic and if n is the least positive integer for which na = 0  a  R, then n is called 
characteristic of a ring R.  

Here na=  a + a + -------- + 0 

   n times 

Note : If no such positive integer exists then the ring R is said to be a ring of characteristic zero. 
the characteristic of a ring is denoted by char R.      

Example 1 : Set of integer has Characteristic zero  

Solution : There is no positive integer, which when multiplied by each element of set of integer 
becomes zero. So characteristic of Z set of integer is zero. 

Example 2 : Set of rational Q, set of real R and set of complex numbers C all have 
characteristic zero. 

Example 3 : Show that characteristic of Z2 is 2 

Solution : Since Z2 = {0, 1} 

 Since Z2 is a ring, so (Z2 +2) is a group under addition, Then for any a  Z2 if we have 

  na = a + a + a -------- a = 0 

   n times  

 Then n is characteristic of Z2 

 Since  0  Z2 and 0 +2 0  0 mod 2 

  1  Z2 and 1 +2 1  0 mod 2 

 So , Z2 has characteristic 2 

Example 4 : Find the Characteristic of Z4 

Solution : Since Z4 = {0, 1, 2, 3,} 

 Since  0  Z4 , 0 +4 0 +4 Q +4 04 0 (mod 4) 

  1  Z4 , 1 +4 1 +4 1 +4 1   0 (mod 4) 

2  Z4 , 2 +4 2 +4 2 +4 2   0 (mod 4) 
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3  Z4 , 3 +4 3 +4 3 +4 3   0 (mod 4) 

 Hence Char (Z4) = 4 

Remark  

 Char Zn = n. 

Theorem : The characteristic of an integral domain is either zero or a prime number. 

Proof : Let R be an integral domain. 

 If characteristic of R is zero, then there is nothing to prove. 

 Suppose R has a finite characteristic  

 Then there exists a positive integer m such that  

 ma =  0 a  R. 

 Let p be such least positive integer, then char (R) = p. 

 To prove p is a prime. 

 Let p is not a prime, then p = p1p2, p1 1, p2 1 

 and p1< p, p2< p. 

Now pa = 0  a  R 

  (p1p2)a = 0  a  R 

  (p1p2)ab = 0 a,b R 

  ab + ab + ----------- + ab  = 0  a, b  R  

     ----------- p1p2 times ---------- 

 {a + a + -------- +a} {b + b + ------- + b} = 0 

  p1times  p2times  

 p1a . p2b  = 0  

 either p1a = 0 or p2b  = 0      R is an integral  

domain i.e. ring without zero divisor  

Also p1< p and p2< p, and p is least positive integer such that pa = 0  

Hence this a contradisticion. 

Hence p must be a prime 

Theorem 2 : Let R be ring with identity 1. If is an element of finite order in the group (R1 +) then 
the order of 1 is the characteristic of R. If 1 is infinite order then characteristic of ring is zero.   

Proof :Suppose the order of 1 is n. Then n is least positive integer such that n.1 = 0 

 n.1 = 1+1+ ------- +1 (n times) = 0 

Now Let  a R, then  
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 na = a + a+ ------ + a (n times) 

  = 1.a +1.a + -----+1.a 

  = (1+1+1 ------- +1)a 

  = 0. a    n.1 = 0 

 na = 0 

 Thus na = 0  a  R 

 Hence the characteristic of the ring is n. 

 If 1 is of infinite order then there, is no positive integer n such that n.1 = 0. 

 Hence Characteristic of the ring is zero. 

Example 5 : If r is a ring in which x2 = x x R, Prove that R is commutative ring of 
characteristic 2 

Solution : R is a ring so (R1+) is an abelian group.  

 Let x  R then -x  R 

 Now given x2 = x 

 so x2 = (-x)2 = -x 

  x = -x 

  x + x = 0 

 2x = 0   x  R 

 Therefore, char (R) = 2       (1) [by definite of characteristic of R 

Now  x,  y R , x + y  R    (R+) is ring so closed under addition 

 x + y = (x+y)2     given x  R x2 = x 

 = (x+y)(x+y) 

 = x2 + xy +yx +y2 

x+y = x + xy + yx + y    x2 = x, y2 = y 

 using cancellation Law under addition, we get 

  xy + yx = 0     (2) 

Since x, y  R xy R [  R is a ring, so closed under multiplication] 

Since char (R) = 2  [using (1)] 

So 2(xy) = 0 

 xy + xy = 0  (3) 

From (2) and (3) we get 

 xy + yx = xy + xy 
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using left cancellation law 

 yx = xy   x, y  R 

Hence R is a commutative ring.  

Example 6: Let a, b be elements of commutative ring R of characteristic two, show that (a+b)2 = 
a2 + b2 = (a-b)2 

Solution: Let R be a commutative ring of characteristic 2 let a, b  R 

 then (a+b)2 = (a2+b) (a+b) 

 = a(a + b) + b (a + b) 

 = aa + ab + ba + bb 

 = a2 + ab + ba + b2 

 = a2 + 2ab + b2   ab = ba, R is commutative 

 (a+b)2 = a2 + b2 
, , ) 2

2( ) 0

a b R ab R and Charcr

so ab

   
 

 
 

Again, (a-b)2 = (a-b) (a-b) 

 = a(a-b) -b (a-b) 

 = aa - ab - ba + bb 

 = a2 - ab - ab + b2 [  Char R = 2 so 2 (ab) = 2] 

 (a-b)2 = a2 + b2 

Hence (a+b)2 = a2 + b2 = (a-b)2 

Example 7: Let R be a ring of characterstic n. Let M be a ring of all 22 matrices over R, then 
show that char (M) = n 

Solution: Since R be a ring of char (R) = n 

 then by definition, if x R then nx = 0  x  R 

 Let A = 
a b

c d

 
 
 

 be any matrix in M, where a, b, c, d  R 

 Since a, b, c, d  R and R be ring of characteristic n 

 so na = nb = nc = nd = 0 

Now, nA = 
a b

c d

 
 
 

 + 
a b

c d

 
 
 

 + ...................... + 
a b

c d

 
 
 

 [n times] 

 = 
na nb

nc nd
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 = 
0 0

0 0

 
 
 

 na = nb = nc = nd = 0 

 nA = 0   A  M 

 So Char (M) = n. 

Example 8: Let R be an integral domain. Let a R - {0} be such that na = 0 for some positive 
integer n. Show that R is of a finite characteristic   

Solution: Let a  R - {0} be such that na = 0 (given) 

 Let x  R, then 

  (na) x = 0 

 (a + a + ............ + a) x = 0 

 ....... n times 

 = (ax + ax + .......... ax) n times = 0 

 = a (x + x + ............ + x) = 0  x  R 

As R is an inlegral domain, so does not have zero divisor, also a  0 so 

 = x + x + ............. + x = 0 

 n times 

 = nx = 0  x  R 

 ∴ Characteristic of R is finite = n 

Self Check Exercise - 3 

Q.1 Find the char (Z6) 

Q.2 Let R be a commutative ring with characteristic þ, þ P then 
show that (a+b)þ = aþ + bþ, a, b  R. 

17.6 Boolean Ring:- 

Definition: 

A ring R is called a Boolean ring if every element of R is idempotent  

i.e. for all x  R, x2 = x.  

Examples 1: The ring (Z2, +2, 2) is a Boolean ring.  

Solution: Since Z2 = {0, 1} 

 Z2 has only two element, we can easily prove that Z2 is a ring. 

 Now to prove x2 = x  for 0 and 1 

  as 02 = 0, and 12 = 1 
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 Since both the elements of Z2 are idempotent, So (Z2, +2, 2) is a Boolean ring.  

Example 2: Show that (Z3, +3, 3) is not a Boolean ring  

Solution: Since Z3 = {0, 1, 2} 

 we can easily prove that Z3 is a ring. 

 Now to check  x  Z3, x
2 = x 

 as 02 = 0, 12 = 1  but 22 = 4 

 Since 2 is not an idempotent element of Z3. 

So Z3 is not a Boolean ring.  

Example 3: Show that characteristic of a Boolean ring is 2. 

Solution: Let R be a Boolean ring. 

 then by definition  x  R x2 = x 

 If x R then - x  R 

 Also x = x2 = (-x)2 = -x 

 x = -x. 

 x + x = 0 

 2x = 0 

 char (R) = 0, as x  R. 

Theorem 1: Let R be a Boolean ring. Then 

 1. 2x = 0   x  R 

 2. xy = yx   x, y  R  

Proof: (1) Let x  R, as R is a ring, -x  R 

Now x = x2  R is Boolean ring 

 = (-x)2 

 = -x 

 x + x = 0 

 = 2x = 0  x  R. 

 (2) Let x, y  R then 

  x + y = (x + y)2 

  = (x + y) (x + y) 

  = x (x + y) + y (x + y) 

  = x2 + xy + yx + y2  2 2, ,Ris Booleanring x y R x x y y       
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 x + y = x + xy + yx + y 

 using cancellation law under addition  

  xy + yx = 0  (1) 

 as x, y  R  x y  R then using (1) 

  2 (xy) = 0 

  xy + xy = 0  (2)  

From (1) and (2) 

 xy + yx = xy + xy 

 using cancellation law, we have  

 yx = xy,  x, y  R 

 Hence Booleans ring is commutative 

 The converse of this is not true. 

