ISSN 2277-1425

EDITORIAL BOARD e-ISSN 2277-1433

Editor in chief

Prof. A.D.N. Bajpai

Vice Chancellor

Himachal Pradesh University,
Shimla-171005

EDITOR

Prof. D.C. Gautam
Department of Bio-Sciences
Himachal Pradesh University,

Shimia-171003 (Special Issue on Continuum Mechanics and Algebra)
ASSOCIATE EDITOR
Prof. Saraswati Bhalla Vol. 03, No. 02, Dec. 2015

Department of Hindi
Himachal Pradesh University,
Shimla-171005

Prof. R.P. Sharma

Department of Mathematics & Statistics,
Himachal Pradesh University,
Shimla-171005

Prof. A.J. Singh

Department of Computer-Sciences
Himachal Pradesh University,
Shimla-171005

Prof. Mamta Mokta

Department of Public Administration
Himachal Pradesh University,
Shimla-171005

Dr. Arvind Kumar Bhatt
Department of Biotechnology
Himachal Pradesh University,
Shimla-171005

Dr. Vikas Dogra

Department of Journ. & Mass Comm.
Himachal Pradesh University,
Shimla-171005

A Bi-annual Multi-disciplinary Research Journal of
Himalchal Pradesh University



All the research papers included in this special issue were
processed and edited by Prof. R.P. Sharma, Department of
Mathematics & Statistics, Himachal Pradesh University, Shimla.
The financial assistance for the publication of this special issue
from UGC-SAP (DRS-IlI), Department of Mathematics &
Statistics, Himachal Pradesh University, Shimla is gratfeully

acknowledged.

Editorial Board




HIMACHAL PRADESH UNIVERSITY JOURNAL (HPUJ)
(A Bi-annual Multi-disciplinary Research Journal)
ISSN: 2277-1425; e-ISSN: 2277-1433

General information

Himachal Pradesh University Journal (ISSN: 2277-1425; e-ISSN: 2277-1433) is a biannual peer reviewed
multidisciplinary research journal published on behalf of Himachal Pradesh University covering all areas of
research and studies being conducted at Himachal Pradesh University, Shimla.

Submission of manuscript

Manuscripts for publication in HPUJ should be sent as a soft copy on the journal's email ID:
hpujournal@gmail.com directly. On receiving the soft copy of the manuscript, the Associate Editors of
respective sections will process the manuscripts for reviewing and publication. The authors will be required to
confirm that the contents of the manuscript have not been published elsewhere and any part of the manuscript is
not currently being considered for publication elsewhere.

Instructions to the authors

Manuscripts should be written in English (except in subjects of languages) and be typewritten in Microsoft
Office Word 2007 with 1.5 spacing in Times New Roman, font 12. Authors are required to present the text as
concise as possible (8 to 12 typed pages). Manuscript should be submitted in complete and finished form.

Sections should be arranged in the following order: 1. Title page, 2. Introduction, 3. Materials and methods, 4.
Results, 5 Discussion, 6. References (arranged alphabetically), 7. Tables, 8. Figures. The title page should
comprise of title of the paper, names and addresses of authors, abstract (not exceeding 250 words) and key
words.

Reference style should be followed as :

Journal article: Levan, A., Fredga, K. and Sandberg, A. 1964. Nomenclature for centromeric position on
chromosome. Hereditas, 52:201-220.

Book: Stebbins, G.L. 1971. Chromosome evolution in higher plants. Edward, Arnold, London.

Book chapter: Randall, J.E. 1995. Groupers, seabasses and their allies. /n: Paxton, J.R. and Eschemeyer, W.N.
(eds.). Encyclopedia if fishes. Academic Press, pp 197-201.

Disclaimer

The information and opinion expressed in the Himachal Pradesh University Journal reflect the views of the
authors only and not of the journal or its editorial board or the publisher. Publication does not constitute
endorsement by the journal. Himachal Pradesh University Journal or editorial board of HPUJ does not assume
any liability or responsibility for the accuracy, completeness and usefulness of any information provided in the
journal.

Contact details

Editor

Himachal Pradesh University Journal
Himachal Pradesh University,
Shimla 171 005 India

Email: hpujournal@gmail.com
Copy right : Himachal Padesh University Journal (HPUJ) 2015

Printed at: Mega Offset, SCO 4, Block 1, SDA Complex, Shimla-171009. Ph. : 2626542



HIMACHAL PRADESH UNIVERSITY JOURNAL

Contents

An elliptic curve cryptosystem over finite fields
On Strong Connes Subgroup

Construction of MDS Rhotrices using special
type of Circulant Rhotrices over finite fields
Hill Cipher Cryptosystem using Irreducible
Polynomial over finite fields

On Exchange Principle in Rotatory Hydrodynamic
Triply Diffusive Convection in Porous Medium :
Darcy Model

Stability of Stratified viso-elastic walters'

(Model B) fluid/plasma in hydromagnetics in
presence of quantum physics

Soret Driven Double-Diffusive Steady Magneto-
convection with Rigid and Impervious Boundaries.

Upper Bounds for the Complex Growth Rate
in Magnetohydrodynamic Triply Diffusive
Convection with Viscosity variations

Rigidly fixed vibrations of functionally graded
viscothermoelastic sphere

A Survey of the work on Almost Injective Modules
Thermal Convection of Micropolar Fluid in the
presence of suspended particles in Hydromagnetics
in Porous Medium

Effects of porosity, Hall current and radiation on
hydromagnetic flow past a heated moving

vertical plate : An analysis by using Laplace
Transform Technique.

Characterization of Thermosolutal Convection

in Couplet-Stress Fluid in a Porous Medium

in the presence of a Magnetic Field

On the Bounds for Oscillations in Double

Diffusive Convection with Cross-Diffusions Effects
and Variable Viscosity

On Exchange Principle in Triply Diffusive
Convection Analogous to Stern Type in Porous
Medium

Thermal Instability in a porous medium layer

saturated by a viscoelastic fluid in electrohydrodynamics :

Brinkman Model

Variable Permeability and Soret effect on MHD
radiative and reacting flow of viscoelastic fluid

past an infinite porous plate in slip flow regime

A sufficient condition for the validity of the exchange
principle in triply diffusive convection in Porous Medium
Primary and G-Primary Fuzzy ideals of a semiring
Viscoelastic Slip Flow through an Inclined Vertical
Channel

Effects of Finite Larmor Radius and Suspended
Particles on the Magnetogravitational Instability

of a Visco Elastic Medium

P.L. Sharma & Kiran Devi
Ram Parkash Sharma & Madhu

P.L. Sharma, Shalini Gupta &
Masi Rehan

P.L. Sharma & Shabnam Sharma

Jyoti Prakash, Shweti Manan &
Kaka Ram

Veena Sharma & Renu Kumari

Joginder Singh Dhiman,
Praveen K. Sharma & Megh Raj Goyal

Jyoti Prakash, Rajeev Kumar &
Vinod Kumar

Dinesh Kumar Sharma &
Vishal Walia

Ram Parkash Sharma & Richa Sharma

Veena Sharma, Sumit Gupta
& Abhishek Sharma

Khem Chand & Nidhi Thakur

Ajaib S. Banyal &
Rakesh Kumar

Joginder Singh Dhiman &
Poonam Sharma

Jyoti Prakash, Kultaran Kumari,
Kanu Vaid & Renu Bala

Veena Sharma, G.C. Rana,
R. Chand & S.K. Kango

Bharti Sharma & Khem Chand

Jyoti Prakash, Virender Singh
& Shweta Manan

Tilak Raj Sharma
Aarti Manglesh & M.G. Gorla

Joginder Singh Dhiman &
Rajni Sharma

13
25

44

53

61

72

83

91

105
115

133

146

167

180

188

204

215

223
235

247



An elliptic curve cryptosystem over finite fields

P. L. Sharma* and Kiran Devi
Department of Mathematics and Statistics

Himachal Pradesh University, Shimla 171005, India
*email: plsharmal964@gmail.com

Abstract: Matrices and elliptic curves play an important role in cryptography to provide
the confidentiality of the message, integrity of data and authentication to the
communicating parties. We propose a cryptosystem using specific triangular matrices and
elliptic curves over prime finite fields.

Keywords: Triangular matrices, Elliptic curves, Finite field, Cryptography.
Mathematics Subject Classification: 94A60, 11T71, 14G50, 68P25, 01AS0.

1 INTRODUCTION

In the present era of information, all types of data travel over the insecure channels.
Therefore, the security of data has become an important issue in the rapidly growing use of
internet. Cryptographic techniques provide security to the data which is transmitted on the
insecure channels. Finite fields are widely used in cryptography, see [6, 11]. Some public
key cryptosystems are based on the techniques of number theory which provides high
stability against attacks but they use a large key space, see [9, 12, 23, 24]. Such
cryptosystems are not preferred where memory space is limited and computational power
is required high. The elliptic curves provide the alternative to cope up with such practical
problems. The elliptic curve cryptosystems occupy less memory space, much efficient in
computations and fast in encrypting and decrypting process. Due to the complexity of these
cryptosystems, hackers face more difficulty to crack. Therefore elliptic curve
cryptosystems are highly preferred in practical.

Koblitz [5] introduces the elliptic curves for the use in cryptography and proposed
an elliptic curve cryptosystem. Also, Miller [10] proposes an independent cryptosystem
using elliptic curves. Various researchers have shown their interest for the use of elliptic
curves in cryptography. They have further added that how these cryptosystems are useful
in bandwidth savings, smart cards, wireless devices, faster implementations and increase
high computational efficiency, see [24]. Consequently elliptic curves have attracted many
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researchers to contribute in the field of cryptography.

Non singular matrices are invertible. Therefore, such matrices have gain
importance in cryptography. Hill [3, 4] uses matrices and linear transformations to develop
cryptosystems. There are many cryptographic algorithms which are based on matrices, see
[21]. Climent et al. [2] give a non linear elliptic curve cryptosystem based on matrices.
Like matrices, there are some structures in the literature known as rhotrices. These
structures are used in the field of cryptography to enhance the security of the existing
cryptosystems, see [13-20].

The difficulty of solving discrete logarithmic problem provides the security to
some cryptosystems. Elgamal cryptosystem is secure due to this difficulty, see [22].
Mahalanobis [8] discuss the Elgamal cryptosystem over circulant matrices. Amounas et
al.[1] uses circulant matrices and elliptic curves for encryption and decryption process.
Multiplication and squaring process of elements is fast in triangular matrices which is
important in various cryptosystems. We develop a cryptosystem using triangular matrices
and the elliptic curves over finite fields. We also show the encryption and decryption
process with the help of an illustration.

2 ALGORITHM OF PROPOSED CRYPTOSYSTEM

Consider the lower triangular matrix

a, 0 0 0
a, ay 0 0

A=la;], =| : : : 0 0 |,
0

_aml amZ am3 am4 amm_

where a;; € F,, and p is prime, in the proposed cryptosystem. This matrix should satisfy
the following conditions:

(1) The lower triangular matrix A should have determinant “1°.

(i1) The matrix A should have each row-sum “1°.

(ii1) The order m of matrix should be prime and it should be primitive modulo p.

(iv) The characteristic polynomial A4_ of matrix A after division by (x — 1) gives
irreducible polynomial.

2.1 Generation of data matrix of the message: The data matrix using elliptic

2



curve over finite field F,, is obtained as follows:

(1) Initially choose an elliptic curve equation over finite field I, .
(11) Obtain all the points of elliptic curve over finite field F 4 .
(ii1) Further, convert the elliptic curve points into binary form.
(iv) Now, construct a matrix B of order m .

(v) Further, use the spiral traversal form (discussed below) over the matrix B and obtain
the traversing data matrix C of the plaintext message M .

2.1.1 Spiral traversal form: In this form arrows shows that first entry of the first
column goes to first entry of second column, first entry of second column goes to second
entry of first column of the matrix, second entry of first column goes to third entry of first
column, third entry of first column goes to second entry of second column. Likewise, all
the entries are traversed.

¥

j/
v
)
3
&

Spiral traversal form for m = 5.
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2.1.2 Reverse spiral traversal form: The reverse spiral traversal form is as follows.
The first entry of first column goes to second entry of first column, second entry of first
column goes to first entry of second column which further goes to first entry of third
column. Likewise all the entries are traversed.
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Reverse spiral traversal form for m = 5.
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2.2 Encryption: To encrypt the message M sender does the following:

(1) He chooses a random integer » and publishes A".

(i1) Sender chooses one more integer randomly s (say) and keep it secret, then finds A4°

and A4”.

(ii1) The ciphertext of the message M which is in the form of data matrix C, is thus

obtained as (7},7,) = (k,CA"), where k is the transpose of the first row of A°.

(iv) Sender sends this cipher text to the receiver.

2.3 Decryption: To decrypt the message M receiver does the following:

(1) He extracts the first part £ of the cipher text and form the lower triangular matrix with

first row & which is same as the first row of 4° matrix.

(i1) Further, he finds 4™ from the matrix obtained in the previous step and compute
(CA™).A™" =C.

(ii1) He reverses all the operations which have been done during encryption process and

finds the data matrix B.

(iv) Further, receiver converts the data sequence (digits) of matrix B to binary form such
as 0-00, 1-01, 2- 10, 3> 11.

(v) Now, receiver converts the sequence which is obtained in previous step to obtained
elliptic curve points and then gets the original message back.



3 ILLUSTRATION OF PROPOSED ALGORITHM

Now we give illustration of the proposed algorithm to describe the process of encryption
and decryption. Let us consider the message be INDIA.
3.1 Generation of data matrix of the message:

(1) Let us consider an elliptic curve equation

E :y*=(x"+2x+2)modl7.

P
Using the Hasse theorem, see [ pp. 174, 14] the order of elliptic curve is given by
x3+ax+b

p

x34+2x+2

=1+p+ ZxEIFU 17

|Ep|=1+p+e=1+p+z

x€Fp

Since [F}, is a cyclic group. Therefore, by inspection we find P = (5, 1) is a generator
point on E(FF;;) and generate other points of E(IF;;) from this point. Doubling of the
point P is as follows:

Let P = (x;,y1) = (5,1) be the point then the new point 2P = (x3, y,) is calculated as:

X, = (3x%+a)2 ~2y, = (3><25+2)2 _o—¢,

2y, 2x1

3x2+a) >
Yzz( z;la) (X1 —x2) —y1 = 3.

Thus, we obtained the point (6, 3). Likewise, other points of are E(IF;;) as follows:
(7,6),(3,1),(0,6), (9, 1), (5, 16) (6, 14), (7, 11), (9, 10) (10, 11), (10, 11), (13, 10), (16,
13), (13, 7), (0, 0), (10, 6) (16, 4), (0, 11), (3, 10).

The different alphabets used in the message INDIA are I, N, D, A. We shall randomly

assign elliptic curve points to these four alphabets. For the remaining points, other
alphabets and symbols are assigned to cover 19 points as follows:



EC points Corresponding EC points Corresponding
alphabets alphabet
(5, 1) Y (5, 16) R
(6,3) S (6, 14) P
(7, 6) A (7,11) N
(3,1) B (9, 10) M
(0, 6) T (10, 11) U
9,1 E (13, 10) O
(10, 6) C (16, 13) I
(16, 4) () (13,7) D
(0,11) @ (0,0) Space
(3, 10) # - -

Therefore, the elliptic curve points of the message are as follows:

Elliptic curve points and corresponding alphabets

I (16, 13)
N (7, 11)
D (13, 7)
I (16, 13)
A (7, 6)

Now, conversion of elliptic curve points in binary form is as follows:

I (16, 13) | (10000, 1101)
N (7,11) | (0111, 1011)
D (13,7) | (1101, 0111)
I (16, 13) | (10000, 1101)




A (7,6) | (0111, 0110)

Padding zero to the extreme left in each tuple of the binary form points to obtain five bits
tuples, we obtain

I (16, 13) | (10000, 1101) | (10000, 01101)
N (7,11) | (0111,1011) | (00111,01011)
D (13,7) | (1101,0111) | (01101,00111)
I (16, 13) | (10000, 1101) | (10000, 01101)
A (7,6) | (0111,0110) | (00111, 00110)

The resulting padding tuples are clubbed in single string as follows:

I | (16, 13) |(10000, 1101) | (10000,01101) |(1000001101)
N (7,11) | (0111, 1011) | (00111,01011) |(0011101011)
D (13,7) |(1101,0111) | (01101,00111) |(0110100111)
I | (16,13) | (10000, 1101) | (10000,01101) |(1000001101)
A (7,6) | (0111,0110) | (00111,00110) | (0011100110)

The obtained string of 10 bits is then converted into decimal form by taking a sum of two,

we obtain
I (16, 13) | (10000, 1101) | (10000,01101) |(1000001101) |(20031)
N (7,11) | (0111, 1011) (00111, 01011) |(0011101011) | (03223)
D (13,7) | (1101,0111) (01101, 00111) |(0110100111) | (12213)
I (16, 13) | (10000, 1101) | (10000,01101) |(1000001101) |(20031)




A (7,6) | (0111,0110) | (00111,00110) [(0011100110) | (03212)

The last column gives the following data matrix of order 5 as follows:
[2 0 0 3 1]
|0

3 2 2 3

B=11 2 2 1 3l
2 0 0 3 1}
0 3 2 1 2

Using the spiral traversal form discussed in 2.1.1, we get

2--0-0-1-»3-0-»3-2->2-2-0-0-2->2->1-3->1-0-3

»2-53-53-1-1-2.

