Assignment For Academic Year 2024-25 (Beginning January 2025)

B.A. -3rd Year

Course Code: MATH304TH

Course Title: Numerical Methods

ASSIGNMENT-1

Attempt any TWO of the following questions.

10 Marks

- Ques 1. Find a root of equation $2x^3 2x 5 = 0$ between 1 and 2 correct to three decimal places using Newton Raphson method?
- Ques 2. Use secant method to find an approximate value of $3\sqrt{48}$.
- Ques 3. Solve the system of equations $x_1 + x_2 + x_3 = 1$, $3x_1 + x_2 3x_3 = 5$, $x_1 2x_2 5x_3 = 10$ by LU decompositions method.
- Ques 4. Given system of linear equations is 2x 6y z = -38, -3x y + 7z = -34, -8x + y 2z = -20 determine the values of x, y and z using Jacobi Iterative Method?

ASSIGNMENT-2

Attempt any TWO of the following questions.

10 Marks

Ques 1. Using Newton's Forward interpolation formula find the cubic polynomial.

-	120				orjinommu.
	X	0	1	2	3
	F(x)	1	2	1	10
	- ()	1.	14	1	10

- Ques 2. Find f(3.8) for an equation $f(x) = 2x^3 4x + 1$ using divided difference formula $s_0+_0 x_1 = 2$ and $x_2 = 4$ with step size h = 0.5.
- **Ques 3.** Given $\log_{10} 654 = 2.8156$, $\log_{10} 658 = 2.8182$, $\log_{10} 659 = 2.8189$ Pog₁₀ 661 = 2.8202. Use Lagrange formula to find the value of $\log_{10} 656$.
- Ques 4. Find solution of an equation $x^3 + x + 2$, x1 = 2 and $x_2 = 4$ at x = 2.25 here step value (h) = 0.25 using Newton's Forward difference formula.

ASSIGNMENT-3

Attempt any TWO of the following questions.

10 Marks

- Ques 1. Evaluate the following integral $f(x) = \int_{-2}^{2} \frac{t \sin t}{5 + 2t} dt$ using h = 1 by trapezoidal rule.
- Ques 2. Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ using Simpson's $\frac{1}{3}$ rule taking $h = \frac{1}{4}$.
- Ques 3. Approximate value of $\int_{1}^{4} (e^{-2x} + 4x^2 8) dx$ by application of Simpson's $\frac{3}{8}$ rule with n = 3
- Ques 4. Use Euler's method to find the solution to the differential equation $= \frac{dy}{dx} = 3x + 4y$ at x = 1 with the initial condition y(0) = 0 and step size h = 0.25