Self Check Exercise - 4 

Q.1 Give an example of commutative ring which is not Boolean.  

17.7 Summary:- 

In this unit, we studied that  

 1. an element of a ring is called idempotent if x2 = x 

 2. an element of a ring is called nilpotent if xn = 0 for some least positive integer n 

 3. If for x  R, R is a ring and nx = 0 then char (R) = n 

 4. In Boolean ring,  x  R, x2 = x i.e. each element of Boolean ring is idempotent.  

17.8 Glossary 

 Nilpotent element:- An element x  R is called nilpotent if xn = 0 for some 
positive integer n.  

 Idempotent element:- An element xR is called idempotent, if x2 = x. 

 Boolean ring:- A Ring R is called Boolean ring if every element 

17.9 Answers to Self Check Exercises 

Self Check Exercise - 1 

Q. 1 A2 = 

2 2 4

1 3 4

1 2 3

  
 

 
   

 = A 
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Self Check Exercise - 2 

Q. 1 A2 = 

0 0 0

0 0 0

0 0 0

 
 
 
  

 = 0 

Self Check Exercise - 3 

Q.1 Char (Z6) = 6 

Q.2 defining of characteristic of ring to prove this. 

Self Check Exercise - 4 

Q.1 Ring of integers is a commutative ring. But all elements of ring of integers not 
satisfies the property x2 = x. So it is not a Boolean ring. 

17.10 References/Suggested Reading 

 1. Vijak. . Khanna, and S.K. Bhambri, A course in Abstract Algebra. 

 2. Joseph A Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayres Jr. Modren Algebra, Schaum's Outline Series 

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashna Media.  

17.11 Terminal Questions  

 1. Show that the characteristic of M2 (Z3) is 3. 

 2. Give an example of infinite ring of non zero characteristic 

 

***** 
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Unit - 18 

Subring 

Structure 

18.1 Introduction 

18.2 Learning Objectives  

18.3 Subrings And Criteria For A Subring  

 Self Check Exercise-1 

18.4 Set Opertions on Subrings  

 Self Check Exercise-2  

18.5 Centre of Ring 

 Self Check Exercise-3 

18.6 Summary 

18.7 Glossary 

18.8 Answers to Self Check Exercises 

18.9 References/Suggested Readings 

18.10 Terminal Questions 

18.1 Introduction 

Dear student, in this unit we will study about the subring. We will prove certain sets to be 
a subring. We will study about the intersection and union operation applied on subring and their 
results. We will also discuss about the subring generated by a subset of a ring.  

18.2 Learning Objectives: 

 After studying this unit, students will be able to 

 1. define and give examples of subrings 

 2. prove a given set a subring 

 3. apply set operations on subring 

 4. solve theorem based on subring.  

18.3 Subring:- 

Definition: 

Let R be a ring. A non empty subset of S of the set R is said to be a subring of R if S is 
closed with respect to the operation of addition and multiplication in R and S itself is a ring for 
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these operation. or a non empty subset S of ring , ,.R   is called a subring of R if , ,.S   is a 

ring itself. 

Trivial Subrings: 

If R is a ring then {0} and R alway subring of R. These are called trivial subrings of R. 

Over Ring 

If S is subring of R, then R is called an over ring of S. 

 Let us taken following examples to understand more about subring. 

Example 1: 2Z is a subring of Z 

Solution: Since Z =  .......... 4, 3, 7, 1,0,1,2,3,4.......     is the set of integers. In the unit of ring 

we had already prove that Z is a ring 

 Now 2Z =  .......... 8, 6, 4, 2,0,2,4,6,8.......     

Axioms under addition 

1. Closure property: 

 Since Z si closed under addition. So 2Z is also closed under addition 

2. Associative property: 

 Since Z is associative under addition so that 2z. 

3. Existence of identity:-  

 Since 0  2Z, So 0 is identity element under addition for the subset 2Z of Z. 

4. Existence of Inverse:- 

 Since for all x  2Z  -x2Z such that x + (-x) = 0 = (-x) +x. 

 So -x act as inverse element of each x  2Z 

5. Commutative Property:- 

 Since integers are commutative under addition. So 2Z is also commutative under 
addition i.e. x, y  2Z x+y = y + x. 

6. Closure property:- 

 Since Z is closed under multiplication so as 2Z. 

7. Associative property:  

Since Z is associative under multiplication so as 2Z. 

8. Distributive Property: 

 Since Z, set of integers holds distributive property so as 2z, will hold this property too. 

Example 2: Z is a subring of Q 
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Example 3: Q is a subring of R 

Example 4: R is a subring of C. 

Criteria For a Subset of a Ring to Be a Subring  

Theorem 1: Let R be a ring and S be a non empty subset of R. Then necessary and sufficient 
condition that S is a subring of R is  

  a, b  S  a - b, a b  S. 

Proof: Let S be a subring of R. Then ,S   is on abelian sub group under addition of ,R  . 

 Since ,S   is a sub group 

 So, let a, b  S 

 a - b  s  a b  S (by definition of sub group) 

 Also as s is a subring of R. So S is closed under multiplication. So if a, b  S then a b  
S 

 Hence if s is a subring of R then a - b, a b  S   a b  S 

Conversely: 

Let a, b  S then a - b, a b  S  

 To prove S is subring of R.  

 ,S  forms a subgroup of ,R   

 also, a, b  R, a + b = b + a, this also holds in S 

 So ,S   is abelian subgroup of ,R   

 Since multiplicative associativity and distributive holds automatically in S. 

 So S is a ring itsey 

 S is a subring of R.  

Example 5: Show that the set of matrices 
0

x y

z

 
 
 

, x, y, z Z is a subring of ring of 22 

matrices over integers. 

Solution: Given R is a ring of 22 matrices over integers.  

 Let S = , , ,
0

x y
x y z z

z

  
  

  
 be a subset of R. 

 Now Let A = 1 1
1 1 1

1

, , ,
0

x y
x y z z

z
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 and B = 2 2
2 2 2

2

, , ,
0

x y
x y z z

z

 
 

 
 

Now A - b = 1 1

10

x y

z

 
 
 

 - 2 2

20

x y

z

 
 
 

 

 A - B = 1 2 1 2

1 20

x x y y

z z

  
 

 
 

 as x1, x2, y1, y2, z1, z2 Z so x1 - x2, y1 - y2, z1-z2Z 

 So A - B  S 

Now AB = 1 1

10

x y

z

 
 
 

2 2

20

x y

z

 
 
 

 

 AB = 1 2 1 2 1 2

1 20

x x x y y z

z z

 
 

 
 

 As x1,x2,y1,y2,z1,z2 Z so x1x2, x1y2 + y1z2, z1z2 Z 

 So that  A B  S 

 then S = , , ,
0

x y
x y z z

z

  
  

  
 is a subring of 22 matrices over integers. 

Example 6: Let R be a ring of 33 matrices over real. Show that  

 S = :

x x x

x x x x R

x x x

  
  

  
    

 is a subring of R. 

Solution: Given S = :

x x x

x x x x R

x x x

  
  

  
    

 

 Since 0 R so 

0 0 0

0 0 0

0 0 0

S

 
 


 
  

 

 So  S is non empty sub set of R. 
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Let A = 

x x x

x x x

x x x

 
 
 
  

 B = 

y y y

y y y

y y y

 
 
 
  

 be any two elements of S, x, y  R 

then A - B = 

x x x

x x x

x x x

 
 
 
  

 - 

y y y

y y y

y y y

 
 
 
  

 

 A - B = 

x y x y x y

x y x y x y

x y x y x y

   
 

  
 
    

 

 As x, y  R so that x - y  R.  

 Hence A - B  S. 

Now AB = 

x x x

x x x

x x x

 
 
 
  

y y y

y y y

y y y

 
 
 
  

 

  = 

xy xy xy xy xy xy xy xy xy

xy xy xy xy xy xy xy xy xy

xy xy xy xy xy xy xy xy xy

      
 

     
 
       

 

 AB = 

3 3 3

3 3 3

3 3 3

xy xy xy

xy xy xy

xy xy xy

 
 
 
  

 

As x, y  R  x y  R So 3 x y  R 

 Hence A B  S 

 Therefore S is a sub ring of ring of 33 matricere 

Example 7: Check T = 
a a b

a b b

 
 

 
, a, b  R is a subring of M2(R) 

Solution :  Given  T = 
a a b

a b b

 
 

 
, a, b  R 

 Let A = 
1 1

1 0

 
 
 

 for a = 1, b = 0  T 
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 and B = 
0 1

1 1

 
 
 

 for a = 0, b = 1  T  

Then A - B = 
1 1

1 0

 
 
 

 - 
0 1

1 1

 
 
 

 

 =  
1 0 1 1

1 1 0 1

  
 
  

 

 = 
1 0

0 1

 
 

 
 

 Since 01 11 -1  R 

 So A - B  M2(R) 

Now AB = 
1 1

1 0

 
 
 

0 1

1 1

 
 
 

 

 = 
0 1 1 1

0 1 0

  
 

 
 

 = 
1 2

0 1

 
 
 

 T 

 AB  T 

 So T = 
a a b

a b b

  
 

 
 is not a subring of M2(R) 

Example 8 : If S is a subring of a ring R then S is commutative of R is commutative ring. 

Solution : Given S is subring of commutative ring R.  