Thus the matrix B is traversed into matrix C as follows:

[22302]
[0 1 3 2 1]
c=10 2 0o 3 3|
2 0 1 2 3|
l20311J

3.2 Encryption: The encryption process is as follows:

(1) Now we choose a lower triangular matrix over [F, which satisfies the properties
discussed in 2 as follows:

[10000]
[0 1 0 0 Of
A=lo o 1 0 ol.
l11010J
001 11

(i1) Let us choose randomly an integer » =13 (say) and obtain



[10000]
[0 1 0 0 Of
Ar=A%=]l0 0 1 o ol
11010J
00 1 1 1

This matrix will be made open in the public domain.

(i11) Again, the sender chooses one more integer randomly s = 7 (say), which will be kept
secret and computes

[10000]
01 0 0 0f
AS=4"=l0 0 1 0 ol
l11010J
1111 1

(iv) Using this matrix as key matrix and the data matrix (obtained from the message M),
we obtain the cipher text (Ty,T,) = (k, CA™) , where the column matrix k is the
transpose of the first row of A°.

[1] [O 0 1 O 0]
|
k[oJ [1 10 1
ollo o o

L))

These two matrices represent the encrypted message that will travel over the insecure
channels and received by the receiver.

3.3 Decryption: To decrypt the message receiver does the following process.
(1) He separates the first part 7, of the encrypted message and write k = (1,0,0,0,0)

which is the first row of lower triangular matrix 4.

(i1) Now, receiver finds A4 " and further computes C as follows:

[2 2 3 0 2]
o0 1 3 2 1]
(C.AS).A"=Cc=|0 2 0 3 3|
2 0 1 2 3J
2 0 3 1 1



(ii1) Now, using the reverse spiral traversing from 2.1.2 on the matrix C to obtain
[2 0 0 3 1]
|0

B=11 2 2 1 3l
[2 0 0 3 1J
03 2 1 2

(iv) Converting each entry of matrix B in binary form as follows:

(10 00 00 11 01y
[00 11 10 10 11|
B=1o1 10 10 o1 11l
10 00 00 11 o01]
00 11 10 01 10

This matrix gives the string of 10 bits as follows:

(10 00 00 11 01} 1000001101y
[00 11 10 10 11| |[0011101011]|
B=10o1 10 10 o1 11!~lo1101001111l.
l10 00 00 11 o1| [1000001101]
00 11 10 01 10J loo11100110

(vi) Now convert the string of 10 bits into two tuples each of 5 bits.

(10 00 00 11 017 10000011017 10000 011017

|00 11 10 10 11| |0011101011| |00111 01011]

B=101 10 10 01 11|=~|o0110100111]~ l01101 00111}

I10 00 00 11 01I I1000001101I I10000 01101I

00 11 10 01 10J l0011100110J l00111 00110
The corresponding points to these tuples of binary bits are now converted to the tuples in
digits form as follows:

(10000, 1101) (16, 13)
(0111, 1011) (7, 11)
(1101, 0111) (13, 7)
(10000, 1101) (16, 13)
(0111, 0110) (7, 6)

(vii) The corresponding alphabets to these points are as follows:
(16,13) - 1,(7,11) - N,(13,7) - D,(7,6) = A.

Arranging these alphabets, we obtain the message INDIA which is the original message.
10
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On Strong Connes Subgroup

Ram Parkash Sharma' and Madhu?

" Department of Mathematics, Himachal Pradesh University Summer Hill, Shimla 171 005, India
% Department of Mathematics, R.K.M.V., Shimla, Himachal Pradesh, 171 001, India.

Abstract: Let K be a commutative semiring, R a G —graded K —semialgebra and R # K [G]* its smash
product. Then using strong Connes subgroup fR of G, we prove that R# K[G]* is simple iff R is graded simple

and R is strongly G-graded and its identity component Ry is simple.

Key words: Strong Connes Subgroup, graded semirings, smash products and simple semiring.

1. Introduction

This paper is in continuation of [7] in which the validity of results proved by S.
Montgomery and D. S. Passman [5] regarding a connection between the Connes subgroup of
a group G (which is a purely analogue of the Connes spectrum introduced by A. Connes [3] in
the context of action of locally compact groups on Von Neumann algebras) and the ideal
structure of a G -graded ring R, its smash product R# K [G] is established. In this paper, R is
an additively cancellative semiring. So, R is isomorphic to a subsemiring of the ring of
differences R" such that every element of R* is the difference between two elements in the
image of R [4]. Itis evident from ([4], Proposition 9.42) that there are plenty of such semirings.
In R*, we have a— b = ¢ —dif and only if there exist Rsuch thata+r=c+r'andb+r=d+r.
The set R* becomes a ring under componentwise addition and multiplication given by
(a — b)(c — d) = (ac + bd) — (ad + bc). The zero element of R" is a — a, denoted by 0 and
multiplicative identity is 1. Clearly, R* contains R by way of embedding ar>a — 0 (simply
written as a). Another weak version of the condition of having additive inverses, i.e. R being
yoked (for R there exists an element r of R such thata + r= b or b + r = a) is also required for
some results. The ring theoretic results of [8] are studied for such semirings in [10].

We started this paper with the aim to define the strong Connes subgroup for a graded
semiring R and relate it with the simplicity of R and its smash product R # K [G]. Thus
throughout this paper, K be an additively cancellative commutative semiring and R an
additively cancellative K—semialgebra graded by a finite group G. If R is a G—graded semiring,
then there exists an extension semiring (known as smash product), with same1, which
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comes from the study of semi-Hopf algebras. This smash product is denoted by R # K [G],
where R is a K—semialgebra. This semiring is a free left R —semimodule with basis {p, | x € G}

such that 2 p_=1is decomposition of 1eR into orthogonal idempotents. Since R and K are
xeG

additively cancellative, so their rings of differences R* and K" exist. Moreover, if a semiring R
is graded by G, then R* becomes a ring graded by G, where

(RY), ={p,(a=a)

a,a'e R} ={a, —a:g \ag,a; €ER,}.

Therefore, for x eR", x=a—-b(a= Zag ,b= Zbg €R),

geCG geCG
we have the unique representation a—b = Z(a —b), ,where(a—-b), =a, —b
geCG
Thus we also have the smash product R*# K" [G] which is isomorphic to (R# K [G] )" (c.f.[5])
and hence R# K[G] embeds in R*# K“[G] , whereas R embeds in R*. These embeddings
are useful to prove the main results of this paper.
2. Some Basic Definitions and Results
The following definitions and results from [4,6-7] are felt to be inseparable part of this paper.
Definition 2.1.
A semiring is a non-empty set R on which operations of addition and multiplication have
been defined such that the following conditions are satisfied:
() (R, +) is a commutative monoid with identity element O;
ii) (R, .) is a monoid with identity element 1;
iify Multiplication distributes over addition from either side;
ivyOr=0=r0,forallr e R;
v) 1#£0.
Definition 2.2.
A nonempty subset (ideal) A of a semiring R is subtractive if and only if a € A and a+be A
implies that b € A.
Definition 2.3.

e -

(
(
(
(

A semiring (semialgebra) R is graded by a finite group G if R = > ® Ry, where Ry are

geG

additive submonoids of R and if RyR, = Ry for all g, h € G.
Definition 2.4.

For any subset (ideal) / of R, define Ig = 22 ® (INRy). I is graded if / = Iz Moreover, g is the

geG

largest graded (ideal) subset of R contained in /.
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The following results from [6, 9] of an additively cancellative semiring R will be utilised in
subsequent sections:

Lemma 2.5.
Let R be an additively cancellative semiring and R" its ring of differences. Let A, B be two
nonempty ideals of R and /, J two ideals of R* Then:
(i) A°B* = (AB)"
if) A = B, then A* = B. Further, if A is subtractive and A c B, then A* = B".
iii) If < J, then In Rc J N R. Further, if R is a yoked semiring and /I c J,thenInRcJn R.
ivyAc A A R. Equality holds if A is subtractive;
v) I N R is subtractive.
vil(InJ)nR=(nNnR)n(JN R);
Vil(lnR) (N R)c (M) N R;
(viif) (I n R)* < I. Equality holds if R is a yoked semiring.
Lemma 2.6.
Let R be a semiring graded by G.
(i) If A is a graded ideal of R, then A" is a graded ideal of R". The converse follows if A is
subtractive.
(ii) If I'is a graded ideal of R*, then | N R is a graded ideal of R. The converse follows if R is
yoked.
Lemma 2.7.
Let R be a semiring graded by a finite group G and A any subset of R. Then for g € G,
(/) Each Ry is subtractive;
(i) (a) Each Ay is subtractive, if A is a subtractive subset of R,
(b) Ag is subtractive, if A is a subtractive submonoid of (R, +);
(iii) (Rg)" = (R")g;
() Rg= (R)g N R;
(v) (A ) < (A%),. Equality holds if R is yoked and A is a subtractive submonoid of R;
(
(
(
(

~

vi) (Ag)® < (A%)g. Equality holds if R is yoked and A is a subtractive submonoid of R;
vii) Let I be an ideal of R* Then (&) | " R)g= Iy N R;
b)(INnR)g=1IsNR.
viii) If R is a yoked semiring, then R, is a yoked subsemiring of R.
Definition 2.8.
Let P be a graded ideal of R. Then P is graded prime if whenever A B< P, where A, B are
graded ideals of R, then Ac Por Bc P.
We denote the set of all graded left ideals of R by GrL and the set of all graded right ideals
by GrR.
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Definition 2.9.

A subsemiring B of R is said to be graded hereditary if B= AL forsome A € GrR, L € GrL and
B is a nonnilpotent graded subsemiring of R. The set of all such B is denoted by GrH.
Definition 2.10.

Let R be a G -graded semiring with G finite. We define

Iy = {x € G| R _, B is nonnilpotent for all B € GrH }

and

Iz = {x € G| B _,B,is nonnilpotent for all B € GrH{ }

Definition 2.11.
The graded semiring R is said to be strongly graded if Ry R, = Ry, for all g, h € G.
Definition 2.12.
The group G acts on the smash product R # K [G] by (rp,)° = rpng and hence it permutes
the ideals of the semiring. We define
A = {xe G| for all nonnilpotent ideals of / of R # K[G] we have F I nonnilpotent};
and foreach g € G,
Ng={x € G| forall of | of R# K [G]', if Ip,l is nonnilpotent, then F/ nonnilpotent}.
Definition 2.13.
The semiring R will be called ideal-simple (or simple), if / = R, whenever [ is an ideal of R
such that / # 0. Similarly, we define graded simple by taking / to be a graded ideal of R.
The correspondence between the ideals of R and R # K [G] is based on the following
definitions:
Definition 2.14.

If /is an ideal of R and x € G we define I :Rx,l IR.cR.

Since R, is an (R, R;) —bisemimodule we see that /" is an ideal of R,. Furthermore =1, (Fy
c Y and (') < (IJ)".
Remark. Let R be strongly graded semiring and /, J two ideals of R; Then (F'Y =", I' =1
and (I))'=F J forx,y € G.
Definition 2.15.
If Jis an ideal of R4, we set
AJ) = RIp:R= R # K [G]
and if lis an ideal of Rc R# K [G]*, we set
@l) ={a € R1| ap1 € p1lp}.
Lemma 2.16.
With the above notation we have
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() &J) = (R#K[G] )Jp«(R#K[G])is an ideal of R # K [G] ;
(i) (1) is an ideal of Ry and ¢(I)p1 = p1lp4;
(i) p&J) = J so fis one-one and gis onto the set of ideals of Ry;

(iv) If x e G with R, Rx,, = Rx,, R, =Ry, then &J) = AJ)".

Proof. First we prove that (R # K [G] )ps = Rps. Now, let ap,e R# K[G] , then appp; =
ap4 (since p;'s are orthogonal idempotents), hence (R # K [G] *)p1ng1 and Rpic(R # KI[G]
)p1 is obvious. Similarly, p:(R # K [G]) = psR. Thus, since Jps = p1J = ps Jps, because p;
centralizes R4, so we have

&J) = Rp+ Jp:R = (R# K[G] )Jp1(R# K[G])
is an ideal of R # K [G] , furthermore
p1(R# K [G] )p1 = p1Rp1 = Rip1 = Ry.
Thus p4/ p; is an ideal of Ryp4. so it follows that ¢(/) is an ideal of R, and

palp1 = p(1)p1.
This proves parts (i) and (ii) For part third, we have

90(J) = p,0(J)p, = p\Rp,Jp,Rp, = R,p\JR, p, = Jp,.
So pdJ) = J. Finally, let x € G with
R, Rx,, = Rx" R.=R,.
Thenforanyy e G
R.=R _.Ri=R_ R R.cR R.cR,

X

SoR, Rx,, = Ryx,, and hence RRX,, = R. Similarly, we obtain

R,R=Rp.R=R Rx,l =R.
Now, using p, R, =R, p1 we have
ar) =4 Rx,l JR)=R Rx,, JR.p1 R=(R Rx,, )J p(R: R) = RJp\R.

But J £ Ry Ryields
AJ)y' = [RJ pi RI' = RIp.R = &)
Hence (iv) is proved.
Proposition 2.17.
Let R be a strongly G—graded semiring, then the maps 6 and ¢ yield a one to one
correspondence between the ideals of R, and the ideals of R# K [G] . This correspondence
preserves inclusion, products and the action of G.

17



Proof. We know by previous lemma that § and ¢ are appropriate maps and that p&(J)=J

for all ideals J of Ry. Conversely, if / is an ideal of R# K [G] , then
op(l) = (R # K[G] )pl)p1(R # K[G]" )= (R#K [G] )pslps(R # K [G] )
and by ([7], Lemma 4.7),
(R#KIG] )p1lps(R#K[G] )= (R#K[G] M(R#KG] )=1

Thus & and ¢ determines a one to one correspondence between the ideals of Ry and the
ideals of R# K [G] , and this correspondence is certainly inclusion preserving. Furthermore if
I, I'are two ideals of R # K[G] " then

PN Ip1 = @(Iyp1lp1 = palpalps = pal I'p1 = (II")
by ([7], Lemma 4.7). Thus ¢ preserves products and hence so must 6. Finally by above
Lemma, the action of G is preserved.

3. The Strong Connes Subgroup
In order to define the strong Connes subgroup T'» of G corresponding to the semiring R

first we define:
Definition 3.1.
Let R be a semiring graded by a finite group G. We define

GrH={B=AL|A€GrR,LeGrL}

Thus the nonnilpotent members of GrH are precisely the graded hereditary of R. Clearly,
GrH < GrH . The following definitions and results are same as in ring theory and can be
proved in the same way.

F=lgeq] LA =LA, forall 4 GrR,L e Grland x,y € G|
and

Fu=lgeGIB,C_, =BC, forall B,CeGril and x,y € Gf

v

Also, we define
GrH,={B=AL|A€GrR,,LeGrL,},
F,=leeG|L 4, =LA forall 4cGrR,,L € GrLandx,y <G|
A,

and

T, ={geG|B}_gC 4 =B.C, forall B, C e GrH, andx,yeG}
gy ’
Lemma 3.2.
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Tz is a subgroup of Gand T, =T, < T.

