Assignment for Academic Year 2024-2025 (Beginning January 2025)

CLASS: BA-3rd Year Course Name: Linear Algebra

Course Code: MATH303TH

ASSIGNMENT-1

Attempt any TWO of the following questions:

Ques 1. Prove that any field forms a vector space over itself.

Ques 2. Show that $U_1 = \{(a, b, c, d): b + c + d = 0\}$ is a subspace of R^4 .

Ques 3. Prove that the linear span L(s) of any subset S of a vector space V(F) is subspace of V(F).

Ques 4. If W is a Subspace of a finite dimensional vector space V(F), prove that $\dim W \leq \dim V$.

ASSIGNMENT-2

Attempt any TWO of the following questions:

Ques 1. If u, v, w are linearly independent vectors in vector space V(F), then show that u + v, u - v, u - 2v + w are linearly independent.

Ques 2. Extend $B = \{(1,1,1,1), (1,2,1,2)\}$ to a basis of $R^4(R)$.

Ques 3. Show that $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + y, x - y, y) is a linear transformation.

Ques 4. Fine the basis of $B = (V_1, V_2)$ of R^2 over R, where $V_1 = (1,2), V_2 = (1,5)$.

ASSIGNMENT-3

Attempt any TWO of the following questions:

Ques 1. Find the eigen value and eigen vector of $\begin{bmatrix} 1 & i \\ 0 & i \end{bmatrix}$.

Ques 2. Diagonalize the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.

Ques 3. Find the characteristic polynomial for $\begin{bmatrix} 5 & -2 \\ 8 & 3 \end{bmatrix}$

Ques 4. Let $T: V_3(R) \to V_3(R)$ defined by T(x, y, z) = 3x, x - y, 2x + y + z.