 To prove S is commutative  

 Let a, b  S 

 As S  R 

 so a, b R 

 as R is commutative  

 ab = ba a, b  R 

 So,  a, b  S ab = ba 

 Hence S is commutative subring of R which is itself commutative. 
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Theorem 2 : The subring < is without zero divisor if R is without zero divisor. 

 A subring of on integral domain is an integral domain  

Solution : Let S is a subring of R and R is an integral domain i.e. a, b  R   a  0, ab = 0 

 To prove S is an integral domain  

 Let a, b  S   and S < R 

 so a, b  R 

 as R is an integral domain  

 so ab = 0 

 either a = 0 or b = 0 

 since a  0, so b = 0 

so S is a subring without zero divisor. 

 Hence a subring of integral domain is an integral domain. 

Note : 

Ring and subring may have same or different multiplicative identities. For example. 

Example 1 : The subring Z of Q.  

Solution : Here the identity element is same that is 1. 

Example 2 :nZ, n 1, -1, is a subring of Z. 

Solution : Here the ring Z has identity 1 but subring has no identity. 

Example 3 : R1 = 
0 0

,
0 0

a R
  

  
  

  is a subring of R2 = ,
0 0

a b
b R

  
  

  
 

Solution : Here the ring has no identity whereas subring has identity 
1 0

0 0

 
 
 

. 

Example 4 :Zx{0}  = {(a, 0 : a  Z} is a subring of ZxZ = {(a, b) : a, b  z} 

Solution : The ring has identity (1, 1) whereas subring has identity (1, 0). So both ring and 
subring has different identity element. 

Self Check Exercises 

Q. 1 Check S = , ,
a b

a b R
b a

  
  

  
 is a subring or not of M2(R) 

Q. 2 Prove that S = 
a B

B x

 
 
 

, is a subring of M2(c), all 2x2 makices over complex.  
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Q. 3 Find the identity element of M3(R) and its subring S = ,

x x x

x x x x R

x x x

  
  

  
    

 

18.4 Set operations of Subrings 

Theorem 1 : Intersection of a family of subring of a ring R is also a subring of R. 

Proof : Let R be a ring  

 Let S1, S2 ------- Sn be subring of R then  

 
1

n

i
 Si R obviously. 

 Since , O  each Si 

  O 
n

i 
Si 

 So 
1

n

i
 Si is non empty subset of R. 

 Now to prove 
1

n

i
 Si is a subring  

 Let x, y 
1

n

i
 Si 

  x, y  each Si 

 Since each Si is a subring, So 

 x - y, xy each si 

  x - y, xy
1

n

i
 Si 

 Hence 
1

n

i
 Si is a subring R.  

Example 1 : Show by example that union of two subring need not be a ring. 

Solution : Let 2z and 3z be the two subring of z 

 z =  { ...... -3, -2, -1, 0, 1, 2, 3 ....} 

then   2z  =  {.... -6, -4, -2, 0, 2, 4, 6, ......} 

and  

 3z = {..... -9, -6, -3, 0, 3, 6, 9, .....} 
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Now 2z U 3z = {..... -9, -6, -4, -3, -2, 0, 2, 3, 4, 6, 9 .....} 

 Since 21 3  2z U 3 z 

 But 2+3 = 5  2z U 3 z 

So not closed under addition 

 Hence union of two subring is not a ring. 

Example 2 : Give an example to show that sum of two subring need not be a subring of R. 

Solution : Let M2(Z) be a ring of all 2x2 matrices. 

 Let R1 = 
0

,
0 0

a
a Z

  
  

  
 

 R2 = 
0 0

,
0

b Z
b

  
  

  
 be two subring of M2(Z) 

 Now R1+R2 = 
0

0 0

a 
 
 

+
0 0

0b

 
 
 

 

 

 R1+R2 = 
0

0

a

b

 
 
 

1 

 Let A = 
0 1

2 0

 
 
 

 1 B = 
0 3

4 0

 
 
 

 

 AB = 
4 0

0 6

 
 
 

R1+R2 

So R1+R2 is not closed under multiplication  

Hence sum of two subring needs not be a subring. 

Example 3 : Let R1 and R2 be two rings and S1 and S2 be two subrings of R1 and R2 
respectively. Then S1 x S2 is a subring of R1 x R2. 

Solution :Let a  S1 and b  S2 

 Then S1 x S2 = {(a, b); a S1, b  S2} 

 As  S1 and S2 are subrings 

 so a  S1 and a  S2 

  a  S1 x S2 

  S1 x S2  is non empty subset. 
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 Let x = (a1, b1) and y = (a2, b2) be two elements of S1 x S2 

where  a1, a2 S1, b1, b2 S2, 

Then x - y = (a1, b1) - (a2, b2) 

 x - y = (a1 - a2 , b1 - b2) 

Since S1 and S2 are ring so  

a1 - a2 S1 and b1 - b2 S2 

x - y  S1 x S2 

Now xy = (a1, b1) (a2, b2) 

xy = (a1 a2 , b1 b2) 

as a1, a2 S1 a1, a2 S1 

and b1, b2 S2 So b1, b2 S2 

So xy S1 x S2 

Hence S1 x S2is a set ring of ring R1 x R2 

Self Check Exercise - 2 

Q. 1 Intersection of two subrings of a ring R is a subring. 

18.5 Centre of a Ring 

Definition : 

 Let R be a ring. Then 

 C(R) = {aR, xa = ax  x  R} then C(R) is called the centre of the ring R.  

Theorem 1 : The centre of a ring R is a subring of R. 

Proof : Since 0  C(R)  

 So C(R)  , is non empty set. 

 Now to prove a - b  C(R) and ab  C(R) 

 Let a, b  C(R) 

 Then for all x  R, xa = ax and xb = bx  [by definition of centre of ring] 

 Now xa - xb = ax = bx 

 x(a - b)  =  (a - b) x 

  (a - b)  C(R) 

Again  xab = axb   x  R, and  

       = abx 
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  x(ab) = (ab)x 

 ab  C(R) 

Since a-b, ab  C(R) so, c(R), centre of ring is a subring. 

Note : 

 1. R is a commutative ring if and only if C(R) = R 

 2. C(R) is a commutative subring of R. 

Theorem 2 : Let R be a division ring, then the centre C(R) of R is a field  

Proof :Since a commutative division ring is a field. 

 We know  C(r) is a commutative subring of R. 

 Now to prove C(R) is a divison ring 

 Given R is a division ring 

  R is a ring with unity 

 1  R 

 all non zero elements have inverse. 

Also 1.x = x = x.1  For all x  R 

Since C(R) is a subring of R 

Let x  C(R), x  0 be any element  

So x  R as C(R) < R. 

Since R is a division ring, so x-1
 R. 

Let y  R be any non zero element then y-1
 R 

Now x-1y  = (y-1 x)-1 

  = (xy-1)-1    x  C(R) 

  = yx-1 

 x-1y  = yx-1 

 x-1 commute of with non zero element of R 

Also x-1 . 0 = 0 = 0.x-1 

 x-1
 C(R) 

Thus C(R) is a division ring also C(R) is commutative ring So C(R) is a field. 

Self check Exercise - 3 

Q. 1  Find centre of S, for E2. 

18.6 Summary : 
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 In this unit we studied that  

 1. A non empty subset S of set R is a subring if itself is a ring. 

 2. The necessary and sufficient condition that a non empty subset is a subring of R 
is   a, b  S  a - b, ab  S 

 3. Subring of a integral domain is an integral domain. 

 4. Ring and subring may have same or different identities. 

 5. Intersection of two subring is again a subring.  

 6. Union of two subring may or may not be a ring 

 7. Centre of ring is a commutative subring. 

 8. Centre of ring is a field. 

18.7 Glossary : 

 Subring : A non-empty subset S of Ring R is called subring if S is itself a Ring. 

 Over Ring : If S is subring of R1 then R is called an over ring of S. 

 Centre of Ring : Let R be a ring, then 

  C(R) = {a R1 xa = ax  x  R} 

18.8 Answers to Self Check Exercises 

Self Check exercise-1 

Q. 1 Yes 

Q. 2 Prove A - B, and AB  S where A, B are two elements of S.  

Q. 3 Identity of R = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 

  and identity of S = 

1 1 1
3 3 3

1 1 1
3 3 3

1 1 1
3 3 3

 
 
 
 
 
  

 

Self Check Exercise - 2 

Q. 1 Can be prove easily on the basis of theorem i.e. intersection of a family of 
subring of a ring is always a subring. 

 

 

Self CheckExercise  - 3 
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Q. 1 C(S) = 
0

;
0

x
x C

x

  
   

  
 

18.9 References/Suggested Readings 

 1. Vijay K Khanna and S.K. Bhambri, A course in Abstract Algebra. 

 2. Joseph A. Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayres Jr, Modern Algebra, Schaum's outline series. 

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.   

18.10 Terminal Questions 

 1. Show that the set of matrices 
0x

y z

 
 
 

 where x, y z  I is a subring of the ring of 

2x2 matrices over integers. 

 2. Let S. {[0], [2], [4], [6], [8]} where [n] denotes equivalence classes of n module 10. 
Prove that S is a subring of Z10 with the usual operations of Z10. Also show that S 
has an identity which is different from Z10.   