Definition 3.3.
We define

/~\={xeG I’ :]forallIidealofR#K[G]*andforeachgeG}

and

~

A, = {x eG |(Ip,I)" = Ip, I for all leftideal 1 of R # K [G]*and I'ideal of R # K[G]*}

Lemma 3.4.

Ais a normal subgroup, each A, is a subgroup of G and A = Ny A,.

Theorem 3.5 .
Let R be a semiring graded by a finite group G. Then for all g € G we have Xg =TI'¢ and

~

hence A=n__.T.

geG g

Proof. Let g € Gand 4eGrR, LeGrL.Then by ([7], Lemma 4.13),/ = Lp, is a left

ideal of R# K[G] and! = p,4is aright ideal of R# K [G] and we have

ng[, - (Lpg)pg(pgA): LpgA'

Conversely, let | be a left ideal of R # K [G] and [ a right ideal of R # K [G] . Then by ([7],
Lemma 4.13), there exist 4 € GrR and L € GrL with

Ip,=Lp, and p,I =p,A.
Thus

IpI =Ipxp, =Lp,A
or we can say that the ideals of R # K [G] = are of the form Ip I =Lp A

where 4 € GrR, L € GrL.Now, if I, h,x € G, then
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ng(LpgA)pm—1g =L A ,p =L1Ampm—lg

lgg gg m- m g
and

=L A

l(gx_lg_l ) (gxg_l )mpmilg '

D (Lpgx A)p

nflg
Thus by letting I, m vary we see that

Pig (LpgA)pm—lg = D (Lpng)pm—lg

A
K ey P (gg P e

LA p , =L
m g
implies when we vary / over G, we get

(LpgA)pm—lg - (Lpng)p -1

m g

A

l(gx_lg_l) (gxg_l)mpﬂflg'

This  implies Lp,A=Lp,A , iff L,AmZLl

LlAmpm—lg = L

A for al [meG.

(gx_lg_l) (gxg_l)m

Since (Lp,A)" = Lp, A, it follows from the above that x e/~\g iff gxg™’ eT and hence iff

X e fg.Thus 1~\g = l:g and Lemma 3.4, yields the result.

Note 3.6.
We know by Lemma 2.16, that if J is an ideal of Ry, then &J)* = RJp\R is an ideal of R#K [G]*

Furthermore @is one - one on the set of these ideals and if g € G with R, Rx,l = RX,, R.= Ry,

then &) = aJ)".

Proposition 3.7.
Let I:R be the strong Connes subgroup of G.

) RfR = ZRgis strongly I:R —graded;

gely

(i) J&=Jforallgel,andall Jideal of R;;
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(iiiy 1¢ =1forallg e T,and all /ideal of R# K[G] " of the form I = 6(J )for some J an ideal of
R.

Proof. Let ge I:R Since R € GrH, we have

R \R,=R_, R =R’=R,

g g g &g

It then follows that R R, = R, for all g,/ € I:R , S0 (/) is proved.

Letgel:R, AeGrRand L eGrL. Since L, A and R are all contained in Gr1-1, so by
Lemma 3.2, we have

R.L=R,L_,=RL_,=L_jand AR, =AR_ =AR=R

g

Furthermore,

Thus,

(LA4)* =R _LAR =L A, =LA

g

Since any ideal J of Ry is of the form L;A;, it follows that * = J forallg € I:R . Thus (ii) and

Lemma 2.16 (iv) yields (iii).

Corollary 3.8.
Let R be a semiring graded by a finite group G with T’ the strong Connes subgroup of G.
() If R is strongly graded, then

A=T,={g e G|.f = Jfor all Jideal of R;}

(i) I:R = Gif and only if R is strongly G—graded and all ideals of R are G—stable.
Proof. If Ris strongly graded, then by Proposition 2.17, all ideals of R# K[G] “are of the form

&J) for some J ideal of R4. Then by Proposition 3.7(iii), we see that I:R < A.Now by Theorem

3.5, 1~\g = l:g Finally by [7], Lemma 4.8, we conclude that A is the stabilizer of all ideals of R,
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since it is defined to be the stabilizer of all ideals of R # K [G] . Thus (i) is proved. Part (i),
follows immediately from this and Proposition 3.7 (ii).
Lemma 3.9.
Let R be a semiring graded by a finite group G and R" its ring of differences.
(i) If R" is graded simple, then R is graded simple;
(i) If R is graded simple and yoked, then R" is graded simple.
Proof. (i) Suppose R is not graded simple and 0 # / is a graded ideal of R, then there exist 0
# I* a graded ideal of R by Lemma 2.6, which is a contradiction to the fact that R" is graded
simple. Hence R is graded simple.
(ii) Suppose R" is not graded simple and there exist a nonzero graded ideal / # 0 in R", then
by Lemma 2.6, | n Ris a graded ideal of R. Also by, Lemma 2.5(viii), if R is yoked, then
InR*=1#0
implies / N R # 0. Thus our supposition is wrong and hence R" is graded simple.
Lemma 3.10.
Let R be a graded, yoked and additively cancellative semiring and R" its ring of differences.
(i) If A is an additive subgroup of R, then (I " R)* = |

(i) T, =T,.
Proof. (i) The inclusion (I n R)* c Iis obvious. Conversely, let a— b < I. Let R be a yoked
semiring and note that for an additively cancellative yoked semiring, either a—beR or b—a € R,

foralla—b e R Thus, eithera—belnRorb—aclnR.Inanycasea—b e (InR)"
implying I = (I n R)™.

(i) Let geT, and Jbe anideal of R*. Then by Lemma 2.6, J " R is an ideal of R.

Since An Re GrR, L n Re GrL, by definition of I:R , we get

(LAR),(ANR),-1,=(LNR),(ANR), forallx,ycG

By Lemma 2.7(viii)(a) we get

(Z,n R)(Ag_ AR|=(L,ARN4, "R)

1
y
Now by using Lemma 2.7 (viii)(a) & (i), we have
LA =(L,R) (Agfly AR}
=(L. AR (4, "Rf =1L.4,.

Hence I:R crl,.
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Theorem 3.11.
Let R be graded semiring. Then the following are equivalent:
(i) R # K [G] is simple;

(i) R is graded simple and I:R =G;

(i) R is graded simpleand I, =G ;

(iv) Ris strongly G-graded and R, is simple.

Proof. (i) = (i) We know if R # K [G] is simple, then R # K [G] is prime, so
obviously/N\ = G and hence I:R = G. Furthermore, if J # 0 is a graded ideal of R, then by ([7],

Lemma 4.13(ii)), J.(R # K [G] ) is an ideal of R# K [G] *. Thus J.AR# K[G] )= R# K[G] , so
Rpi=(R#KI[G] )p:1=J.(R#K[GC] )p1=Jp:s and J=R.
(i) = (i) Since R is graded simple implies R" is graded simple. Also by above Lemma, we

have T, o T, =G impliesT, = G.Now, R" is graded simple implies R"# K *[G]'is simple

and hence
R*#KIG* = (R#KI[G])"
is simple. So, by Lemma 3.9, R# K [G] is simple.
(iiy= (i) By Lemma 3.9, if R is graded simple and yoked, then R" is graded simple. Also

1:A QI:R = G implies 1:A =G, so by Corollary 3.6,[5], I's = G. Now, R" is graded simple

implies R" is graded prime and 'y = G.  This implies
R#K[G]'z (R#KI[G])
is prime. So by Lemma 3.9, R# K [G] is prime implies R is graded simple and I'r = G.
(i) = (iv) By Lemma 3.9, if R is graded simple and yoked, then R is graded simple. Also

by above Lemma, we have l:A ) I:R = G implies T, = G, so by corollary 3.6[5] I'y = G. Thus

by corollary 3.6. [5] R" is strongly graded and (R"); is simple implies(R"); = (R;)" is simple.
Hence by Lemma R, is simple.
(iv) = (ii) follows in the similar manner as (ii) = (jii).
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ABSTRACT

Maximum distance separable (MDS) matrices play an important role in the
designing of block ciphers and hash functions in cryptography. Circulant matrices have
wide applications in control theory, graph theory and in solution of linear equations. We
introduce a special type of circulant rhotrices. Using these rhotrices, we construct MDS
rhotrices over finite fields.

AMS classification: 15A09, 20H30, 11T71.
Keywords: Circulant rhotrix, Irreducible polynomial, MDS rhotrix, Finite field.
1. INTRODUCTION

Maximum Distance separable matrices have wide range of applications in
different areas of mathematical sciences, computer sciences and other sciences. MDS
matrix has diffusion properties that are used in block ciphers and cryptographic hash
functions. Several researchers have designed block ciphers such as AES[4, 6], AES-
MDS[17] and some hash functions Maelstrom[7], Grostl [8] using MDS matrices. MDS
matrices provide security against different cryptanalysis [5, 14-16]. There are several
methods to construct MDS matrices. Sajadieh et al.[9] and Lacan and Fimes[10] used
Vandermonde matrices for the construction of MDS matrices while Youssef et al.[35]
used Cauchy matrices.Guo et al. [9], Gupta and Ray [10] used companion matrices for
the construction of MDS matrices. Sajadieh et al.[18, 19] and Wu et al. [34] proposed
new d X d MDS matrices based on companion matrices for smaller values of d. Circulant
matrices are also used for the construction of MDS matrices. Junod et al. [12] constructed
new class of MDS matrices whose submatrices were circulant matrices. Gupta and Ray
[11] constructed MDS matrices from circulant-like matrices.

Rhotrix is a mathematical object which is in some way between 2x2-
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dimensional and3x3 - dimensional matrices introduced in 2003 by Ajibade [2]. A
rhotrix of dimension 3 is defined as

(1.1)

Ry={a, a; a,)

as

where a,,a,,a,,a,,a are real numbers. Algebra and analysis of rhotrices is discussed in

the literature, see [1, 3, 13, 20-33]. Sharma and Kumar [25] introduced companion rhotrix
to construct MDS rhotrices. In the present paper, we introduce circulant rhotrix and
special type of circulant rhotrix. Further, weconstruct MDS rhotrices using special type of

circulant rhotrix over GF (2%).

2. MAIN RESULTS

Definition 2.1: A circulant rhotrix R, 1s defined as

a
a, b, q
a,, b, a, b . (21)
a, b, . . .
R, = a b . by a,
a, b, by, a.,
a,;
b,

a

For example: Circulant rhotrix of order seven can be presented as
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a; by, q
@ b oa b a 2.2)
R={( a b a b a b a
a, b, a, b a
a; by q
4a,
Definition 2.2: A special type of circulant rhotrix C, is defined as
a
1 5 1
1 b, a b 1 (2.3)
a,, b . . .
. [lo
C,=( 1 b . ob, 1
a b, by, a,,
a4
bO

where a,a,b;i, j=1,2,.,d -1 are real numbers. It is also denoted as

[(a,cir(a,,.....,a, ,)),cir(b,,....b, )]

Theorem 2.3 Let R, be a special type of circulant rhotrix and R = (a',cir(l,a™',a))and
R, =cir(l,1+ a,a”")be defined over GF(2'), where a is the root of irreducible

polynomiala® + a* + a* +a® +1. Then R’and R form MDS rhotrix R} of order 7.
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Proof: Let

R[]
R21 RN R2]
RBIN RI211 R[2][2] R[2] R[1[3]
RI=( R[4 RPBI R[32] R[2]2] R[213] AIIBE] R[1][4]
R[41[2] R[31[2] RI[313] RI[2][3] R[2][4]
RI[41[3] R31[3] R)[3][4]
RI[4][4]

1

We consider R = (a',cir(1,a”",a)) in (2.4), therefore we have

a' 1 1 1Ya" 1 1 1)a" 1 1 1

1 1 a' a 1 1 a' a 1 1 a' a
R =
1 1 a 1 a'||1 a 1 a'||1 a 1 a
1 a a 1 1 a a 1 1 a a 1
-3 -1 2 -2 -1 2 -2 -1 2 -2 -1
a+a +a +1 a+a +a +1 a+a +a' +1 a+a +a +1
a+a’+a'+l ad+a’+a+1 a’+a’ a’+a'
a+a’+a'+1 a’+a’' a+a +a'+1 a +a’'
a+a’+a'+1 a+a’ a’+a’ a+a’+a'+1

(2.4)

(2.5)

Here,ais the root of a*+a*+a*+a’>+1. Therefore, a'=a" +a’*+da’°+a,

3

a’=a’+a’+a+land a”=a’ +a’ +a’ +a’ +1. This gives,

RMN]=a+a’+a ' +1=a #0,

R[2]=RN][3]=R[1][4]=a’+a" +a +1=a"+a"+a’ +a’ #0

RR2IN=RBI=R[4][l]l=d +a’ +a' +1=d +a’ +d’ +a’ #0
R212]1=RBIB1=R[4][4]=d’ +a” +a' +1=d"+a’ +a+1%0
R[21B3]1=R[B[4]=R[4][2]=d’ +a' =d +a’ +a#0
R[21[4]1=R[BI2]=R[4]3]=a’ +a ' =a’ +a’ +d’ +1=0.

Hence, R’ is MDS. Now,
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-1

1 l+a a' 1 l+a a’' 1 l+a a

R =| a' 1 l+a| a 1 l+all a 1 l+a
l+a a' 1 l+a a’' 1 l+a a' 1
a+d+a*+a a’t+al+1 a+a'+1

= a+a'+1 at+a’+a*+a a’t+al+1l |, (2.6)
a’t+a'+1 a+a'+1 a+ad+ad*+a

The matrix (2.6) gives,

RN=R[2[12]=R[BIB]=d’ +a” +a* +1=a’ +a’ +a+1#0
R[[2]=R[21B]=R[B3l]l=a’+a ' +1=d" +a" +a’ #0
R[3]1=R[31[2]1=R[2][l]=a’ +a” +1=a‘ +a#0.

Therefore, R, is MDS.

From (2.4)-(2.6), we obtain

5
a

ad+a+ad+a® d+d’+a+l d+a®+add+ad
ad+a+a+ad a+a d+a+a+l  d+d°+dd  d+d+ad+ad
R$: a +a*+ad’ +da’ a +a*+d’ ad+a®+ad’+1 d+d +a+l a +a+a a®+a a +a+a’ +ad’
a +a +a a®+a a+a+a+l a +a*+d’ a +a*+a’+1

ad+a*+d+1 d+d +a+l a +a’+a

which shows that R, is MDS.

Theorem2.4 Let R; be a special type of circulant rhotrix and R = (a,cir(1,1+a”',1+a))
andR, = cir(l,a™',a+a™") be defined over GF(2"), where a is the root of irreducible

polynomial a* +a* +a* +a*+1.Then R’ and R’ form MDS rhotrix R} of order 7.

Proof: Let R be defined as in (2.4) and R, = (a,cir(1,1+a"',1+ a)) in (2.4), therefore we
have
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a 1 1 1 Ya 1 1 1 Ya 1 1 1
1 1 1+a l+a |l 1 144" 1+a |l 1 l+a' l+a

R

~1

1 14a 1 l+a

|

1 l+a 1 1+a

~

11 4a 1 l+a
1 I+4a' 14a 1 A\l 144 l4a 1 )1 144" l4+a 1

a+d +a'+1 d+a’ +a+l d+a’ +a+l d+a’ +a+l
d+a’+a+l d+d+a’+a’+a'+1 d+a’+1 d+a+a’+a' +1 (2.7)
d+a’+a+l d+a+a’+a'+Hl  d+d+a’+ai+a'+H d+a’+1
d+a’ +a+l d+a’+l1 d+a+a’+a'+l  d+d+a’+ai+a' +H
This gives,

Rll=a+a +a' +1=a" +a’ +1#0,
RO2]=RMB]=R[1][4]=a’+a’ +a+1=a"#0
R[2][11=R[BI[1]=R[4][1]=a’+a" +a+1=a"#0
R[2][2]=R’[31[3]1=R'[4][4]=a’ +a’ +a’ +a” +a ' +1
=a'"+a’ +a’ +1#0

R121[3]=R’[3][4]=R'[4][2]=a’+a” +1=a"+a#0
R[2][4]=R[3][2]=R[4][3]=a" +a ' +a’ +a+1=d" +a"+a +a’ +a=#0.

Hence, R’ is MDS. Now,

1 a’ a+a’ 1 a’ a+a’ 1 a’ a+a’
R =|a+a’ 1 a' ||a+a’ 1 a' ||a+a’ 1 a'
a’ a+a’ 1 a’ a+a’ 1 a’ a+a’ 1

a+a'+va+l a+at+dd? a+at+a’
""dral+a+l a+at+ad | (2.8)

1

=l a’+a’+a

a+a’+a’ a+at+a' d+at+a+l
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The matrix (2.8) gives,

R[N]=R212]=R[B]3]=d +a" +a+1=a’ +a* +1%0
RM[2]=R[2][3]=R[3Il]l=a’+a" +a’=a' +a"+a’ +a’ +a’ +a#0
RIBI=RBI2]=R[2[l]=a" +a” +a”" =a’ +a’ +a #0.

Therefore, R, is MDS.

From (2.7) and (2.8), we obtain

a +a*+1
a® a +a*+1 a°
a® a+d+a’+d+a’+a a®+d’+a’+1 d+a+d+a’+a’+a a’
3 2 5
R=( a da+ad’+a> d+d°+a’+a’+a a +a’+1 a®+a a+ad’+d a’
a®+a a+d+a’+d+at+a a®+d+a’+1 a +a*+d a+a+a’+a’+a
7 6 3 2 7 2 6
a'+a’+a’+a +a a +a +1 a’ +a

a®+ad’+a’+1

which shows that R; is MDS.

Theorem 2.5 Let R; be a special type of circulant rhotrix and R =
(a+Lcir(La+a ', 1+a))andR, = cir(l,a,1+a”") be defined over GF (2"), where a is
the root of irreducible polynomial a* +a* +a’ +a”>+1. Then R’ and R] form MDS
rhotrix R73 of order 7.

Proof: Let R’ be defined as in (2.4) and R =(a+1,cir(l,La+a',1+a)) in (2.4),
therefore we have

a+1 1 1 1 a+1 1 1 1 a+1 1 1 1
. 1 1 a+a' l+a 1 1 a+a' l+a 1 1 a+a’ l+a
k= 1 l+a 1 at+a' | 1 l+a 1 ata' | 1 l+a 1 a+a’
1 a+a' l+a 1 1 a+a' l+a 1 1 a+a' l+a 1
ata’+a’+a'+1  a+a’+a'+1 a+a’+a'+1 a+a’+a' +1
| @+ai+a'+l a+at+at+a’+l a+a’ a+a +a’+a’ (2.9)
| @d+at+al+1 a+a’+a’+a' a+a+a’+a'+1 a +a’
a+a’+a'+1 a+a’ a+a’+a’+a' ad+a+a+a+1
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This gives,

Rll=a+a +a’ +a'+1=a" +1#0,

ROR2]I=RMB]=RM[4]=a +a* +a" +1=d +a’ +a' +a’ #0,

RPN =RBI=R[4l]=a’+a” +a' +1=d +a'+a’ +a’ 0,
R[2]12]=R[BIB]=R[4l[4]=c’+a” +a' +a+1=a"+a’ 0,
R213]1=R[Bl[4]1=R[4[2]=d’ +a" =a’+d’ +a’ +a+1=0,
R[2][4]=R[3][2]=R[4][3]1=a’ +a ' +d' +a’=d +a’ +a’ +1#0.

Hence, R’ is MDS. Now,

1 a l+a” 1 a l+a” 1 a l+a”
R =|1+a" 1 a l+a’ 1 a l+a” 1 a
a l+a” 1 a l+a 1 a l+a” 1
ad+a’+a’+a’ at+a’+1 at+a+l
= a’+a+l a@+a’+a’+a’ a’+a’+1
a+a’+1 a+a+l a+a’+a’+a’

(2.10)
The matrix (2.10) gives,

RON=R[2[121=R[BIB]=a' +a” +a’+a=a +a’ +a+1#0
R[[2]=R[21B]=R[Bl=a’+a" +1=a’ +a"+a’ #0
R[3]1=R[3[2]1=R[2][l]=a” +a” +1=a’ +a 0.

Therefore, R, is MDS. From (2.9) and (2.10), we obtain

a +1

d+d+d+d® d+d+d+d d+d+d+d

a+d°+d +d @ +a+l a+ad a+a d+d+d +d’
R73= d+d+a+d a+a d+d+d’+1 d+d’+d+d +d +d +a+l & +a+l d+d+d+d ),
d+d' +d +a+1 & +a+l a+d d +a d+a*+d’ +1

d+d+d’+1 d+d+d+d +d+d +a+l

a+d
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which shows that R; is MDS.

Theorem 2.6 Let R, be a special type of circulant rhotrix and R, = (a +1,cir(1,a,a” + a))
and R, = cir(l,a,1+a”) be defined over GF(2"), where a is the root of irreducible
polynomial a* +a* +a* +a*+1.Then R’ and R’ form MDS rhotrix R} of order 7.

Proof: Let R} be defined as in (2.4) and R = (a +1,cir(l,a,a’ + a)) in (2.4), therefore
we have

a+l 1 1 1 a+l 1 1 1 a+l 1 1 1
R3_1 1 a d+al| 1 1 a d+al| 1 1 a d+a

1 d+a 1 a 1 d+a 1 a 1 d+a 1 a
1 a d+a 1 1 a d+a 1 1 a d+a 1
a+a a'+a’+a a'+a +a a'+a’+a
a'+a’+a a'+a+a' +a a+a +1 a+a +1 (2.11)
= 5 .

at+a +a a+a +1 a+a+at+a a+a +1
at+a +a a+a +1 a+a+1 a+a+a+a

which clearly shows that all the entries in the matrix are non-zero. Hence, R’ is MDS.
Now,

1 a l+a’ 1 a l1+a’ 1 a l+a’
R =|1+a 1 a l+a’ 1 a l1+a’ 1 a
a l+a’ 1 a l+a’ 1 a l+a’ 1
a+at+a’+a at+a+l a +a+l
= a +a+1 a+at+a’+a a’+a+l . (2.12)
a+a+l a+a+l a+at+a’+a

which clearly shows that all the entries in the matrix are non-zero. Therefore, R; is
MDS.

From (2.11) and (2.12), we obtain
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a+a
at+a’+a d+at+a+a a'+d+a
at+d+a d+a+l df+d’+at+a ad+a+l at+d’+a
R73= at+d+a d+a+l S+ +1 d+a'+a+a d+dt+l d+a+l d+d+a ),
a@+a’+l d+a+l a®+d+a‘+a d+a+l d+a+1
ad+d’+l d+at+dd+a AP +at+1

ad+d+at+a

which shows that R; is MDS.

Theorem 2.7 Let R; be a special type of circulant rhotrix and R = (a™',cir(1,a>,1+ a))
andR, = cir(l,a,a”") be defined over GF(2"), where a is the root of irreducible
polynomial @* +a* +a* +a*+1.Then R’ and R’ form MDS rhotrix R} of order 7.

Proof: Let R be defined as in (2.4) and R = (a',cir(1,a*,1+ a)) in (2.4), therefore we
have

a' 1 1 1 a' 1 1 1 a' 1 1 1

R 1 1 a’ l+a| 1 1 a’ l+a| 1 1 a’ l+a
"l d4a 1 @ |1 14a 1 @ || 1 14a 1 a”
1 a® l+a 1 1 a® l+a 1 1 a l+a 1
ata’+a’ a+a’+a’ +a’ a+a’+a’ +a’ a+a’+a’ +a’
a+a’+a’+a'l  d+d+a+a' +a®  d+a' +a+a +a+1 a+a' +a’+a’
\d+at+a+a’ ata' +a’+a’ a+a+a+a' +a'® d+a' +a’+a +a’+1
a+a’+a’+a' ad+a'+a’+a’+a’+1 a+a'+a’+a’ a+a+a+a' +a’
(2.13)
This gives,

RM]l=a+a’+a’=a" +a°+a +a #0,
R2]=RN]3]=R[][4]=a’"+a’ +a" +a ' =a +a’ +a’ +a#0,
R2IM=RBI=RAll]=d +a’ +a’ +a* =d’ +a' +a +a#0,
R[2][2]=R[3][3]=R[4][4]=a’+a’ +a+a ' +a‘'=a' +a +a' +a’ +a#0,
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R2]3]1=R[3][4]=R[4][2]=a"+a ' +a’ +a’ +a  +1=a +a’ +a' +a’ +1=0,

R[21[4]1=R[BI2]=R[4]3]=a" +a’ +a' +a=a' +a+1#0.

Hence, R’ is MDS for n = 8.Now,

1 a@ a'\(1 a a'\(1 a° a
R=la" 1 a'|la 1 a|a 1 a
a’ a' 1 \a® a' 1 Na® a' 1
a’+a’+1 a’ a’
= a’ a’+a’+1 a’ ) (2.14)
a” a’ a’+a®+1

The matrix (2.14) gives,

R=R[2]12]=R[BIB]=a" +a* +1=d’ +a' +a’ +a =0,
RMR2]=R[2B]1=R Bl =a"=a’+d +a' +a’ %0,
RMBl=RBIR2I=R[2Il]=a"=ad" +d’ +a’ +a#O0.

Therefore, R; is MDS. From (2.13) and (2.14), we obtain
d+ad°+a+d
d+d'+d*+a d+d'+d+a a+d +da* +a

d+a'+d+a d+d+d+a d+d+d+d’+a d+d+d+d A +a+d+a

S i
R= d+d'+d*+a a’+a a'+a+l d+d'+d+a d+d+d+d+1 d+d+d+a a+a'+d’ +a
d+d+d'+ad+l d+d+d+a d+d+d+d’+a d+d+d+d a'+a+l
a'+a+l ad+d'+d+a  d+d+at+a+1

a+d+d' +a*+a

which shows that R; is MDS.

Theorem 2.8 Let R; be a special type of circulant rhotrix and R =
(a,cir(Ll+a+a ' +a?,a+a'))andR, =cir(l,a,a+a™') be defined over GF(2"),

where a is the root of irreducible polynomial a® +a* +a’ +a”+1. Then R’ and R,

35



form MDS rhotrix R73 of order 7.

Proof: Let R} be defined as in (2.4) and R = (a,cir(lLl+a+a ' +a?,a+a')) in(2.4),
therefore we have

a 1 1 1 a 1 1 1 a 1 1 1
L |1 1 l+a+a’ +a” a+a’ 1 1 l+a+a’ +a” a+a’ 1 1 l+a+a’ +a* a+a’
R= 1 a+a’ 1 l+a+a'+a’ || 1 a+a’ 1 l+a+a'+a’ || 1 a+a’ 1 l+a+a'+a’
1 l+a+a'+a’ a+a’ 1 1 l+a+a'+a’ a+a’ 1 1 l+a+a'+a’ a+a’ 1
a+a a+1l+a' +a* a+l+a' +a* a+l+a' +a*
ad+l+a' +a' d+a+l+a+a’+a’ a+da +l+a' +a’ a+a +a+a’+a’+a’
ad+l+a' +at d+d+a+a’+a’+at ad+a+l+ai+a’+a’ a+da+l+a' +a’

a+l+a' +a’  ad+d+l+a'+a’  d+d+a+a +a+a' ad+a+l+a’ +a +a’
(2.15)
This gives,
RMN]=a"+ad’=a"+a’ +a’+a+1#0,,
R[2]=RM][3]=R[1][4]=a’+1+a ' +a " =a"+a' +a+1=0,
R12I11=R[BI1]=R'[4]1]=a’+1+a "' +a" =a’"+a" +a+1=0,
R[2][2]=R'[3][3]1=R'[4][4]=a’ +a+1+a’ +a" +a'=a"+a’ +a#0,

R2][3]=R[3][4]=R[4][2]=d +a’ +1+a" +a  =d' +a' +a’ +a’ +a’ +a+1+0,
R[2][4]=R’[3][2]=R'[4][3]=a’+a’ +a+a’ +a'+a’ =a’ +a’ +a’ #0.

Hence, R, is MDS for n = 8.Now,

1 a at+a’ 1 a a+a’ 1 a a+a’
R =la+a’ 1 a a+a’ 1 a at+a’ 1 a
a a+a’ 1 a a+a’ 1 a a+a’ 1
a+a'+a’+1 ad+ad*+a’ a+a’+a
=| d+a’+a ata'+a’+1 d'+da*+a’ | (2.16)
a+a’+a’ a+a’+a a+a'+a” +1

The matrix (2.16) gives,
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RIM=R[212]1=RBIB]=a+a +a” +1=da° +1%0,

RON2]I=R[2]3]=RB]l]=a"+a" +a”

R[3]1=R[3I[21=R[2][l]=a’ +a’ +a #0.

Therefore, R; is MDS. From (2.15) and (2.16), we obtain

d +d'+a+l
& +d' +a+l d+d+a
R= d+d'+a+l d+d+a+l ad+d+d
d+d+d+d+d+atl d+d+a
a+d+d

which shows that R; is MDS.

Theorem 2.9 Let Ry be a

R =(a,cir(l,a,a™",a’))and R, = cir(l,a,a”

rhotring3 of order 9.

Proof: Let R, be defined as

RY[2][1]

1 R2]1]

R4 R3] RY31[2]
Ry={ RSN R4 R[41[2]1 R)[31[2]
R[51[2] R[41[2] R[41(3]

RI[5][3] R}[4][3]

RY[5][4]

R3]0

and R, = (a,cir(l,a,a”',a*)), then

& +d +d +a+l
a+ & +d' +a+
d+d+d+d+a & +d +a+ d+d'+a+l
a+ d+d+d+d+d+a+l d+d+a o +d+a+l
d+d+d +d+a & +d +a+l a+d+d
a+ d+d+d +d +d +a+l
d+d+d'+d+a

special  type

R[]
R[]
R[2]
R}[2]
R'[3]
R[3]
R'[4]
R[4
R[5

RY[1][2]
1 RI2]
1 RY[2][3]
31 RJ[2][3]
3] R[31[4]
1 R[3][4]
1 R[4][5]
5]

[l
[1
[2
[2
[
[
[4
[4
[

]
]
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R[1][3]
RI[11[3]

R[2

104]

RJ[2][4]

[
1l

R'[31[5]

=a’+a’+a+1#0,

circulant
"1+ a) be defined over GF(2"), where a is

the root of irreducible polynomial a* +a*+a*+a>+1. Then R’ and R’ form MDS

R[1][4]
Ry[1][4]
R[2][5]

rhotrix

R3

1

[1][5]

>

and

(2.17)



a 1 1 1 1 \fa 1 1 1 1 \fa 1 1 1 1

1 1 a a' a1 1 a a' a1 1 a a' da
R=|1 & 1 a a'|l & 1 a e 1 a a!
1 a' o 1 a ||l a' o 1 a ||l a' o 1 a

1 a a' o 1 1 a a' d& 1 1 a a' o 1

a d+d+d+d® d+ad+d+a’  d+d+d+ad d+d+d+ad’

d+d +d +a+a’ a*+l d+d+i'  d+d+ara’+d'  d+d+d +aH

Sd+d+d+ara®  d+d+d+atl a*+l d+d+a'  d+d+ard+a |

d+d+d+a+d’ d+d+a+d’+a'  d+d+d+aH a*+l d+d +d'
d+d+d+a+a>  d+d+d'  d+d+atd+a d+d+d+at a+

(2.18)
From (2.18), we get
R[=a #0,,
R2]=RNB]=RNM4]=R][5]=a"+a’ +a’ +a’ =a"+a"+a’ +a+1#0,

R2[1=R[BI[1]=R[4I[1]=R[S]l]=a"+a' +a’ +a+a’ =a"+a’ +a +1#0,

R[2][2]=R’[31[3]1=R'[4][4]=R[S][S]=a’ +1=a"+a’ +a#0,

R[2][3]1=R[3][4]=R[4][5]=R'[S][2]=a"+a'+a ' =d’ +a’ +a' +a’ +a’ +a#0,
R[2][41=R[3][S]=R[41[2]=R'[5S][3]=a' +a’ +a+a’ +a' =a’ +a' +a’ +1#0,
R[12][5]=R’[3][2]=R'[4][3]=R'[S][4]=a"+a’ +a’ +a+1=0.