___ 
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Unit - 19 

Ideal 

Structure 

19.1 Introduction 

19.2 Learning Objectives  

19.3 Ideal And Right Ideal  

 Self Check Exercise-1 

19.4 Ideal And Right Annihilator  

 Self Check Exercise-2  

19.5 Algebra of Ideal 

 Self Check Exercise-3 

19.6 Summary 

19.7 Glossary 

19.8 Answers to Self Check Exercises 

19.9 References/Suggested Readings 

19.10 Terminal Questions 

19.1 Introduction 

Dear students in this unit we will study about another property related to ring which 
finally gives us an idea of ideal. We will discuss about proper and improper ideal along with 
algebra of ideals i.e. addition, multiplication, union and intersection of ideal.  

19.2 Learning Objectives: 

 After studying this unit students will be able to 

 1. define ideal of a ring, left and right ideal or two sided ideal of a ring. 

 2. define distinguish and find proper and improper ideal of a ring. 

 3. prove theorem based on algebra of ideal and able to do question related to 
algebra of ideal. 

19.3 Left and Right Ideal 

Definition: 

Left Ideal : A non empty subset I of a ring R is called a left ideal of R if 

(1) For all a, b  I  a - b  I 
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(2) For all a I, r Rr a  I 

Right Ideal  

Similarly, A non empty subset I of a ring R is called a right ideal of R if 

(1) For all a, b  I  a - b  I 

(2) For all a I, r R a r  I 

Two sided ideal or Ideal  

 An Ideal I is called a two sided ideal or simply an ideal of ring R if I is both left sided and 
right sided i.e. 

(1) For all a, b  I  a - b  I 

(2) For all a I, r Rar = ra I 

Note  

 When a ring is commutative then there is no difference between left and right ideal. 

Theorem 1 : An ideal I of a ring R is a subring of R, but converse is not true. 

Proof : Let I be ideal of ring R, to prove I is a subring of R. 

 Since I is ideal of ring R, then by definition of ideal  

(1) For all a, b  I, a - b  I 

(2) For all a I, r R ,ar I 

We can easily say that I is a subring of R (using the criterion of a subring) 

Converse : 

 Converse of this theorem need not be true.  

 i.e. a subring may not be an ideal, to prove this we shall take example  

 The set of rational Q is a ring and the set of integers is a subring of Q i.e Z  Q 

 But Z is not an ideal because, 

 Let 3  Z and 
1

2
Q 

 then 3.
1

2
 = 

3

2
 Z 

 Hence Z is not an ideal of Q. 

 To have more understanding of ideal let us take following examples of ideal. 

Example : Show that nZ is an ideal of the right Z. 

Solution : Since Z = {........ -4, -3, -2, -1, 0, 1, 2, 3, 4, ......} 

 Since Z is a ring 
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 AlsonZ = {........ -4n, -3n, -2n, -n, 0, n, 2n, 3n, 4n, ......} 

 To prove nZ is an ideal of Z. 

 Let a, b nZ, the a - b nZ 

 Let a = nx, b = ny 

 Then a - b  = nx - ny 

   = n(x-y) 

 a-b  n Z 

 Again a nZ, z Z 

 Then nx.z = n(xz) nZ 

 nZ is a right ideal of Z 

 Since Z is a commutative ring 

 nZ is also a left ideal of Z 

 Hence nZ is an ideal of Z. 

Proper and improper Ideal 

 For any ring R, {0} and R are ideal of R. These ideals are called improper ideal. Any 
ideal other that {0} and R of ring R is known as proper ideal. 

Example 2 : Show that set of even integers is an ideal of ring Z. 

Solution : Since Z = {........ -4, -3, -2, -1, 0, 1, 2, 3, 4, ......}  

Now 2Z = set of even integers 

 = {........ -8, -6, -4, -2, 0, 2, 4, 6, 8, ......} 

 Since Z is a commutative ring, so we just prove 2Z is an right ideal. 

 To prove 2Z is an ideal 

 Let x = -4, y = 2  2Z 

 Then x - y = -4 - 2 

  = -6  2 Z 

 So  x, y  2Z, x - y  2 Z 

 Again Let x = -4  2 Z and r = -3  Z 

 then x.r = -4x-3 

  =  +12 

  = 2.6 

  = even integer 

 So  x  2 Z, R  Z then xr 2Z 
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 Hence 2Z is an ideal of the ring Z. 

Example 3 : Consider the ring M2(z). Let 

 I = 
0

; ,
0

a
a b Z

b

  
  

  
 then prove that I is a left ideal of M2(Z) but not a right ideal. 

Solution : Since we known that M2(Z) is a ring. 

 To prove I = 
0

; ,
0

a
a b Z

b

  
  

  
is an left ideal. 

 Let x = 
0

0

a

b

 
 
 

 I 

 y = 
0

0

c

d

 
 
 

 I 

and  r = 
x y

z w

 
 
 

 M2(Z). Then 

 x - y = 
0

0

a

b

 
 
 

 -  
0

0

c

d

 
 
 

 

 = 
0

0

a c

b d

 
 
 

 

 x - y   I 

 xr = 
0

0

a

b

 
 
 

x y

z w

 
 
 

 

 =  
ax ay

bx by

 
 
 

 M2 (Z) 

Again rx = 
x y

z w

 
 
 

0

0

a

b

 
 
 

 

 = 
0

0

xa yb

za wb

 
 

 
 

 rx I 

 Since rx I, but xr I, xr M2(z) 

 So, I is left ideal out not right ideal. 
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Example 4 : Consider the ring M2(Z) and Let I = ;a, b, c, d are even integres
a c

b d

  
  
  

. Prove 

that I is an ideal of M2(Z). 

Solution : Since we know that M2(Z) is a ring. 

 Given I = ;a, b, c, d are even integres
a c

b d

  
  
  

 

 Let  x = 
2 4

6 8

 
 
 

, y = 
6 8

4 10

 
 
 

 

 Then x - y = 
2 4

6 8

 
 
 

 -  
6 8

4 10

 
 
 

 

  = 
2 6 4 8

6 4 8 10

  
 
  

 

  =  
4 8

2 2

  
 

 
 

  x - y  I where -4, -8, 2, -2 are even integers 

Now  x = 
2 4

6 8

 
 
 

 and r = 
1 2

3 4

 
 
 

 M2 (Z) 

 Then r x = 
1 2

3 4

 
 
 

2 4

6 8

 
 
 

 

 =  
2 12 4 16

6 24 12 32

  
 
  

 

 = 
14 20

30 44

 
 
 

 

  I, as 14,  20, 30, 44 are all even integer. 

Now  xr =  
2 4

6 8

 
 
 

1 2

3 4

 
 
 

 

 = 
2 12 4 16

6 24 12 32
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 = 
14 20

30 44

 
 
 

 

  I 

 Since  x, y I,   x - y I 

 and  x  I and r  M2(Z)  xr = rx I 

 Hence I is an ideal of M2 (Z). 

Example 5 : Let M2(Z) is a ring and I = 
0

;a  Z
0

a

a

  
  

  
 be a subset of M2(Z) then show that I 

is a subring of M2(Z) but not an ideal.  

Solution : Since we know that M2(Z) is a ring. 

 Let I = 
0

;a  Z
0

a

a

  
  

  
 

 To prove I is an ideal or not. 

 Let x = 
1 0

0 0

 
 
 

, y = 
2 0

0 0

 
 
 

,  1, 2,  Z 

 Now x - y = 
1 0

0 0

 
 
 

-
2 0

0 0

 
 
 

 

  = 
1 0

0 0

 
 
 

 

 x - y   I 

Now xy = 
1 0

0 0

 
 
 

2 0

0 0

 
 
 

 

 =  
2 0

0 0

 
 
 

 

 x - y   I 

 Since  x, y I,   x - y, xyI 

 So, I is a subring.  

Now, Let r =  
1 1

1 0

 
 
 

 M2(Z)   
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and x = 
1 0

0 0

 
 
 

 

then xr =
1 0

0 0

 
 
 

1 1

1 0

 
 
 

 

= 
1 1

0 0

 
 
 

 I 

and  rx =
1 1

1 0

 
 
 

1 0

0 0

 
 
 

 

 = 
1 0

1 0

 
 
 

 I 

So I is not a ideal of M2 (Z). 

Self Check Exercise-1 

Q. 1 Let M2(Z) be a ring then prove that I = , a, b  Z
0 0

a b  
  

  
 is a right ideal 

of M2(Z) but not a left ideal. 

Q. 2 If R is a commutative ring and a  R then show that aR = {ar.; r  R} is a 
two sided ideal. 

Q. 3 Give an example to show that if the ring is not commutative then the ideal is 
not two sided ideal. 

19.4 Left and Right Annihilator  

Left Annihilator  

 Let R be a ring and S be a non empty subset of the ring R then  

 annl (S) = {x  R; xS = 0} is known as left annihilator of ring R. 

Right Annihilator  

 Let R be a ring and S be a non empty subset of the ring R then  

 annr (S) = {x  R; Sx = 0} is known as right annihilator of ring R. 

 Let us try following examples to have more understanding of these terms: 

Example 1 : Show that left and right annihilators of R and left and right ideal of ring R. 

Solution : Since R is a ring. So a  R 
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 Also we know that if S be a non-empty subset of a ring R such that annr (S) = {x R :Sx 
= 0} and annr (S) = {x  R : xS = 0} are known as right and left annihilators of R. 