Therefore, R’is MDS. Now,

1 a a' a+l 1 a a' a+l 1 a a' a+1

; (a+l 1 a a' |[a+1 1 a a' |[a+1 1 a a’
lat oa+l 1 a a' a+1 1 a a' a+1 1 a
a a' a+l 1 a a' a+l1 1 a a' a+l 1
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1 1

a’+a'+1 a +1 a’+a'+1 a’+a

a’+a' a’+a'+l a'+1 a’+a'+1 (2.19)
a’+a'+1 a’+a’ a’+a'+1 a'+1
a'+1 a’+a'+1 a’+a’ a’+a'+1

From (2.19), we get

R1]=R[2][2]=R)[3113]1=R[4][4]=a" +a ' +1=a" +a"+a #0,
RM[2]1=R[2][3]1=R[3][4]=R[4]l]=a" +1=a"+a’ +a’ +a+1#0,
RM[3]=R[3][1]1=R)[2][4]=R][4][2]=a’ +a ' +1=a’ +a#0,
RM[4]1=R[2][1]=R)[3][2]=R][4][3]=a" +a ' +1=a" +a"+a’ #0.

Therefore, R;is MDS. The matrices (2.18) and (2.19) shows that the rhotrix (2.17) is an
MDS rhotrix.

Theorem 2.10 Let Ry be a special type of circulantrhotrix and R =
(a+1,cir(lLa,a™,a+1))andR, = cir(a,l,a +1,a”) be defined over GF(2°), where a is
the root of irreducible polynomial a* +a* +a’ +a”>+1. Then R’ and R] form MDS

rhotring3 of order 9.

Proof: Let R, be defined as in (2.17) and R, = (a +1,cir(l,a,a”',a +1)), then

a+l 1 1 1 1 Ya+l 1 1 1 1 Ya+l 1 1 1 1
1 1 a a' a+l| 1 1 a a' a+1| 1 1 a oa+l
R=l1 a+1 1 a a' || 1 a+l 1 a a'| 1 a+l 1 a o
1 a' a+l 1 a 1 a' a+l 1 a 1 a' a+l 1 a
1 a a' a+l 1 1 a a' a+l 1 1 a a' a+l 1
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@) d+di*+d' d+d+d' d+d+d
d+d’+d' atd’+d'  atd'  atd+d
Sd+a*+d' atd’+ad' ard’+d atd
d+d’+d' atd’+d' avd +d' ata+d
d+d'+d'  a+d  atd+d atd +d

From (2.20), we get

RMN]=a +a’+a+1#0,
RM21=R]B]=R1[4]1=R[1][S]=a"+a" +a ' =a' +a" +a’ +a’ +1=0,

d+a*+d’
aa+d’
ata +a’ | (2.20)

at+a

ara +a’

R2[1]=RBI=R AN =R[5l]=a’ +a* +a' =a’ +a" +a’ +a* +1=0,

R121[2]1=R'[3][3]=R[4][4]=R'[5][S]=a” +a ' +a=a"+a"+a’ +a+1#0,

R[2113]= R'[31[4]= R[41[5]=R[5I[2]l=a+a ' =d +a’ +a’ #0,
R[2][4]1=R'[B][5]=R[41[2]=R'[5]3]=a+a’ +a ' =a +1#0,
R[21[51=R[31[2]=R[4113]=R[5][4]l=a’ +a" +a=d +a’ +a’ +a+1#0.

Therefore, R’is MDS. Now,

a 1 a+1
R = a’ a 1
2 2

a+l a a

a’+a'+1
at+a’+1

a’ +1
a®+a’+1

From (2.21), we get

a’+a’+1

a+at+1

a*+a’+1
a’+1

a’+1
a’+a’+1
a’+a*+1
at+a’+1

a’ a 1 a+l1 a
a+l| a a 1 a+l

1 a+l a a 1

a 1 a+l 4 a
at+a’+1

a’+1 (2.21)
a’+a’*+1
a’+a*+1

R[] = R[2][2] = R[3][3] = R[4][4] = +a' +120,
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R[1[2]1= RI21[3] = RI31[4] = R[4][1] =’ +a* +120,
RI1[3]= R[31[1]= R[2][4] = R[4][2] =@’ +1%0,
R[1[4]= RI21[1]= R[312]= R[4]3]=a" +a* +1%0.

Therefore, R; is MDS. The matrices (2.20) and (2.21) shows that the rhotrix (2.17) is an
MDS rhotrix.

3. CONCLUSION

We introduced circulant and special form of circulant rhotrices.We constructed

MBDS rhotrices using special form of circulant rhotrices with entries using the elements

a,a+1,a%a”

1 where a is the root of the constructing irreducible polynomial

a* +a*+a’ +a’+1 over GF(2).
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ABSTRACT

Cryptography has a significant role in the present scenario of information. It
provides security and integrity to the messages which travel over the insecure channels,
and authenticity to the communicating parties. Hill cipher is a symmetric cryptosystem
that is used to protect information or data. We propose an algorithm which enhance the
security of the Hill cipher by using matrices and irreducible polynomials over finite
fields.

AMS classification: 11T71, 94A60.

Keywords: Plain text; Cipher text; Irreducible polynomial; Finite field.
1 INTRODUCTION

Information security has become a very critical aspect of modern computing
systems. Cryptography is the science which provides confidentiality, authenticity and
integrity of information passing through insecure channels,see [10,11]. Although the
ultimate goal of cryptography is to hide information from unauthorized individuals. Most
algorithms can be broken and the information can be revealed if the attacker has enough
time, desire, and resources. As a result researchers are using new techniques from
different areas of mathematics like matrix analysis, finite fields [6, 23-26] etc. for the
security of data during transmission. There are similar structures to matrices which are
known as rhotrices. Such structures came into existence in the literature since 2003.
Various researchers have used these rhotrices to develop their structures and apply the
same in the field of cryptography, see [12-19].

Hill Cipher is an application of linear algebra to cryptography. The Hill Cipher is
classical symmetric cipher invented by Lester S. Hill in 1929 [3] and extension of this
work is in [4]. The main advantages of Hill cipher includes its frequency analysis, high
speed, high throughput and the simplicity because it uses matrix operations but it
succumbs to the known plaintext attack [5]. Hill cipher is modified by several authors.
Saeednia [7] uses the dynamic key matrix while Chefranov [2] uses a pseudo-random
permutation generator. Ismail et al. [5] give an initial vector to form a different key for
each block encryption. Adi et al. [1] modify the Hill cipher using circulant matrices.
Shastry et al. [8, 9] use the key on both sides of the plain text to modify Hill cipher.
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Sharma and Rehan [20, 21] modify Hill cipher using logical operator. Sharma and
Sharma [22] modify Hill cipher using elements of finite field. We give an algorithm
along with illustration which involves the encryption and decryption of plaintext by using
irreducible polynomials over finite field GF(2). In the proposed cipher, we use the
following matrices and the irreducible polynomial.

Vandermonde matrix : A matrix V (a4, as, ..., a,,) of order m X n having terms in each
row with a geometric progression is called Vandermonde matrix and is written as

2
[T a; a7 ar ]
1 a, a2 aji! I
V=11 a3 d} a3t
. 2 .—1J

1 a, a ax

Coefficient matrix: Let A be a n X n matrix, then the coefficient matrix is defined as
circ(circ(row 1), circ(row 2), ..., circ(rown)),whererow 1,row 2, ....,rown are
rows of matrix A and circ(row 1)is the circulant matrix of row 1. It is denoted by A..

Example: If A be a2 X 2 matrix, then its coefficient matrix 4. is 4 X 4.

_[91 92

A= 93 94]’
g1 92 9z Ya
A = g2 91 9Gs I3
¢ 9z 94 91 92|
gda 93z G2 G1

Representation of elements in finite fields:

There are number of different representations for the elements of finite fields such

as polynomial, binary and decimal.

Example: The following table shows different representations for the elements of
GF (23) with respect to the irreducible polynomial f(x) = x3 + x + 1. Let the element

be a root of the irreducible polynomial f(x), therefore, f(a) = 0. This gives, a3 =

1, which is used to reduce the higher power of a.
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2

Powers Polynomial | Binary | Decimal
of representation
0 0 000 0
a® 1 001 1
al a 010 2
a’ a? 100 4
as a+1 011 3
at a’+a 110 6
ad al+a+1 111 7
ab a?+1 101 5
Table-1

ALGORITHM OF THE PROPOSED CIPHER
In the proposed algorithm, we use the elements of finite field in binary, polynomial

form and also use irreducible polynomials over Galois field GF (2™).

ENCRYPTION:

1. Sender consider a n X nVander monde matrix S as secret key.

2. He chooses a n X n non singular matrix A as public key such that det(4.) = 0.

3. Sender calculates key K; = SAS™1(mod p), where p is an irreducible polynomial of
degree m over finite field GF (2).

4. The sender converts the plaintext into numerical values by using Table —II(given on

page 4).

5. He then converts the numerical values into binary strings of m-bits.

6. Further, he converts m-bits binary strings into polynomial form.

7. Sender calculates S; = K;M(mod p). Each entry of S; is multiplied with x™ and
sender calculates K,,whose entries are 0 if x has the power less than2™ — 1otherwise 1
and shares it with the receiver.

8. He then reduces the powers of the entries to mod (2™ — 1) and gets the matrix S5.

9. After writing it into binary form, he converts the same in numerical values and then in

text to get the final cipher text S,.
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DECRYPTION :

1. Receiver receives the message. He convert the message into numerical values by using

the Table — II(given on page 4).

Receiver then converts the numerical values into binary string of m -bits.

Then receiver converts the binary strings into the elements of GF (2™) to get S;.
He then multiplies each entry of S; with x2" ~1 which represents 1 in the matrix K,.
Receiver multiplies each entry with x~™ to obtain S;.

SANNANE D N

of degree m over finite field GF (2).
H calculates M = K; 1S, (modp).
. Then he converts the entries into binary strings to get P;.

% N

Sender calculate key K; ' = SA™1S1(mod p), where p is an irreducible polynomial

9. Then the receiver converts the entries of P; into numerical values. After writing it into

numerical values, he converts the same into text to get plaintext.

Numerical values for alphabets and some symbols used in the paper

((1A/B|/C|/D|/E|F |G/ H| I | J |[K|] L | M

123|456 7|89 |10 11 12 | 13 14 15

16

O|P|IQ|R|S|T|U|V|W|X]|] Y | Z

17 |18 | 19|20 |21 |22 (23|24 25|26 | 27 28

Table-11

3 ILLUSTRATION OF THE CIPHER

Let us consider the following plain text which is to be sent over an insecure
channel is [CD]. Further, we consider the irreducible polynomial x3 + x + 1 with « as its

root and finite field GF (23).

ENCRYPTION:
Step 1. Sender considers the 2X 2 Vandermonde matrix S.
2
S= [1 xz + 1], where x? + 1,x% + x € GF(23).
1 x“+x

Step 2. Select a 2X 2 non singular matrix A whose elements are from GF (23) as public
key.

x x+1

A= [xz x?+1F
Step 3. Calculate the key
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3

_ -1 1 x2+1]x x+1 [ X X 3
Ky =5AS [1 x?+x [xz x2+1] x2+x x?+x (modx™ +x +1).

[x2 +1 x*+ 1]

x?+1 x I
Step 4. Sender converts the plaintext [CD]into numerical values using Table -II as
follows

_[1 5
P=| ; 2].

Step 5. He converts the above numerical values into binary string 3-bits and therefore P
becomes

001 101
110 0101

Step 6. Sender further converts the 3-bits binary string into polynomial form and
therefore P; gives

P1=

_ [ 1 x2+1]_

X%+ x X
2 2 i 2
Step 7. He calculatesS, = K; M = [izi} x :1] xzix x ;’1] (modx®+x + 1)
_ [x2+x x% + x|
X x+ 1]

Using Table-1, we get
4_

x3F

S_x4x
15 |8
X

In order to make the exponent of maximum entries of S;as 7 = (23 — 1), we multiply each
entry by x3. Therefore, S;becomes

and the key matrix
1
K2 = [1 0

is chosen in such a way that if power of x in S, is less than 7, the entry in the key matrix
is taken 0 otherwise 1.

Step 8. The powers of elements of S, are reduced by mod 7 and hence it becomes
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Step 9.The elements of cipher text matrix S5 are converted into the binary elements as
follows

g = 001 001]
* 1110 101k
The entries of S, are converted into numerical values as follows
1
Ss= | 5].

Further, numerical values are converted into Cipher text =[[DC.
The cipher text is sent to the receiver through public channel.
DECRYPTION:

Step 1.Receiver receives the message. He converts the message into numerical values by
using Table -II, which gives

Ss= é é]
Step 2. He converts the numerical values into binary strings of 3-bits as follows
S,= [001 001 .
110 101
Step 3. Further, he converts binary strings into the elements of GF (23), so S, becomes
0 0
Si= [i A 6|

Step 4. Receiver multiplies only those entries of S3 by x7, which represents 1 in the
matrix K.

7 7
_[x" x
S2= [x11 x6l
Step 5. He multiplies each entry of S, with x™3 and obtain
4,4
S = [x x
P a8 a8

Further, S;(modx3® + x + 1) can be written as

5. = [xz +x x*+x
! X x+11
Step 6. Calculate the key K; 1 = SA™1S™1 =
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[1 x2+1” x? x2+1][ X x3
1 224+ xllx?+x+1 x2+1Ix%°+x x?>+x
_ [x2+x xz]
x? x2r

](mod S+x+1)

Step 7. The receiver calculates K; 1S, (modx3 + x + 1).
“1e _[x*+x x| [x*+x x*+x
K{'S, = 2 )
X X x x+1
1 x? + 1]
x%+x x I

] (modx®+x+1)

Step 8. Receiver converts the message into binary strings, which gives

p.- 001 101
" l110 o10F
Step 9. He converts the binary strings into numerical values as follows
_[1 5
P=| ; 2].

Receiver converts the digits in text by using Table -1I and the plain text [CD]is obtained.
4 CONCLUSION

The proposed cipher is the enhanced form of the Hill cipher. With the addition of
Vandermonde matrix and modulo irreducible polynomials, the cipher has increased its
security. The introduced mechanism in the cipher has created difficulty to the hackers to
break the system and retrieve the original message from the cipher text.

REFERENCES

[1] Adi, N.R.K., Vishnuvardhan, B., Madhuviswanath, V. and Krishna, A.V.N. 2012. A
modified Hill cipher based on circulant matrices. Procedia Technology (Elsevier),
4:114-118.

[2] Chefranov, A.G. 2007. Secure Hill cipher modification SHC-M. Proceedings of the
First Internationl Conference on Security of Information and Networks, Trafford
Publishing, Canada,34-37.

[3] Hill, L.S.1929. Cryptography in an algebraic alphabet. American Mathematical

Monthly, 36:306-312.

[4] Hill, L. S.1931. Concerning certain linear transformation apparatus of cryptography.
American Mathematical Monthly, 38:135-154.

[5] Ismail, I.A., Amin, M., and Diab, H. 2006. How to repair Hill cipher. Journal of
Zhejiang University-Science A, 7:2022-2030.

[6] Lidl, R. and Niederreiter, H. 1997. Finite fields, Cambridge University Press,

Cambridge, Second Edition.

50



[7] Saeednia’s, S. 2000. How to make the Hill cipher secure. Cryptologia, 24:353-360.

[8] Sastry, V.U.K., Murthy, D.S.R. and Bhavani, S.D. 2009.A block cipher involving a
key applied on both sides of the plain text. International Journal of Computer and
Network Security, 1(1):27-30.

[9] Sastry, V.U.K., Murthy, D.S.R. and Bhavani, S.D. 2010. A block cipher having a key
on one side of the plain text matrix and its inverse on the other side. International
Journal of Computer and Network Security, 2(5):1793-8201.

[10] Schneier, B. 2007. Applied cryptography: Protocols, Algorithms and Source Code in
C, Second Edition, John Wiley & Sons.
[11] Stallings, W. 2006. Cryptography and network security. Fourth Edition, Pearson.