 Since 0  R s.t.S.o = 0 annr(S) 

  annr(S)  0, is a non emptyset : 

Let x1, x2annr(S) be any two elements. 

  Sx1 = 0 and Sx2 = 0 

  Sx1 - Sx2 = 0 

 S(x1 - x2) = 0 

 x1 - x2annr (S) 

Again, if r R, be any element and x annr(S). 

Then Sx = 0 

Now S(xr)r  = (Sx)r 

  = 0.r 

  = 0 

 xrannr(S) 

Hence annr(S) is a right ideal of R. 

Similarly we can prove that annr(S) is left ideal of R. 

Example 2 :  If R is a ring and a  R be any fixed element of R. Let x = {x R : ax = 0}. Then 
prove that x is a right ideal of R or Left annihilator of a in R. 

Solution : Since 0  R 

  0 = a.0 

  0  x 

 x is a non empty set 

Let x1 and x2 be any two elements of x then  

 ax1 = 0  and ax2 = 0 

 ax1 - ax2 = 0 

 a(x1 - x2) = 0 

 x1 - x2 x 

Also, Let x x and y  R be any element, then ax = 0 

Now a(xy) = (ax) y 

 = 0.y 

 = 0 
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xy x,  x x and y  R 

 x is right ideal of R 

Using the definition of left annihilator we can easily say that x is right annihilator of R.  

Self Check Exercise - 2 

Q. 1 Let R is a ring and a  R be any fixed element of R. Let x1 = {x R : xa = 0}. 
Then prove that x1 is a left ideal of R, then it is also a right annihilator of a in R.  

19.5 Algebra of Ideals  

Theorem 1 : Intersection of two left (or right) ideals of a ring is a left (or right) ideal.  

Proof : Let I and J be any two left ideal of a ring R. 

 Since 0  I and 0  J 

  0  I ∩ J 

 So I∩J is a non empty set. 

 Let x, y  I ∩ J be two elements, to prove x - y  I ∩ J 

 Then x  I and x  J 

 also y  I and y  J 

Therefore taking x  I, y  I and I is a left ideal of R  

  x - y  I 

Similarly x  J and y  J and J is left ideal of R 

  x - y  J 

 Since x - y  I and x - y  J 

  x - y  I ∩ J 

Again, Let r R be any element and let x  I ∩ J  

to prove rxi I ∩ J 

 Since x  I ∩ J 

  x  I and x  J 

Taking, r R and x  I and I is left ideal of R  

 rx I 

Similarly taking r R and x  J and J is left ideal of R  

 rx J 

 As rx I and rx J 
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 rx I ∩ J   r R and x  I ∩ J. 

 Hence I ∩ J is a left ideal of R 

* Similarly we can prove the same for right ideal. 

Theorem 2 : the intersection of a family of left (or right) ideals is also a left (or right) ideal. 

Proof : Let {Ix; x  ∩} be collection of left ideals of R. Also each Ix is a subring of R. 

 Also, since we known that intersection of a family of subring of a ring R is a subring of R. 

 Let I = 
x

Ix is a subring of R 

 Let x  I and r R 

 Then x  Ix and hence rx Ix for each r  

 Since Ix is a left ideal of R. 

 Thus r x  I 

  I is left ideal of R. 

Example 1 : Is union of ideals is an ideal or not? Prove using example. 

Solution : Union of ideals is not an ideal. Let us show this by taking this examples. Since we 
known that nZ are ideals of Z. Specifically let 2Z and 3Z are ideals of Z. 

 To prove 2Z U 3 Z is an ideal or not. 

 Since Z = {........ -4, -3, -2, -1, 0, 1, 2, 3, 4, ......} 

  2Z = {........ -6, -4, -2, 0, 2, 4, 6, ......} 

  3Z = {........ -9, -6, -3, 0, 3, 6, 9, ......} 

 So 2Z U 3Z = {........ -9, -6, -4, -2, 0, 2, 3, 4, 6, 9 ......} 

 Since 2, 3  2Z U 3Z 

 To prove 2Z U 3Z is an ideal, we have to prove for x, y  2Z U 3Z, x - y  2Z U 3Z 

As 2, 3  2Z U 3Z 

 2 - 3 = -1  2Z U 3Z 

Hence 2Z U 3Z is not an ideal. 

Theorem 3 : Let I and J be two ideals of ring R, then IUJ is an ideal of R iff either J I. 

Proof : Let I and J be two ideals of ring R such that either IJ or J  I, to prove I J is not ideal. 

 Since I  J 

  I U J  = J and J is an ideal of ring R 

 Therefore I U J is an ideal of R. 

 Again J  I 
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  I U J = I and I is an ideal of ring R. 

 So I U J is an ideal of R. 

Conversely 

 Let I U J is an ideal r, then to prove either I  J or J  I. 

 Since I U J is an ideal of R. 

 Let a  I and b  J 

 Then a, b  I U J. 

 Since I U J is an ideal of R. 

 Then a - b I U J. 

 So either a - b  I or a - b  J 

 If a - b  I and a  I and I is an ideal of R 

 Then a - (a - b)  I 

  b  I 

 So, hence, J  I   [By property of subset] 

Again if a - b  J and b  J and J is an ideal of R 

 Then a + (a - b_  J 

  a  J 

 As a  I  a J 

 So I  J    [using the property of subset] 

 Hence proved. 

Sum of two ideals  

 Let R be a ring and I and J be two ideal of R then sum of two ideals is defines as  

 I + J = { a + b; a  I, b  j } 

Product of two ideals  

 Let R be a ring and I and J be two ideals of R, then product of two ideals is defined as  

 IJ = 
1

ai bi; ai  I, bi  J,  n  N
n

i

 
   

 
  

Theorem 4 : If I and J be any two ideals of a ring R then I + J is an ideal of R. Also prove that I 
+ J = {I U J} is the smallest ideal of R containing I U J. 

Proof : Since I and J be any two ideals of a ring R  

 So 0  I and 0  J 
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  0 = 0 + 0  I + J 

 Therefore, I + J is a nom empty set. 

 Let x1 y  I + J be any two elements of I + J such that  

 x = a1 + b1 and y = a2 + b2 where a1a2 I and b1, b2 J  

 Now x - y = (a1 + b1) - (a2 + b2) 

= (a1 - a2) + (b1 - b2) 

 x - y  I + J   [Because a1, a2 I and I is an ideal so a1 - a2 I,  

similarly b1, b2J ] 

 Now, let r R be any element, then  

 rx = r (a1 + b1) 

 = ra1 + rb1  [ r  R1 a1 I and I is an ideal, so ra,  I 

    and r  R1 b1 J, J is an ideal so rb1 J] 

 Both the properties are satisfied  

 Hence I + J is an ideal of R. 

 Now, to prove I + J = {I U J} is the smallest ideal of R containing I U J. 

 Let x  I + J be an element  

 then x = a + b; a  I and b  J 

 Also a  I and b  J  

 so a, b  I U J 

 a I, b  J   a, b  I U J 

 then a + b  {I U J} is the smallest ideal of R containing IUJ 

  x  {IUJ} 

 Thus x  I + J  

  x  {I + J} 

 So I + J  {I U J}. 

 Further,  a  I, and 0  J we can have 

 a = a + 0  I + J 

  I I + J 

 Similarly,  b  J and 0  I 

 b = 0 + b  I + J 

 J  I + J 
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 Since I I + J and J  I + J 

  I U J  I + J 

  {I U J}  I + J 

 Hence 1 + J = {I U J} 

Theorem 5 : If I and J be any two ideals of a ring R, then IJ is an ideal of R.  

Moreover IJ  I ∩ J. 

Proof : Given I and J are ideals of R. So 

 0 and 0  J 

  0 = 0.0  IJ 

 Hence IJ is non empty set. 

Let x, y  IJ be any two elements, then 

 x = i i
1

a  b
n

i
  and y = i i

1

c  d
n

i
  , ai, ci I and bi, di J 

 and m and n are positive integers, the 

 x - y  = i i
1

a  b
n

i
 – i i

1

c  d
n

i
  

 = a1b1 + a2b2 + ...... anbn - (c1 d1 + d2d2 + ..... -cndm) 

 = k k
1

x y
m n

k





  

 Where, xk = ak and yk = bk for k = 1, 2, .... n 

 and xn+t = -ck and yn+t = dt for t = 1, 2, 3, ....m 

 so x - y = k k
1

x y
m n

k





  

  I J  

 Now let r be any element of R, then 

 rx = r i i
1

a  b
n

i

 
 
 
  

 =   i i
1

ra  b
n

i
  

 Since I is an ideal of R so rai  I and bi J 
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 So rx =  i i
1

ra  b
n

i
  

  IJ 

 Similarly x r = i i
1

a  b
n

i

 
 
 
 r 

 =  i i
1

a  b
n

i

r


  

 Since J is an ideal of R so bi.r J and ai I 

 So xr =  i i
1

a  b
n

i

r


  

   IJ 

 Hence IJ is an ideal of R. 

 Now, to prove IJ  I ∩ J 

 Let x  0 = i i
1

a b
n

i
 , be any element of IJ., where ai I and bi  J, n is a positive integer. 

 Since bi J and J is an ideal of R 

  b1 R  

 Also I is ideal of R and ai I, bi R  

 So aibi I 

 Similarly Ji  I and I is an ideal of R 

  ai R 

 Also J is an ideal of R, bi J, ai R 

 aibi J 

 Since aibi I and ai biJ 

 aibi I ∩ J   for i = 1, 2, ....n. 

  x = i i
1

a b
n

i
  I ∩ J 

 Hence x  I J 

  x  I ∩ J 

 Therefore I J  I ∩ J 
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 Hence the proof. 

Theorem 6 :Modular Law : If A, B, C are ideal of a ring R such that B  A. Prove that 

 A ∩ (B+C) = B + (A ∩ C) = (A ∩ B) + (A ∩ C) 

Solution : Let x  A ∩ (B + C) be any element 

 Then x  A and x  B+C 

 when x  B+C 

 then x = b + c for b B and c C 

 Given B  A 

  b B  the b  A 

 Now, x  A and b  A and A is an ideal then 

  x - b  A 

  (b+c) - b = c    x = b + c 

  c  A 

 But initially c c 

  c  a ∩ c. 

 Therefore x =  b + c  B + (A∩C) 

  A ∩ (B + C)   B + (A + C)   (1) 

Conversely  

 Let y  B + (A ∩ C) be any element, then  

 y = b + K, where b B and k  A ∩ C  k   A and k  C 

 Now b B, and k  C 

  b + k  B +C 

 y  B + C 

Again, Since b B and B  A 

  b  A and also k  A 

  b + k  A 

  y  A 

Since y  B + c and y  A also 

 y  A ∩ (B + C) 

 B + (A∩C)  A ∩ (B+C)  (2) 

From (1) and (2) 
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 A ∩ (B+C) =  B + (A∩C). (3) 

Also since B  A A∩ B = B 

 using this in (3), we get 

 A∩ (B+C) = B + (A ∩ C) = (A∩B) + (A∩C) 

Hence  proved. 

Example 2 : Let Z is a ring of integer. 4 Z and 6Z are two if its ideal. Then find 4Z∩6Z, 4Z + 6Z 
and 4Z.6Z 

Solution : Since Z = {..... -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, .....} 

 4Z = {..... -24, -20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20, 24, .....} 

6Z = {..... -36, -30, -24, -18, -12, -6, 0, 6, 12, 18, 24, 30, 36, .....} 

Since we know that if x  I∩J then x  I and x  J 

So 4Z ∩ 6Z contain only those elements which are in 4Z and in 6Z also. 

Therefore 4Z ∩ 6Z  = { ......-24, -12, 0, 12, 24....} 

   = set of integer which are multiple of 12 

   = 12Z 

Hence 4Z ∩ 6Z  = 12Z. 

(2)  4Z + 6Z, 

 Since we know that if I and J are two ideals of R  

then I + J = {a + b ; a  I and b  J} 

   4Z + 6Z  = { 0, +(4+6), +(8+12), + (12+18), + (16+24), + (20+30), + (24+36), ....} 

  = { 0, +10, +20, + 30, + 40, + 50, + 60, + ....} 

  = set of integer which are multiple of 10 

  = 10Z 

 4Z + 6Z  = 10Z. 

(3) If I and J are two ideals of R then IJ is also an ideal of R such that IJ = 
1

n

i




 ai bi, 

 ai  I, bi  J, So 

 4Z = { 0, + 4, + 8, + 12, + 16, + 20, + 24, + 28,....} 

 6Z = { 0, + 6, + 12, + 18, + 24, + 30, + 36, + 28,....} 
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 4Z.6Z = { 0, +24, +96, +216, +384, +600, +864, + ....} 

  = Set of integer which are multiple of 24. 

 4Z.6Z = 24Z. 

 We can generalised above result as. 

Note : If n, m  Z and nZ and mZ are ideals of Z then nZ ∩ mZ = kZ, where k is common multiple of n, m  

 n = 1cm (n, m) 

 nZ + mZ = dZ, where d is common division of m, n  

 =gcd (m, n) 

Self Check Exercise - 3 

Q. 1 Find 6Z ∩ 6Z, 6Z + 6Z, 6Z.6Z, where 6Z is an ideals of Z. 

Q. 2 Find 8Z ∩ 5Z, 8Z + 5Z, 8Z.5Z, where 8Z and 5Z are ideals of Z. 

Q. 3 Find 3Z ∩ 5Z, 3Z + 5Z and 3Z.5Z, where 3Z and 5Z are ideals of Z. 

19.6 Summary : 

 In this unit we studied about  

 1. In a non empty subset of a ring if a, b  I and r R then a - b  I and ra = ar I 
then I is known as ideal of ring R 

 2. An ideal of a ring is a subring but converse is not thru. 

 3. {0} and R are improper ideal of ring R, whereas any other ideal is known as 
proper ideal. 

 4. In a non empty subset S of a ring, for x  R if {xS = Sx = 0}, then this is known as 
annihilator of ring R. 

 5. Left and (right) annihilators of ring R are Left (or right) ideal of ring. 

 6. Intersection of two ideal is again an ideal. 

 7. Union of two ideals is need not be an ideal. 

 8. Union of two ideals will be an ideal iff either I  J or J  I. 

 9. Sum and product of two ideals is an ideal. 

 10. Modular law hold in ideal i.e. if A, B, C are ideals of ring R and B A then 

  A ∩ (B+C) = B + (A ∩ C) = (A ∩ B) + (A ∩ C) 

 11. If nZ and mZ are ideals of Z then 

  nZ + mZ = dz,   d = gcd (m, n) 
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  nZ∩mZ = kz,  k = lcm (m, n) 

19.7 Glossary : 

 Ideal : An ideal is said to be ideal of Ring R if I is both left sided and right sided. 

 Improper Ideal : {0} and R is ideal of R. These ideal's called improper ideal. 

 Left Annihilator : Let S be the non-empty subset of Ring R then  

annl(S) = {x R; xS = 0}. 

19.8 Answers to Self Check Exercises 

Self Check exercise-1 

Q. 1 Use definition of left and right ideal to prove this. 

Q. 2 Given R is a commutative ring, So r R. 

xr = rx x a R.   

Q. 3 Consider the ring M2(Z) = 
a b

c d

 
 
 

, a, b, c ,d Z 

 and let A = 
0

0 0

a 
 
 

, a  Z 

 then AR = {Ar, r  R} 

 =  
1 0

0 0

 
 
 

a b

c d

 
 
 

 

 = 
0 0

a b 
 
 

 

Taking r = 
1 2

3 4

 
 
 

  and 
1 2

0 0

 
 
 

 A R 

Prove that 
1 2

3 4

 
 
 

1 2

0 0

 
 
 


1 2

0 0

 
 
 

1 2

3 4

 
 
 

 

Self Check Exercise - 2 

Q. 1 Do same as example 2. 

Self CheckExercise  - 3 

Q. 1 6Z, 6Z, 6Z 

Q. 2 40Z, 13Z, 40 Z 

Q. 3 15Z, 8Z, 15Z 
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19.9 References/Suggested Readings 

 1. Vijay K Khanna and S.K. Bhambri, A course in Abstract Algebra. 

 2. Joseph A. Gallian, Contemporary Abstract Algebra. 

 3. Frank Ayres Jr, Modern Algebra, Schaum's outline series. 

 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.   

19.10 Terminal Questions 

 1. Let I = (a), J = (b) be two ideals of ring Z of integers, where a and b are positive 
integers. Determine  

  I + J, I ∩J , IJ. 

 2. Prove that the set S of all matrices of the form 
0

0

a

b

 
 
 

 with a, b  Z, forms a 

subring of ring M2(Z) Further prove that S is neither a left nor a right ideal of 
M2(Z)   

___ 
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Unit - 20 

Types of Ideal 

Structure 

20.1 Introduction 

20.2 Learning Objectives  

20.3 Principal Ideal  

 Self Check Exercise-1 

20.4 Maximal Ideal  

 Self Check Exercise-2  

20.5 Prime Ideal 

 Self Check Exercise-3 

20.6 Summary 

20.7 Glossary 

20.8 Answers to Self Check Exercises 

20.9 References/Suggested Readings 

20.10 Terminal Questions 

20.1 Introduction 

Dear students in this unit, we will study about the type of ideal, mainly about Principal 
ideal, Maximal ideal and Prime ideal. Also we will study the property and example related to 
these ideal.  

20.2 Learning Objectives: 

 After studying this unit, students will be able to 

 1. define principal, maximal and prime ideal. 

 2. can prove property of types of ideals. 

 3. can solve questions related to types of ideals. 

20.3 Principal Ideal 

In group, we studied about the group generated by an element, similarly here we will 
study about ideal generated by a non empty subset and an the basis of this we will define 
principal ideal. 
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Ideal Generated by a Subset  

 Let R is a ring and I is an ideal of R. Let S be any subset of ring R. An ideal I of R is said 
to be generated by subset S if  

 (1) S  I 

(2) for any other ideal J of R, S  J  I  J 

In other words we can say that I is an ideal generated by a subset S of R if I is the 
smallest ideal among all the ideals of R which contain S. or I is the intersection of all ideals of R 
which contains S. 

Mathematically, we writ an ideal I generated by S as  

I = <S> = {S} = ∩ {J; J is ideals of R s.t. J  S} 

Using this definition we will define principal ideal.  