[12] Sharma, P.L. and Kanwar, R.K. 2011. A note on relationship between invertible

rhotrices and associated invertible matrices. Bulletin of Pure and Applied Sciences,
30 E (Math & Stat.) (2): 333-339.

[13] Sharma, P.L. and Kanwar, R. K. 2012. Adjoint of a rhotrix and its basic properties,
International J. Mathematical Sciences, 11(3-4): 337-343.

[14] Sharma, P.L. and Kanwar, R.K. 2012. On inner product space and bilinear forms over
rhotrices, Bulletin of Pure and Applied Sciences, 31E (1): 109-118.

[15] Sharma, P.L. and Kanwar, R.K. 2012. The Cayley-Hamilton theorem for rhotrices,
International Journal Mathematics and Analysis, 4( 1): 171-178.

[16] Sharma, P.L. and Kanwar, R.K. 2013. On involutory and pascal rhotrices,
International J. of Math. Sci. & Engg. Appls. (IIMSEA), 7(IV): 133-146 .

[17] Sharma, P. L. and Kumar, S. 2013. On construction of MDS rhotrices from
companion rhotrices over finite field, International Journal of Mathematical
Sciences, 12(3-4): 271-286.

[18] Sharma, P. L., Kumar, S. and Rehan, M. 2013. On Hadamard rhotrix over finite
field, Bulletin of Pure and Applied Sciences, 32 E (Math & Stat.) (2): 181-190.

[19] Sharma, P. L., Kumar, S. and Rehan, M. 2013. On Vandermonde and MDS rhotrices
over GF(2%). International Journal of Mathematical and Analysis, 5(2): 143-160.

[20] Sharma, P.L. and Rehan, M. 2013. On the security of Hill cipher using finite field.
International Journal of Computer Applications, International Journal of Computer
Applications, 71(4).

[21] Sharma, P. L. and Rehan, M.2014. Modified Hill cipher using Vandermonde matrix
and finite field, International Journal of Technology, 4(1): 252- 256.

[22] Sharma, P. L. and Sharma, S. 2014. An application of finite field in Hill cipher.
International Journal of Technology, 4(1): 248- 251.

51



[23] Sharma, P. L. and Sharma, S. 2014. Sequences of irreducible polynomials over GF(2)
with three prescribed coefficients, Recent Trends in Algebra and Mechanics, 21-32.

[24] Sharma, P. L., Sharma, S. and Dhiman, N. 2014. Construction of infinite sequences of
irreducible polynomials using Kloosterman Sum. Bulletin of Pure and Applied
Sciences, 33(2): 161-168.

[25] Sharma, P. L., Sharma, S. and Rehan ,M. 2015. On construction of irreducible
polynomials over F5.Journal of Discrete Mathematical Sciences and Cryptography,
18:335-347.

[26] Sharma, P. L., Sharma, S. and Rehan, M. 2015. Construction of infinite sequences
of irreducible polynomials over F,. International Journal of Mathematical Sciences &
Engineering Applications (IIMSEA), 9(3):19-35.

52



On Exchange Principle in Rotatory Hydrodynamic Triply
Diffusive Convection in Porous Medium: Darcy Model

Jyoti Prakash', Shweta Manan® and Kaka Ram®

'23Department of Mathematics and Statistics, Himachal Pradesh University, Summer

Hill, SHIMLA-5, India
Email: jpsmaths67@gmail.com, mananshweta882@gmail.com
Abstract

The present paper mathematically establishes that ‘the principle of the exchange of

stabilities’ for rotatory hydrodynamic triply diffusive convection in porous medium is
R0 Ry0 2 .

2@ <
P + g + TP{ <1, where R; and R, are the Rayleigh numbers
for the two concentration components, 7 is the Taylor number, P, is a constant, 7, and 7,
are the Lewis numbers for the two concentration components and ¢ is the thermal Prandtl
number. It is further proved that the above result is uniformly valid for any combination

of rigid and free boundaries.

valid in the regime

Keywords: Triply diffusive convection; Principle of the exchange of stabilities; Concentration
Rayleigh number; Taylor number; Porous medium; Darcy Model

1. Introduction

Research on convective fluid motion in porous media under the simultaneous action of a uniform
vertical temperature gradient and a gravitationally opposite uniform vertical concentration
gradient (known as double diffusive convection) has been an area of great activity due to its
importance in the predication of ground water movement in aquifers, in assessing the
effectiveness of fibrous materials, in engineering geology and in nuclear engineering. Most of the
researchers have studied double diffusive convection in porous medium by considering the Darcy
flow model which is relevant to densely packed, low permeability porous medium. Double
diffusive convection is now well known. For a broad view of the subject one may be referred to
Nield and Bezan [10], Murray and Chen [9], Nield [11], Taunton et al. [21], Kuznetsov and Nield
[6], Vafai [26] and Kellner and Tilgner [5].

All these researchers have considered double diffusive convection. However, it has been
recognized later that there are many fluid systems, in which more than two components are
present. The oceans contain many salts having concentrations less than a few percent of the
sodium chloride concentration. Multi-component concentrations can also be found in magmas
and substratum of water reservoirs. The subject with more than two components (in porous and
non porous medium) has attracted the attention of many researchers Griffiths [2, 3], Poulikakos
[14], Pearlstein et al. [12], Terrones and Pearlstein [22], Rudraiah and Vortmeyer [16], Lopez et
al. [7], Tracey [23, 24], Straughan and Tracey [19], and Rionero [15]. The essence of the works
of these researchers is that small salinity of a third component with a smaller mass diffusivity can
have a significant effect upon the nature of convection; and ‘oscillatory’ and direct ‘salt finger’
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modes are simultaneous possible under a wide range of conditions, when the density gradients
due to components with greatest and smallest diffusivity are of same signs.

Double or triply diffusive convection in a rotating fluid layer saturating a porous medium is
an interesting topic due to its applications in chemical process industry, food processing industry,
solidification and centrifugal costing of metals and rotating machinery, petroleum industry,
geophysics and biomechanics. Several studies are available in which phenomena related to the
onset of single diffusive (Benard Problem) and double diffusive convection in a rotating porous
medium have been investigated. For a detailed review of the subject one may be referred to
Vadasz [25], Nield and Bezan [10], Tagare et al. [20], Sengupta and Gupta [18], Malashetty and
Begum [8]. To the authors knowledge no such significant work has been done so far in rotatory
hydrodynamic triply diffusive convection in porous medium.

The establishment of the non occurrence of any slow oscillatory motions which may be
neutral or unstable implies the validity of the principle of the exchange of stabilities (PES). The
validity of this principle in stability problems eliminates the unsteady terms from the linearized
perturbation equations which results in notable mathematical simplicity since the transition from
stability to instability occurs via a marginal state which is characterized by the vanishing of both
real and imaginary parts of the complex time eigen value associated with the perturbation. Pellew
and Southwell [13] proved the validity of PES (i.e. occurrence of stationary convection) for the
classical Rayleigh-Benard instability problem. However no such results existed for other more
general hydrodynamic configurations. Banerjee et al. [1] established such a criterion for
magnetohydrodynamic Rayleigh-Benard convection problem which has further been extended by
Gupta et al. [4] for thermohaline convection problems.

The aim of the present paper is to establish criteria for characterizing non oscillatory motions
which may be neutral or unstable for rotatory hydrodynamic triply diffusive configuration in

porous medium. It is proved that for rotatory hydrodynamic triply diffusive convection in porous
R10' Rzo'
+

medium, if + TP? < 1, then an arbitrary neutral or unstable mode of the system is

212t 27imt
definitely non oscillatory in character and in particular PES is valid where R; and R, are
concentration Rayleigh numbers for the two concentration components, 7' is the Taylor number,
7, and 7, are the Lewis numbers for the two concentrations, ¢ is the Prandtl number. It is further
proved that the above result is uniformly valid for all the combinations of rigid and free

boundaries.

2. Mathematical Formulation of the Problem

An infinite horizontal porous layer filled with a viscous and Boussinesq fluid, statically confined
between two horizontal boundaries z = 0 and z = d, respectively maintained at uniform constant
temperatures Ty and T; (< T,) and uniform concentrations Sy, Sz¢ and S;1(< S10), S21(< S20)
is kept rotating at a constant rate  about the vertical (as shown in fig. 1). It is further assumed
that the cross-diffusion effects of the stratifying agencies can be neglected. The Darcy model has
been used to investigate the triply diffusive convection in porous medium.
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Fig. 1. Physical Configuration

The equations that govern the motion of triply diffusive fluid layer in a porous medium
(Darcy Model) under the action of a uniform vertical rotation, in the non-dimensional

form, are as follows (Wankat and Schowalter [27], Vafai [26]):
(B+-) (D — a®)w = —Ra?6 + R,a’p,+R,a’¢, — TDY,
1

(D? — a* — Ap)6 = —w,

(02 D)=,
(07—~ 2) 9= 2

and(§+ ){=DW.

1
Py

Egs. (1) - (5) are to be solved using the following boundary conditions:

w=0=60=¢,=¢,=D*w=D{atz=0andz =1,
(Both the boundaries are dynamically free)
Orw=0=0=¢;,=¢,=Dw=_atz=0andz =1,
(Both the boundaries are rigid)
w=0=0=¢, =¢, =D?w=D{atz =0,

(lower boundary is dynamically free)
andw=0=0=¢;,=¢p,=Dw=_atz=1,

(upper boundary is rigid)
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Egs. (1) — (5) together with the boundary conditions (6) — (9) present an eigen value
problem for p for the given values of the other parameters and govern rotatory triply
diffusive convection in a porous medium.

The meaning of the symbols involved in Egs. (1)-(9) from the physical point of
view are as follows : z is the vertical coordinate, D is the differentiation w.r.t. z, a? is
square of the wave number, o > 0 is the Prandtl number, t; > 0 and 7, > 0 are the
Lewis numbers for the two concentration components with mass diffusivity &y, K,
respectively, R > 0 is the thermal Rayleigh number, R; > 0 and R, > 0 are the two
concentration Rayleigh numbers, T > 0 is Taylor number, p = p, + i p; is the complex
growth rate where p, and p; are real constants, w is the vertical velocity, 6 is the
temperature and ¢, and ¢, are the two concentrations. The governing equations also

PsyCsg 1—€

: . K
involve two more positive constants namely P; = $ andA = 1+ — where k;

PoCo

is the permeability, € is the porosity of the medium, d is the depth of the fluid layer, pg,is
the solid density, c,, is the heat capacity of the solid. The suffix ‘0” denotes the values of
various parameters involved in the governing equations at some properly chosen mean
temperature Ty .

We prove the following theorem:

Theorem: If (w, 0, ¢4, 5, p,{), pr = 0 is a solution of equations (1) — (9) with R > 0,

R, >0, R,>0,T>0 and 2’;; + ;2; +TP2 < 1, then p; = 0. In particular p, = 0
implies p; = 0, if 2’;; + ;2; + TP < 1.

Proof: Multiplying Eq. (1) by w* (the complex conjugate of w) and integrating the
resulting equation over the vertical range of z, we obtain

1 1 1«
(§+Pl1)f0 w (DZ—aZ)WdZ=—Ra2f0 w 0dz+R1a2f0 wrp, dz +

R,a? [[w*¢p, dz =T [ w*D( dz. (10)

Making use of Egs. (2) — (5) and the fact that w(0) = 0 = w(1), we can write

—Ra? [{w*6 dz=Ra? [ § (D* — a* — Ap*)8" dz, (11)
1, 1 * X

Ria? [y w'$y dz = = Ria?t, [ ¢ (D2 - a? =) " dz, (12)
1, 1 * X

Rya? [y w' s dz = —R,a*1; [ ¢ (D — a® = ), dz, (13)

1, * 1) 1
~T [ w*D{ dz =T(%+P—1) [1212 d. (14)
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Combining Egs. (10) — (14), we get
(2 + i) folw*(D2 — a*)wdz = Ra? fol 0 (D? — a? — Ap*)0" dz — R,a’t,

o Py
[y &1 (D? —a® =) ¢," dz—Rya’c, [, ¢ (D? — a> —D)gp,” dz
o P1 o) P1 20772 ), P2 o) P2

+T (%+Pil) [1712 dz. (15)

Integrating the various terms of Eq. (15), by parts, for an appropriate number of times
and utilizing the boundary conditions (6) - (9), we obtain

(B+5) [ (D2 + a?lwi?)dz =R a? [[(ID6I? + a2|612 + Ap*16])dz —
1 * 1
Ria?t, [ (IDgal? + a2lgu|? + 2161 12) dz = Roa?e, [ (1D + 0?17 +
p” 2 P, 1Y\ (1,2
Elgal?)dz =T (% +5) 1617 dz. (16)

Equating the imaginary parts of both sides of Eq. (16) and cancelling p; (# 0)
throughout from the resulting equation, we have

1,1 1 1 1
= J, IDw|? + a*|w|*)dz = — RAa® [[16|?dz + Rya? [ |, |dz + R,a? [1¢,|*dz
T (1
+= [, 11 dz. (17)
Now, multiplying equation (3) by its complex conjugate, we obtain
1 14 p* * 1 1
[y (p? - a? —;) ¢1(D? —a? - ;) pidz =% [ lwl?dz. (18)

Integrating the various terms on the left hand side of equation (18), by parts, for an
appropriate number of times and making use of the boundary conditions on ¢, it
follows that

1 20y (1
Iy UD?¢11? + 2% |Ds * + a*1§s|*)dz + T [ (ID$s]? + a?|¢s*)dz +
Ip? (1 1 .1
Iyl dz = 5 [ lwl* dz. (19)
Since p,- = 0, it follows from equation (19), that
1 1 1
2a? fO|D¢1|2dZ <EIO|W|2dZ. (20)

Now, since ¢4, ¢, and w satisfy the boundary conditions, namely, ¢,(0) = 0 = ¢, (1),
¢,(0) =0=¢,(1),w(0) =0=w(1) respectively, we have by Rayleigh-Ritz
inequality (Schultz [17])
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[} 1D¢, 2dz > m% []|¢ |7dz, 1)

1 1
fo |D¢,|?dz = m? fo |$2|%dz, (22)
and

f01|DW|2dZ > 2 follwlzdz. (23)

Utilizing inequalities (21) and (23) in inequality (20), we get

1
a? [y 11 7dz < —— J, IDw|?dz. (24)
In the same manner, we obtain from equation (4), the inequality

a? Jy|¢z1dz < oo [ IDwdz. (25)

Multiplying Eq. (5) by {* on both sides and equating real parts on both sides, we obtain
r 1l 1 1 1.,
%fo |¢|? dz +P—1f0 |¢|? dz = real part of(f0 {*Dw dz)

1., 1.,
< |f0 { Dwdz| < [,1{*Dwldz

1/2 1/2

= (f01|DW|2dZ) (f01|( |2dZ) : (using Schwartz inequality)
which implies that
1 (1 1/2 1 1/2
P—l(fo IZIZdZ) < (fo |DW|2dZ) ) (26)
which implies

1 1
J, 1§1%dz < P} [ |Dw|?*dz. (27)

Using inequalities (24), (25) and (27) in equation (17), we get

[l_( Ri_, R TPl)]f |Dw|?dz + & f |W|2dz+RAa2f 16|2dz < 0, (28)

2.4 2.4
g 2Tim 2T5T

which clearly implies (for p; # 0) that

R0 Rzo

2ot T 202 -+ TPZ > 1.
(29)
. R 0 Ry0 2
Hence if + + TP; < 1, then we must have p; = 0.

254 24
AZES 2T5m

This establishes the desired result.
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The essential content of the theorem from the physical point of view is that for the
problem of rotatory hydrodynamic triply diffusive convection in a porous medium of an
arbitrary neutral or unstable mode of the system is definitely non oscillatory in character

if 7 + 27 4 TP? < 1and in particular PES is valid if 32 + 2% + TP < 1.
1

24 2.4 2.4
21T 215m 215m
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ABSTRACT

Quantum effects on the Rayleigh-Taylor Instability in an inhomogeneous stratified
incompressible, viscoelastic Walters' (model B') fluid/plasma in hydromagnetics are
investigated. The linear growth rate is derived for the case where a plasma with
exponential density, viscosity, viscoelasticity and quantum parameter distribution is
confined between two rigid planes at z = 0,z = d. The solution of the linearized
equations of the system together with the boundary conditions leads to derive the
dispersion relation (the relation between the normalized growth rate and square
normalized behaviour wave number) using normal mode technique to explain the roles
that play the variables of the problem. The behaviour of growth rates with respect to the
quantum effect and kinematic viscoelasticity are examined in the presence of kinematic
viscosity. The results show that the vertical magnetic field brings about more stability for
a certain wave number band on the growth rate of unstable configuration.

1. Introduction

The Rayleigh-Taylor instability is an important hydrodynamic effect that arises when a
heavy fluid is accelerated into a lighter one. Similar to pouring water into oil, the heavier
fluid, once perturbed, streams to the bottom, pushing the light fluid aside. Chandrasekhar
(1961) has given a detailed account of these investigations. A good account of such
hydrodynamic stability problems has also been given by Drazin and Reid (1981) and
Joseph (1976). This class of fluids is mainly used to analyze the frequency of gravity
waves in deep oceans, liquid vapour/globe, to extract oil from the earth to eliminate water
drops, laser etc. Quantum plasma can be composed of electrons, ions, positrons, holes
and or grains.

Quantum plasmas play an important role in ultra small electronic devices which has been
given by Dutta and McLennan (1990), dense astrophysical plasmas system has been
given by Madappa et al. (2001), intense laser-matter experiments has been investigated
by Remington et al. (1999) and non-linear quantum optics has been given by Brambilla et
al. (1995). It is well known that quantum effects become important in the behaviour of
the charged plasma particles when the de-Broglie wavelength of the charged carriers
become equal to or greater than the dimension of the quantum plasma system has been
investigated by Kaushal (2001). It should be observed that there is a difference between a
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light-wave and the de Broglie or Schrodinger wave associated with the light-quanta.
Firstly, the light-wave is always real, while the de Broglie wave associated with a light-
quantum moving in a definite direction must be taken to involve an imaginary
exponential.

While naturally occurring plasma is relatively unusual on earth, it is playing a larger and
increasingly important role in how we use and develop modern technology. For instance,
producing compact chips on an industrial scale is only made possible by the application
of plasma. Plasma is also a key technology in the development of alternative energy
sources. Nuclear fusion, which is plasma based, is one of the most promising candidates
for the energy needs of the future when fossil fuels finally run out. Plasma is increasingly
becoming part of the industrial area and its range of application is vast. The different
variables of plasma play important role in the general behaviour of the considerable

model. The pressure one of the variables, that is divided to two terms P2 HpC [pC

(classical PC angd quantum P pressure) has been investigated by Gardner and

Haas (1994, 2005). In the momentum equation the classical pressure rises in the form
2

2 —
Q£p ¢ | while the quantum pressure rises in the form Q = Zn}ll —pV <v\/%5> , where /4 is

the Plank constant, 7, is the mass of electron and m, is the mass of ion. One of the

important model that rises in hydrodynamic plasma, is called the Rayleigh-Taylor
instability problem and has been investigated by Lord Rayleigh (1882) and G. 1. Taylor
(1950).

Two models are used to study quantum plasma systems. The first one is the Wigner-
Poisson and the other is the Schrodinger-Poisson approaches. These have been widely
used to describe the statistical and hydrodynamic behaviour of the plasma particles at
quantum scale in quantum plasmas. The quantum hydrodynamic model was introduced
by Gardner (1994) for semiconductor physics to describe the transport of charge,
momentum and energy in plasmas. Several studies were analysed both analytically and
numerically in plasma with quantum corrections. For example Haas et al. (2000) studied
a quantum multi-stream model for one and two stream plasma instabilities. Bengt
Eliasson et al. (2010) and by employing the Wigner-Poisson model, they studied the
dispersion properties of electrostatic oscillations in quantum plasmas for different
parameters ranging from semiconductor plasmas to typical metallic electron densities and
densities corresponding to compressed matter and dense astrophysical objects.

The linear quantum growth rate of a finite layer plasma in which the density is
continuously stratified exponentially along the vertical is studied by Goldston and
Rutherford (1997). The effect of the quantum term on Rayleigh-Taylor instability of
stratified plasma layer through a porous medium is studied by Hoshoudy (2009).
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The fluids have been considered to be Newtonian in all the above studies. With the
growing importance of the non-Newtonian fluids in modern technology and industries,
the investigations of such fluids are desirable. There are many elastico-viscous fluids.
But we are interested in Walters' (model B'). Walters' (1960) has proposed a theoretical
model for such elastico-viscous fluid. Molten plastics, petroleum oil additives and
whipped cream are examples of incompressible viscoelastic fluids. The mixture of

polymethyl methacrylate and pyridine at 25°C containing 30.5 grams of polymer per
litre behaves very nearly as the Walters' (model B') viscoelastic fluid and which is
proposed by Walters' (1962). Previous work on the effects of incompressible quantum
plasma on Rayleigh-Taylor instability of Oldroyd model through a porous medium has
been investigated by Hoshoudy (2011), where the author has shown that both maximum

kmax and critical k. points for the instability are unchanged by the addition of the
strain retardation and the stress relaxation. All growth rates are reduced in the presence of
porosity of the medium, the medium permeability, the strain retardation time and the
stress relaxation time. Sunil et al. (2004) have investigated theoretically and analytically
the stability of stratified Walters’ (model B’) viscoelastic fluid in stratified porous
medium. Sharma et al. (2014) have studied the numerical investigations of a stability of
stratified viscoelastic Walters’ (model B’) fluid/plasma in the presence of quantum
physics saturating a porous medium. This paper aims at numerical analysis of the effect
of the quantum mechanism on Rayleigh-Taylor instability for a finite thickness layer of
incompressible viscoelastic plasma. An ideal incompressible magnetized plasma
described by the Quantum magnetohydrodynamics (QMHD) model, where in the
Rayleigh-Taylor instability by ignoring shear flow or ablation effects, has been studied in
quantum magnetized viscous plasma by Hoshoudy (2011a). External magnetic field
effects on the Rayleigh-Taylor instability in an inhomogeneous rotating quantum plasma
has been studied by Hoshoudy (2012). Later on, Hoshoudy (2013) has investigated
quantum effects on Rayleigh-Taylor instability of a Plasma-Vacuum. Recently, Rayleigh-
Taylor instability in a magnetized plasma has been investigated by Hoshoudy (2014).

The effect of incompressible quantum plasma on Rayleigh-Taylor instability of Oldroyd
model through a porous medium has been investigated by Hoshoudy (2011b), in which it
has been shown that both maximum and critical wave numbers for the instability are
unchanged due to the strain-retardation and the stress-relaxation. This paper is devoted to
examine the stability of a stratified viscoelastic Walters' (model B') fluid in
hydromagnetics in the presence of quantum physics and is an extension of the research
work by Hoshoudy (2010) on the quantum effects on Rayleigh-Taylor instability of
incompressible plasma in a vertical magnetic field and it has been found that the
presence of vertical magnetic field beside the quantum effect has brought more stability
on the growth rate of unstable configuration.

2. Mathematical formulation of the problem and perturbation equations
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The initial stationary state whose stability we wish to examine is that of an infinitely
electrically conducting incompressible, heterogeneous infinitely extending viscoelastic
Walters’ (model B") fluid/plasma of thickness d bounded by the rigid planes z = 0 and
z = d, of variable density, kinematic viscosity, kinematic viscoelasticity, magnetic field
and quantum pressure arranged in horizontal strata of electrons and immobile ions in a
homogeneous, saturated porous medium with the Oberbeck-Boussinesq approximation
for density variation, so that the free surfaces are almost horizontal. The fluid is acted on
by gravity force g(0,0,—g) and the plasma is immersed in a uniform vertical magnetic
field H(0,0, H).

The equations of motion, continuity, condition of incompressibility, Gauss divergence
equation and magnetic induction equations are [Chandrasekhar (1961), Walters’ (1960),
Hoshoudy (2009)]

P[%+(V.u)]u: —Vp+pg+Z—;(VxH) XH+(#—H'%)V2u+Q, (1)
Vu=0, )
2+ @Vp=0, o
VH=0 @
Z—i’sz(uxH), 5)

where u, p, p, 1, W, ki, u., H, Q represent fluid velocity, density, pressure, viscosity,
viscoelasticity, medium permeability, magnetic permeability, magnetic field and Bohr
vector potential, respectively. Equation (3) ensures that the density of every particle
remains unchanged as we follow it with its motion.

The equilibrium profiles are expressed in the form

u = (0,0,0), p =po(2), p =po(2), H=Hy(2z) and Q = Q,(2). (6)

To investigate the stability of hydromagnetic motion, it is necessary to see how the
motion responds to a small fluctuation in the value of any flow of the variables.
Infinitesimal perturbations are superimposed on the steady state and let u(u, v,w), 6p,
op, h(hx, hy, hz), 6Q (Qxl, Qy1, Qzl) denote respectively, infinitesimally small
perturbations in fluid velocity u (0,0, 0), density p, pressure p, magnetic field H and
quantum pressure Q.

Using these perturbations and linear theory, equations (1) - (5) in the linearized
perturbation form become

Po e = —Vop + gbp + L [(Vx Ho) x h+ (Vx h) x Hol + (1 — ' 5-) VP + 60 ,
(7)
V.u=0, ®)
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Zop+wi=o, ©)

V.h =0, (10)
at—VX(UXHo) (11)
where
6Q =

A2

[ V(V26p) - —V5pV2po = —Vpovzc?p + VPOVZPO - —V(VpoV5p) +

2mem;
Sp 2, 1 2 S _%

2 V(Tp0)? + 52 (Vpe)*V8p +— (Vpo¥6p)Vpo pg (Vpo) |

Since the boundaries are assumed to be rigid. Therefore the boundary conditions
appropriate to the problem are

w=0,Dw =0 at z = 0and z = d, on a rigid surface. (12)

All the physical perturbed quantities are ascribed describing the perturbation dependence
on x,y and t of the forms

f(z) exp i(kxx + kyy — nt), (13)
Now, using the expression (13), the equations (7)-( 11) reduce to

—inpou = —iky6p + = £e [HO(Z) (ah" ikxhz) + h, OI?Z(Z)] +{u+inu'}(D? — k*)u +
Qx1 (14)
—inpyv = —ik,6p + = Ee [HO( ) (— —ikyh ) +h aHO(Z)] +{u+inu}(D? - kv +
Qy1 ) (15)
—inpow = =D&p — g8p + {u + in'}(D* — k*)w + Q,1, (16)
ikyu + iky,v+ Dw = 0, (17)
in6p = wDp,, (18)
ikyhy + ikyhy + Dhy = 0, (19)
—inh, =HDu, (20)
—inh, =HDv, (21)
—inh, = HDw, (22)
where

Q1 = anmam; [ DpoD?*w + {DZPO - _(DZP )? }DW +{ D*p, —iDPODZPO -

k2 k
7Dp0 E(Dpo) }W]7 le :k_iQxla
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= I ! 3 1 1 1
Qut = 5[5 DPoD*w + (2D2pg = - (D%p)?} D?w + {30%py — = DpoD?py -

X Dpo + = (D )*} Dwk? +2D*py — —Dp,D? — B D2p, — L (D?py)? +

> PPo 207 Po j > Po PR Pol"Po = L Po o0 Po

S 2p2 L 2 _ 1 4

722 (Dp)2D?po + 5 =(Dpo)? = - (Dpo)*|. (22a)

Multiplying equation (14) by —ik, and equation (15) by —ik, , adding and using
equations (17), (19) — (22), we obtain

peH?
41Tn

(D? — k*)Dw + i(u + u'in)(D? — k?)Dw.

(23)
Multiplying equation (14) by —ik,, and equation (15) by ik,, adding and using equation
(17), (19) — (22), we obtain

pnf = _kxéy1 + kyéxl - el sz + i(ﬂ + ﬂ’in)(DZ - kz)f, (24)

4Tn

pnDw = ik?8p + ky Q1 + ke, Qyy —

where § = ik, v — ikyu is the z-component of vorticity,
Since k,Qy1 = ky,Q,1, therefore, equation (24) implies that & = 0.

Eliminating 8p, 8p and Q,; from the equations (22a), (16) and (23) the characteristic
equation in w obtained is

[pok?{—in— (v +v'in)(D? — k®»)}w — [—=in — (v + v'in)(D? — k?)](Dpo)Dw +

b [4H,(2)D? Ho(2) + 4(DHo(2))" — K2(HE())| Dw — pol—in — (v + v'im) (0 —
k) 1D2w +£2 [Hy (2)D3Hy (2) + 3DHy(2)D2Hy(2) — 2k?Ho(2) DHy (2)]Dw +

L[ (Ho(2))* D*w + SHy(DDHy(DD*w] + 2= (Dpo)w + = () [ (Dpo)2DPw —

in \4mgm;
1 k?
27 (DPO)((Dpo)? = 2poDpo}DW — = (Dpo)*w| = 0. (25)

3. The case of exponentially varying stratifications

Now the case of incompressible continuously stratified viscoelastic plasma layer is
considered in a porous medium in which the density, viscosity, viscoelasticity and
quantum pressure are assumed to vary exponentially about the vertical and are given by

po(2) = po@exp (Z), o(2) = ko(®exp (), wo(2) = np(@exp (Z),

Ho(2) = Ho(0exp (55, g, (2) = ng,0exn (). (26)
where py(0), 1o(0), po(0), Hy(0), ngy,(0) and L are constants.

Using the stratifications given by expression (26), the characteristic equation (25) yields
that
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Vj[D4w+iD3] [m{ in— (v +vin)(D? — k»} —nZ + V7 (F_

kz)] D?w + i [in{—m — (W +vin)(D* - k?)}—ni2 +V} (E - k2 ]DW -

k? [in{—in —(w+vin)(D? - kH}—nZ + Li] w =0, (27)
D
2 R2K? ,  ue(HE@)
where ng = amemiy’ VA T Tam represent quantum pressure and the square of the

Alfvén velocity, respectively.
Differentiating w.r.t. z and using equation (17) the boundary conditions (12) yields that
D?*w=0at z=0andz =d. (28)

The exact solutions of the eigen-value problem (25) satisfying the boundary conditions
(28) are chosen to be

w = sin (nd—” Z) exp(Az), where n' and A are positive integers.

Using this solution the equation (24), yields that

7 [(%)“ sin ("7) = 42 (%) cos (227) = 622 (X2 sin (“27) +
313 ( )cos (T Z) + A*sin (T Z) +
e (’%")3 cos (%2) = 2A(%8) i (5 2) + 222 () cos (%22) +
3(22) sin (222) 4 22 () cos (“2) + 2sin (2 2)}] + [im(im) — 2 +
vi (g = ¥ |- () sin ) cos (3

d
+
in(v+v'in) [( ;”)4 sin (n;—n ) — 41 (n:Tn) cos (n;—nz) — 61% (n:Tn) sin (n;—nz) +
s

323 ( )cos (72) + Atsin (nd—nz)] + in(v + v'in)k? [ (n,—n) sin (%Z) +
ZA( )cos(dz)]+ [Ln( in) — nq+VA F_kz“ cos 7ﬂ )+

Asm(Tz)]_m(Hm){2(%)%05(; 2) =22 (%) sin (%27) +
22 () cos (22) + 2 (%) sin (%2 2) + 22 (%) cos (%2 ) + 23sin (2 2)} +

in(v +v'in)k? [( ;l )cos( ; ) + Asin (—Z)] k? [Ln( in) + ina?(v +v'in) —

67



2

ng +i]sm(72) + mkz(v+vm)[ (%) sm( )+ 2/1( )cos( ; )] =0
(29)

Equating the coefficients of sin (7n ) and cos (% Z) from equation (29), one obtains
[ o0 0+ ) a2 ) - o
Vi (F_k )] Li)[ nq+VA( 2z )]—kz[n2+ink2(v+v'in)—n,21+
%] —in(v+v'in)[ T —6/12 7n 2 ] Ln(v+v1n)k2( - ) +Ain(v+

vink? —in(v +v'in) {_2 ( ) (_”)2

o\ 2
. 2 ! nmw _
- + 1 }—Lnk (v+vin) (7) =0, and

(30)
v |-aa (S2) + 320 (20) 4+ - () 4 222 (1) 4 22 ()] 22 () [ -
n2 + V2 ( %—k2 +i[n2 n2 + V2 (?—k )]("d")—
inv +vin) [_ A(Z2) 4+ 32 (2] + 22 (20 inCy + vim)k? — in(y +
v'in) {— (%) + 2,12( )+/12( )} +in(v+v m)kz( ) =0, 31)

Now introducing the non-dimensional quantities

2

2 ,
2_n 2 Nng _ v .V x _ K1 2_4d 2 272 %2 _
n _le 'n;; _k2L2n2 ’v*_n vV _n ’kl_n 'd* L_Z’k* =k°L ’VA -
pe D pe pe pe
1/2
V2 2 2712 poe? g
l* _l L ) npe —( 2 ) , g* = > .
LD Mmg€op npeLD
pe2 \1/2
where n,, = (E) , 1s the plasma frequency.
ec0

The equation (30) after dropping the asterisk for our convenience and in the absence of
vertical magnetic field, V? = 0; equation (31) yields that A =% and substituting this
value of A in equation (30), the dispersion relation so obtained is

A (in)®> + A,(in) — A3 =0, (32)
where, the constants A; — A3 containing large number of terms so we omit here.