Definition of Principal Ideal  

An ideal of a ring which is generated by a single element of ring is called principal ideal 
of the ring. If I is principal ideal of the ring R generated by a. Then we write. 

 I = <a> 

Let us take following examples  

Example 1 : Let Z be the ring show that nZ is a principal ideal. 

Solution : Since Z = { .......... -4, -3, -2, -1, 0, 1, 2, 3, 4, .......} be the set of integers and we 
know. that Z form 0 ring under usual addition and multiplication. 

 The nZ = { .......... -4n, -3n, -2n, -n, 0, n, 2n, 3n, 4n, .......} 

 where n  Z 

 nZ = <n> = generated by a single element of Z. Hence nZ is a principal ideal. 

Example 2 : If R be a commutative ring with unit and a  R be any element then  

 OR = Ra = [Or = ra ; r  R} = <a> is a principal ideal.  

Example 3 : For ring of integers Z = {0, +1, +2, +3, .....} 

 2Z = {0, +2, +4, +5, +8, .....} Since every element of 2Z is generated by a single element 
Z. Hence 2Z is principal ideal generated by 2 or <2>. 

 Now 3Z = {0, +3, +6, +9, .....} 

 Again, every element of 3Z is genered by a single element 3. Hence 3Z is principal ideal 
generated by 3 or <3> 
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Self Check Exercises-1 

Q. 1 Prove that 5Z, 7Z are principal ideal of ring of integers Z. 

20.4 Maximal Ideal  

Definition  

 If R is a ring and S is a non zero ideal of R such that S  R then S is called a maximal 
ideal of R, if there exists no proper ideal of R containing S. 

Example 1 : Show that 2Z = <2> is a maximal ideal of ring of integers Z. 

Solution : Since Z = Z = {0, +1, +2, +3, .....} 

 and 2Z = {0, +2, +4, +5, +8, .....} is a non zero ideal of Z. 

 Since 2Z  Z 

 Also there is no proper ideal of R which contains 2Z 

Theorem 1 :pZ = <p> where p is a prime is a maximal ideal of ring of integer Z. 

 In the ring of integers Z, the ideal <p> is a maximal ideal iff p is prime number. 

Proof : Let S be an ideal of ring of inters Z generated by a prime integer to prove <p> is a 
maximal ideal. 

 Since S = <p> = pZ given 

 Now Let T be an ideal of Z containing S and generated by some positive integer q then 

 Since S  T and p  S 

  p  T 

 So, there exists some a  z such that  

 p = qa 

 since p is a prime  

  either q = I or q  = p. 

 When q = 1, then T = 1Z = Z 

 When q = p, then T = pZ = S 

 Thus the ideal of Z generated by prime p is a maximal ideal. 

Conversely : 

 Let S be a maximal ideal of Z generated by a positive integer p i.e. S = pZ. 

 To prove p is a prime.  

Let, p is not a prime, then 

 p = mn where m  1, n  1. 

 Let T be an ideal of Z generated by m. the we have  
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S  T  Z 

But S is a maximal ideal 

So either S = T or T = Z 

Now if T = Z  T is an ideal gerated by1 

  m = 1, which is acontracition. 

Again if T = S 

 pZ = mZ 

 m = pa for same a  Z. 

 mn = pan 

 p = pan 

 an =1  n =1 which is again a contraction. 

Hence p must be a prime number. 

Example 2 : Show that in a division ring R <0> is a maximal ideal. 

Solution : Since <0> R as R is a ring, so i R also 1  0 

 Let J be any non zero ideal of R, then J  xz non zero element x in J.  

 Also R is a division ring, so inverse of each element exists. 

 Therefore x-1
 R. Such that xx-1 = 1 

 Since J is ideal R so xx-1 = 1  J 

 Hence J is an ideal of R which contain the unity element of R 

  J = R 

 Hence <0> is a maximal ideal of R. 

Example 3 : Let E = 2Z is the ring of even integer then show that <4> = 4Z is a maximal in E. 

Solution : Since we known that  

 Z = {0, +1, +2, +3, +4, .....} 

 then 2Z = {0, +2, +4, +6, +8, + 10, .....} is the ring of even integer. 

 4Z = {0, +4, +8, +12, +16, .....} 

 clearly 2  4Z 

 Hence 2Z  4Z or <4> = E 

 Also now to prove there exists no other ideal of R containing <4> 

 Let J be any ideal of E such that <4> C J. 

 Let x  J such that x <4> i.e. x is not a multiple of 4 
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 Then x = um + r where r  = 1 or 2 or 3. 

 But if r = 1 or 3, then x will be an add integer but  

 x  J which is an ideal of E i.e. having even integer so only possibility is r = 2. 

  x = um + 2 

  2 = x - 4m  J 

 so every integral multiple of 2 belongs to J 

  J = E 

 So, there is no other ideal of R containing <4> 

 Hence <4> is a maximal ideal. 

Example 4 : Find maximal ideal of Z8 

Solution : In order to find maximal ideal of Z8 we first have to find all ideals of Z8. We will use 
following theorem. Also ideal of Zn, at the first place, are additive sub group of Zn. Also, for each 
positive divisor d of an the set <n/d> is the unique subgroup of Zn of order d, these are only 
subgroups of Zn. Therefore, to find all ideals of Z8 we just have to find all the divisor of 8. 

 Since (Z8, +1 X) = { 0, 1, 2, 3, 4, 5, 6, 7} 

 Since 1, 2, 4, 8 are only divisor of 8. Using x8 we get  

 so 1/8 = <1> = { 0, 1, 2, 3, 4, 5, 6, 7} = Z8 

 Now 2/8 = <2> = { 0, 2, 4, 6, 0, 2, 4, 6} 

   = {0, 2, 4, 6} 

 Now 4/8 = <4> = {0, 4, 0, 4, 0, 4, 0, 4} 

   = {0, 4} 

 Now 8/8 = <8> = {0, 0, 0, 0, 0, 0, 0}  

   =  {0} 

 Now, <8><4><2><1> = Z8 

 Hence <2> is the only maximal ideal of Z8. 

Example 5 : Find maximal ideal of Z10 

Solution : First of find all ideal of Z10. 

 Since Z10 = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}  

Now to find the divisor of 10 

 Since, 1, 2, 5, 10 are only divisors of 10 

So 1/10 = <1> Z10 = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = Z10 

 2/10 = <2> = {0, 2, 4, 6, 8, 0, 2, 4, 6, 8} 

 = {0, 2, 4, 6, 8} 
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5/10 = <5> = {0, 5, 0, 5, 0, 5, 0, 5, 0, 5} 

 {0, 5} 

and 10/10 = <10> = {0} 

Since <10><5><1> 

and <2><1> 

Hence <2> and <5> are maximal ideal of Z10. 

Example 6: Find the maximal ideal of Z12 

Solution: Since Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 

 the divisor of Z12are, 1, 2, 3, 4, 6, 12 

So, 1/12 = <1> = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12 

 2/12 = <2> = {0, 2, 4, 6, 8, 10, 0, 0, 4, 6, 8, 10} 

  = {0, 2, 4, 6, 8, 10} 

 3/12 = <3> = {0, 3, 6, 9, 0, 3, 6, 9, 0, 3, 6, 9} 

  = {0, 3, 6, 9} 

 4/12 = <4> = {0, 4, 8, 0, 4, 8, 0, 4, 8, 0, 4, 8} 

  = {0, 4, 8} 

 6/12 = <6> = {0, 6, 0, 6, 0, 6, 0, 6, 0, 6, 0, 6} 

  = {0, 6} 

 12/12 = <12> = {0} 

 Since <12><6><3><1> = Z12 

  <12><4><2><1> = Z12 

 Hence <2< and <3> are maximal ideal of Z12. 

Self Check Exercise - 2 

Q.1 Find the maximal ideal of Z36 

Q.2 Find the maximal ideal of Z52 

20.5 Prime Ideal 

Definition:- 

Let R be a commutative ring. An ideal P of R is called q prime ideal if for every a, b  R, 
a b  p then either ap or bp. 

Example 1: Show that in an integral domain R, <0> is a prime ideal. 

Solution: Let R be an integral domain. 
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 Let  a, b  R set a b <0>  [definition of prime ideal] 

   ab = 0 

 Since R is an integral domain so 

  ab = 0  either a = 0 or b = 0 

    either a <0> or b <0> 

 Hence <0> is a prime ideal, in ab integral domain R. 

Example 2: Show that in the ring of integral Z the ideal  

 <3> = 3Z = {3n ; nz} is a prime ideal. 

Solution: Using definition of a prime ideal, if <3> is as prime ideal, 

  a, b  Z, a b <3> 

 ab = 3n, n  Z. 

 3/ab 

 Since 3 is a prime number, so 

   either 3/9 or 3/b 

   either a = 3 m1  or b = 3 m2 for some m1 m2 Z. 

   either a <3> or b <3> 

 Hence  a, b  Z, a b <3> either a <3> or b <3> 

 Hence <3> is a prime ideal of Z. 

Example 3: Show that <4> = 4Z is not a prime ideal of 2Z. 

Solution: Since 2Z = {0, +2, +4, +6, +8, .............} 

  4Z = {0, +4, +8, +12, +12, .............} 

 Since 4Z  2Z and 4Z  2Z, so 4Z is maximal ideal.  

 For prime ideal,  a, b  2Z, ab  4Z either a  4Z or b 4Z  

 Since, 2, 2 2Z, 2.2  4Z 

   but neither 24Z nor 24Z 

 Hence 4Z is not a prime ideal of 2Z. 

Example 4: Let R = Z15, I = {0} is an ideal of Z15. 

 Check I = {0} is a prime ideal of Z15 or not. 

Solution: Since (Z15, +, .) is a ring  

 Z15 = {0, 1, 2, 3, ............. 14} 

 As 3  Z15, 5  Z15 
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 Now 315.5 = 0  I 

But 3  I and 5  I, 

As I  {0} contains only single element i.e. 0. 

So I = {0} is not a prime ideal in Z15. 

Note:- No of prime ideal in Zn - No of prime divisors of n.  

Example 5: Find all prime ideal in Z6. 

Solution: Since Z6 = {0, 1, 2, 3, 4, 5} 

 Since (Z6, +i) is a ring. Also no of prime ideal in Z6. 

 = no of prime divisors of 6 

 = 2 [as 2, 3 are only prime divisor of 6] 

 Since divisors of 6 are 1, 2, 3, 6 

So I1 = 1/6 = <1> = {0, 1, 2, 3, 4, 5} = Z6. 

 I2 = 2/6 = <2> = {0, 2, 4, 0, 2, 4} 

  = {0, 2, 4} 

 I3 = 3/6 = <3> = {0, 3, 0, 3, 0, 3} = {0, 3} 

 I4 = 6/6 = <6> = {0} 

 Out of there four ideals two will be prime ideals of Z6. 

Now to find these prime ideal 

 Since I1 = Z6 so by definition I1 = <1> is not a prime ideal of Z6. 

 I2 = <2> = {0, 2, 4} 

The remaining elements of Z6 are, 1 3, 5 and their composition table under multiplication is  

X6 1 3 5 

1 1 3 5 

3 3 3 3 

5 5 3 1 

 Since non of element of composition table belongs to I2 

 Hence I2 is for prime ideal. 

 I3 = <3> = {0, 3} 

 The elements of Z6 other than 0, 3 are 1, 2, 4, 5 and their composition table under 
multiplication is  
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X6 1 2 4 5 

1 1 2 4 5 

2 2 4 2 4 

4 4 2 4 2 

5 5 4 2 1 

 Since non of element of composition table belongs to I3 

 Hence I3 is a prime ideal. 

Now, I4 = <6> = {0} 

 using definition, Let 2, 3  Z6 

 2 6 3 = 0  I4 or 3I4 

 So I4 is not a prime ideal.  

Example 6: How many prime ideal in Z15.? 

Solution: No of prime ideal in Z15 = No of prime divisor of 15 

 ∴ No of prime ideal in Z15 = 2 

 Since 3 and 5 are only prime divisor of 15. Hence <3> and <5> are prime ideal of Z15 

 Since Z15 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} 

Now I1 = <3> 

 = {0, 3, 6, 9, 12, 0, 3, 6, 9, 12, 0, 3, 6, 9, 12} 

 = {0, 3, 6, 9, 12} 

 I2 = <5> 

 = {0, 5, 10} 

Example 7: Find prime ideal of Z12 

Solution: Since prime divisor of 12 are 2, and 3, so there are two prime ideal of Z12 and they are 
<2> and <3> 

 Let I1 = <2> = {0, 4, 6, 8, 10} 

  I2 = <3> = {0, 3, 6, 9} 

Example 8: Is intersection of two prime ideal is a prime ideal? Prove by example.  

Solution: Let Z = 0, +1, +2, +3, .............} 

  2Z = {0, +2, +4, +6, + ............} 

  3Z = {0, +3, +6, +9, ..............} 
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 2Z ∩ 3Z = {0, +6, +12, +18, ............}  

 2Z ∩ 3Z = 6Z = <6> 

 Also 6Z is not a prime ideal as, 2, 3  Z 

  2  3 = 6  6 Z 

 but 2  6Z and 3  6Z 

 Hence by definition of prime ideal, 6Z is not a prime ideal in Z. 

 As 6Z is not a prime ideal. So intersection of two prime ideal may not be a prime ideal.  

Now, Let us prove following theorems for prime ideals. 

Theorem 1: In the ring of integers Z1 the ideal <m> = mZ = {mn, nZ} is a prime ideal iff m is 
prime number.  

Proof:- Let <m> be a prime ideal, to show that m is prime  

 Let a, b  Z such that ab <m> 

 Since <m> is a prime ideal  

  either a <m> or b <<m> 

  either a = m or b = mn 

  either m/a or m/b 

 ∴ when na/ab, we have m/a or m/b 

 so m is a prime ideal.  

Conversely:  

Let m be a prime number to show <m> is a prime ideal.  

 Let a, b  Z such that a b <m> 

  ab = mn for some nZ 

  m/ab, but m is a prime number 

  either m/a or m/b 

  either a = mn1 or b = mn2 where n1, n2 Z. 

  either a<m> or b <m> 

 Hence <m> is a prime ideal. 

Theorem 2: An ideal P of a commutative ring is prime if and only if R/P is an integral domain.  

Proof: Let P be a prime ideal of R. To show R/P is on integral domain.  

 Let a  = a+p and b  = b+p where a, b R, be two elements of R/P such that  

  a b  = 0  
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  ab  = 0  

  ab + P = P 

  ab  P 

 Since P is a prime ideal 

 So either a  P or b  P 

 So either a  = 0  or b  = 0  

 Hence for a b  = 0  either a  = 0  or b  = 0  

 So R/P has no zero divisor 

 Also R is a commutative ring with unity. 

  R/P is a commutative ring with unity T. 

Hence R/P is an integral domain 

Conversely:  

Let R/P is an integral domain, o prove P is a prime ideal. 

 Let a, b  R such that a b  P 

  ab + P = P 

  ab  = 0  

  a b  = 0 

 As R/P is an integral domain 

  either a  = 0  or b  = 0  

  either a  P or b  P 

 ∴ P is a prime ideal. 

Hence Proved. 

Theorems 3: Let R be a commutative ring with unity. Then every maximal ideal of R is a prime 
ideal. 

Proof: Let R be commutative ring with unity. 

 Let M be a maximal ideal of R 

 Then R/M is a field 

  R/M is an integral domain 

 Hence M is a prime ideal 

 Converse of this theorem is not true. 
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Example 9 :  Give an example to show that maximal ideal need not be prime ideal for ring 
without unit. 

Solution : Since 2Z is set of even integer is a ring, without unit. 

 and 4Z is a maximal ideal of 2Z. Put 4Z is not a prime ideal. 

 To prove this let 2, 6  2Z, so 

 2x6 = 12 = 6 

 4.3  4Z 

 but 2  4Z and 6  4Z 

 Hence by definition of prime ideal 4Z is not a prime ideal still it is a maximal ideal of 2Z. 

Self Check Exercise-3 

Q. 1 How many prime ideal Z = pq where p and q are distinct prime. 

Q. 2 How many prime ideal in Z. 

Q. 3 Show that 6Z is not prime ideal in Z. 

20.6 Summary : 

 In this unit we studied  

 1. An ideal of a ring which is generated by a single element of ring is called principal 
ideal of that ring. 

 2. pZ = <p> where p is a prime, is a maximal ideal of ring. 

 3. A non zero ideal of R is known as maximal ideal if S R and if there exists no 
proper ideal of R containing S. 

 4. An ideal P of R is known as prime ideal if for every a, b  R, ab  P then either  
a  P or b P. 

 5. Intersection of two prime ideal may or may not be prime ideal. 

 6. No of prime ideal in a ring Zn is equal to number of prime divisor of n.  

 7. In ring of integer Z the ideal <m> is a prime ideal iff m is prime. 

 8. An ideal P of commutative ring is prime iff R/P is an integral domain. 

 9. Let R is a commutative ring with unity then every maximal ideal of R is a prime 
ideal. 

 10. A prime ideal may not be a maximal ideal. 

 

20.7 Glossary : 

 Principal Ideal : An ideal of Ring, which is generated by a single element of Ring 
is called principle Ideal of Ring. 
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 Maximal Ideal : If S is non-zero ideal of Ring R such that S  R then S is called 
maximal ideal, if J no proper ideal of R containing S. 

 Prime Ideal : A ring R with commutative. An ideal P of R is called a prime ideal if 
for every a, b  R, ab  P1 then either A  P or b  P.  

20.8 Answers to Self Check Exercises 

Self Check exercise-1 

Q. 1 Same as example 3. 

Self Check Exercise - 2 

Q. 1 <2> and <3> are maximal ideal of Z36. 

Q. 2 <2> ,<13> are maximal ideal of Z52. 

Self CheckExercise  - 3 

Q. 1 Only two prime ideal<p> and <q> 

Q. 2 Infinite prime ideal in Z that are <p> where p is a prime number 

Q. 3 Since 2, 3  Z 

 2x3 = 6  6Z 

 but 2  6Z and 3  6Z 

 So 6Z is not a prime ideal in 2 

20.9 References/Suggested Readings 
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 4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.   

20.10 Terminal Questions 

 1. Give an example of a ring in which a prime ideal is not a maximal ideal. 

 2. Prove that in a Boolean ring with identity every prime ideal is a maximal ideal. 

 3. Find all maximal and prime ideal of Z21.   
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