Since n = n, + in; and in the case of n, = 0 and n; # 0 (stable oscillations), then the

equation (32) becomes

A — Ayn; — A3 = 0, (33)
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which is the required dispersion relation studying the effects of magnetic field, viscosity,
viscoelasticity and quantum pressure, respectively.

4. Numerical results and discussion

Numerical computations are carried out using the dispersion relation described by
equation (33), using the software Mathematica version 5.2 to look into the effect of
various factors on the instability of the considered system. This is to find the role of the
quantum pressure and magnetic field on the square of the normalized growth rate of the
unstable mode of perturbation for fixed permissible values of the dimensionless
parameters v =0.2,n,=06,V7=02n"=1,d =1,9=98 and v=0.1
Pertaining results are presented in figures 2 and 3.

Figure 2 shows the variations of the square of the normalized growth rate n? with respect
to the square normalized wavenumber k? for three different values of square of the
Alfvén velocity VZ = 0.2,0.3,0.5. It is evident from the graph that the growth rates
increases for k<29 VZ=02), k<5W7=03), k<77 =0.5) showing
thereby the destabilizing effect whereas the growth rates decrease for 7 < k < 30
implying thereby the stabilizing effect of Alfvén velocity on the system.

Figure 3 corresponds to the three different values of quantum plasma n, = 0.2,0.3,0.5,
respectively. It is clear from the graphs that the growth rates increase for k < 6, showing

thereby the destabilizing effect, whereas the growth rates decrease for k > 6, implying
thereby the stabilizing effect of quantum pressure on the system.

It is clear from the figures 2 - 3 that the simultaneous presence of magnetic field implying
thereby the large enough stabilizing effect of the quantum pressure on the system.

5. Conclusions

The stability of stratified viscoelastic Walters' (model B') fluid/plasma in hydromagnetics
in the presence of quantum physics has been studied. The principal results of the analysis
are as follows:

1) The magnetic field has a stabilizing effect on the system under certain
wavenumber band.

i1) The effect of quantum pressure with the simultaneous presence of magnetic field
is more stabilizing.
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Figure 2: Variations of the square of normalized
growth rate n?
wavenumber k2 for three different values of the
square of the Alfvén velocity VZ = 0.2, 0.3, 0.5.
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Figure 3: Variations of the square of normalized
growth rate n? versus the square normalized
wavenumber k2 for three different values of
quantum pressure n, = 0.2, 0.3, 0.5.
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ABSTRACT

In the present paper, the problem of double-diffusive steady convection in the presence of
Soret effect and magnetic field has been studied. The eigen value equations governing the
problem for stationary convection for rigid and impervious boundaries have been casted
into a mathematical tractable form by using certain linear transformations. An expression
for Rayleigh number for stationary convection using variational principle is obtained and,
consequently, a necessary condition for the validity of principle of exchange of stabilities
is obtained by using trial function satisfying the essential boundary conditions from the
minimum property of the functional. The effects of Soret parameter, Chandrasekhar
number and Lewis number on stationary convection have been discussed and it is found
that, the Soret parameter has both stabilizing as well as destabilizing effect (depending
upon the sign) on the stationary double diffusive convection, whereas the Chandrasekhar
number and the Lewis number have stabilizing effect on the stability of the system.

Keywords: Double diffusive convection, Soret effect, Stationary convection, Magnetic
field. Impervious boundaries.

1. INTRODUCTION

The problem of thermal instability in a thin layer of a Newtonian fluid with single
diffusive (heat) component in the force field of gravity has been extensively studied by
many authors, under the varying assumptions of hydrodynamics and hydromagnetics.
The main objective of the studies related to thermal instability, in particular, is to
determine the value of the Rayleigh number which characterizes the stability or
instability of the system or to derive certain criteria for the onset of instability through
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convection. The detailed account of such analysis is given in the treatise by
Chandrasekhar [5].

The study of convective motions in the presence of two diffusing components
with different diffusivities is an interesting phenomena in the field of convection, known
as double-diffusive convection or thermohaline convection. Double-diffusive convection
involves motions driven by two different density gradients diffusing at different rates
(Mojtabi and Charrier-Mojtabi [11]). The interesting effects of double-diffusive
convection are due to the sharp contrasts between thermal and salt diffusivities and were
first observed by Stern [15] in 1960 and by Veronis [18] in 1965. In double diffusive
system, the convection starts due to variations in temperature and solute concentrations
both. The flux of heat caused by concentration gradient is termed as Dufour effect,
whereas, the flux of mass caused by temperature gradient is known as the Soret effect.

Due to the cross diffusion effect (Soret and Dufour effects), each property gradient
has a significant influence on the flux of the other property. According to Schechter et. al.
[14], Bergeron et. al. [4] and Straughan and Hutter [16], the Dufour coefficient is of order
of magnitude smaller than the Soret coefficient in liquids, and the corresponding
contribution to the heat flux may be neglected in liquids in comparison to the Soret
effect. The study of Soret driven double diffusive convection has received much attention
over the years due to its numerous fundamental and industrial applications in various
fields such as high quality crystal production oceanography, solidification of molten
alloys, astrophysics and engineering. For a broader view on the subject, one may refer to
Hurle and Jakeman [8], Malashetty & Gaikwad [10] and Dhiman and Goyal [7].

Chandrasekhar [6] and Banerjee et. al. [3] have investigated the effect of
magnetic field on the stability of Bénard convection problem in detail. Banerjee et. al.
[2] studied a more general problem, namely, magnetohydrodynamic thermohaline
convection problem and derived a characterization theorem. N. Rudraiah [12, 13] has
made a study of double diffusive magnetoconvection and shown that magnetic field
destabilizes the double diffusive system under certain conditions. Takashima [17] studies
the effect of magnetic field on convective instability in a horizontal layer of two
component fluid with Soret effect and it has been established that even if a magnetic field
is present, the presence of solute plays a prominent role through the Soret effect and that
even if the solute is present, the magnetic field inhibits the onset of instability.

Most of the authors have dealt the convection problems in a horizontal layer for
the unrealistic case of both dynamically free boundaries in which no tangential stress
acts. For the realistic case of both rigid bounding surfaces, the exact solutions in closed
forms are not obtainable because of the mathematical complexities in the governing eigen
value equations. Further, for the solutions when the binary fluids are subjected to Soret
effect, the boundary conditions on concentration, in view of the solid boundaries, must be
impervious (Bahloul et. al. [1]). Dhiman and Goyal recently studied the stability of Soret
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driven double-diffusive convection problem analytically for the case of rigid, impervious
and thermally perfectly conducting boundary conditions using Variational principle.

Motivated by the above discussions and the role of rigid and impervious bounding
surfaces on the onset of convection, in the present analysis the effect of magnetic field on
the onset of Soret driven double-diffusive steady convection with rigid and impervious
boundaries has been studied. The eigen value equations governing the problem under
consideration has been transformed into a mathematical tractable form for the variational
treatment using some indigenous linear transformations. The variational principle has
been established for the problem and using the minimum property of the functional, an
expression for Rayleigh number has been obtained. The effects of Soret parameter,
Chandrasekhar number and Lewis number on stationary convection have been discussed.

2. PHYSICAL CONFIGURATION AND GOVERNING EQUATIONS

Consider a electrically conducting viscous, quasi-incompressible two component
fluid of infinite horizontal extension and finite vertical depth statically confined between
two horizontal boundaries z = 0and z=d which are respectively maintained at uniform
temperatures 7, and 7} (7, < 7,) and uniform concentrations C, and C,(C, <C,) in the
presence of uniform magnetic field acting in the vertical direction in the force field of

gravity. Both the boundaries are assumed to be a rigid, impervious and perfectly heat
conducting.

Following the usual steps of the linear stability analysis [5, 7], we obtain the following
system of non-dimensional linearized perturbation equations;

(p? —az)(z)2 pe —ﬁj w=Ra*0—R'a*p—0QD(D* —a’* b, (1)
(o2
(Dz—az—p)H:—w (2)
(Dz—a2—£j¢:—1+(Dz—a2)e 3)
T T
(Dz 4 _&j I 4
(o)

We consider the case where both the boundaries are rigid, impervious and perfectly
conducting. Thus, the appropriate boundary conditions for the present problem are;

w=Dw=60=h_=0,Dp-DO=0 ;atz=0andz=1. (5)
In the forgoing equations; z is the real independent variable, D = %Z is the

differentiation with respect to z, a’ is the square of the wave number, o is the Prandtl
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number, o, is the coefficient of electrical conductivity, 7 is the Lewis number, R is the
thermal Rayleigh number, R’ is the solutal Rayleigh number, Q is the Chandrasekhar
number, p(: p,+ ipl.) 1s the complex growth rate and w,8,¢ and /_ are the perturbations

in the vertical velocity, temperature, concentration and magnetic field respectively. The
system of equations (1)-(4) together with the boundary conditions (5) constitutes an eigen

value problem for R for given values of other parameters, namely R',o,7and a’.
Further, a given state of system is stable, neutral or unstable according as p, is negative,
zero or positive. Further, if p, =0 implies p, = 0for all wave numbersa®, then the

principle of exchange of stability (PES) is valid, otherwise, we have overstability at least
when the instability sets in as a certain modes.

3. MATHEMATICAL ANALYSIS

When the instability sets in as stationary convection i.e. when PES is valid, we
have p= 0, therefore, the equations (1)—(4) and boundary conditions (5) becomes

(D? —a*fw=Ra’0-Ra’*$-0OD(D* -a* )b, (6)
(Dz—az)Q:—w (7)
D -a*lp=-Y+(D* -
(-l .
(D> ~a?)h, =—Dw 9)
together with the boundary conditions
w=Dw=60=0
and atz=0andz=1. (10)
D¢—-DO=0

Now, redefining 0 and ¢ as follows

4 2 ' 14
_gopdia’ 5 o _gePd sy (11)
VK VK

F

and using the linear relation
M =yF+G, (12)

equations (6)—(9) and boundary conditions (10) assume the following form;
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D*—a*fw=(1+y)F-M-0D(D* -’ )n, (13)

(D —a’)F=—Ra’w (14)
1.2

(D? —a®)M =22V (15)
T

(D> —a?)n, =—Dw (16)

w=Dw=DM =0 atz=0and z=1. (17)

In the above equations, the thermal and solutal Rayleigh numbers are related by
the expressionyR =—R', where y is called stability ratio (or Soret parameter) and

defined as y =S, N,(1-N,) a'/a. The strength of the Soret forcing in mixtures is

parameterized by the stability ratio, depending on the mixture the Soret coefficient can be
positive or negative, meaning thereby that solute can be driven toward the hotter, or the
colder region. Hence, y can take both positive and negative values (La-Porta and Surko

[9D.
To find the necessary condition for the validity of the PES and consequently the
critical Rayleigh number for the present problem, we proceed as follows.

Multiplying equation (14) by F and integrating over z , we get

F(D* —a®)F dz=—RaijFdz (18)
0

S Cy —

Inserting the value of F from equation (13) in the right hand side of equation (18),
making use of equation (16) in the resulting equation, we obtain

jF(D2 _aZ)F dz = _llja; jw{(Dz _aZ)z —QDz}
0

(19)

which upon using equation (15) in the second integral on right hand side yields

_ 21 1
F(D* - a*)F dz :%Iw{(Dz ~a’) —QDz}wdz _(1"‘1—71?)R"EM(D2 ~a*)M dz

0

S Cy —

Integrating by parts the above equation a suitable number of times, using the boundary
conditions (17), we have the following expression

76



(4 {OF ) +a2F? e

a’ [J: {(Dzw)2 +a*w’ +(2a2 +QXDW)2 }dz+ R;z :‘:{(DM)2 +a2M2}dz

(say) (20)

The above expression for R (the Rayleigh number), which is the ratio of two positive
definite integrals, is the required functional for the variational treatment of the problem.

Following the variational method of Chandrasekhar for thermal convection
problem and proceeding analogously, we can easily prove the stationary property of the
functional R given by expression (20) for the boundary conditions (17) when the
quantities on right hand side are evaluated in terms of true characteristic functions. Also
the quantity on the right hand side of equation (20) attains its true minimum when F
belongs to R, i.e. the lowest characteristic value of R, namely R_, is indeed a true

minimum. i.e.

RCSR:%. @1)
a i,

Thus, the above result generalizes the variational method for the problems of Soret driven
double-diffusive magnetoconvection with rigid, impervious and heat conducting
boundaries.

Now, we shall evaluate the integrals /, and /, by using the trial functions satisfying the
given boundary conditions. Let us consider a trail function

w(z):zz(l—z)2 =z'-27"+ 77 (22)
which obviously satisfies the boundary conditions

w=0 at z=0and z=1
Now, using equation (22), we have

j{(z)2w)2 + (20> + Q)DWY +a*w? |dz = 0.8+0.0384* +0.0015873a" +0.0190 (23)

Inserting w(z)=z* —2z° +z* in equation (14) and solving the resulting equation for
F (z) , using the relevant boundary conditions given by equation (17), we obtain
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2 6
a

1/ _ 4 2 3 2 _
F(z) = Ra’ _(i+2_4jCOSha(A Z)+Z +z : 2z +122 +f 12Z+2461 (24)
a cosh % a a a

Now, multiplying both sides of equation (14) by F and integrating the resulting equation
over the range of z, we obtain

{F(D2 —az)F}dZ ——Razjw(z)F(z).dz. (25)

0

S Cy —

Inserting the values of w(z) and F(z) from equations (22) and (24) respectively in the

right hand side integral of above equation and integrating the resulting equation a
suitable number of times, using the relevant boundary conditions (17), we obtain

j-{(DF)Z + aze}dz = Rza{—%(l+%}{ [1 +%) tanh(a/2)—é} +

a a a a

0.00158—

—+— (26)

0.019 O;S}
a a

Again, inserting w(z) = z* —2z° + z* in equation (15) and solving the resulting equation
for M (z) , using the relevant boundary conditions given by equation (17), we obtain

R’ {—l2cosha(z—%)

M(z)="—. (27)

2_
T

a’ sinh(a/Z) a’ at

Now, multiplying both sides of equation (15) by M and integrating the resulting equation
over the range of z, we obtain
R !a 21
{M (D2 ~a’ )M}dz =— Iw(z)M(z).dZ. (28)
4 0

© Ly —

Inserting the values of w(z) and (z) from equations (22) and (27) respectively in the

right hand side integral of above equation and integrating the resulting equation a
suitable number of times, using the relevant boundary conditions (17), we obtain

1 12 2
J{(DM)Z +612M2}d2= R f {_1_3{(%+4—§)—%coth(a/2)}+
0 T a> \a” a a

0.00158— (29)

4

0.019 0.8}
+_
a a
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Now, substituting the values of various definite integrals from (23), (26) and (29) in
equation (20) and upon using the fact that R’ = —y R, we obtain

12
. (1+y2)R K, (30)
7K,
where
K, = _%(1 +%){(1 +%j tan h(a/Z)—g} +0.0015873 — 0'0219 +O;f (31)
a a a a a a
and
R'| 4 12 01 .
K, = —{——?{(1 +—2j—9coth(a/2)}+o.0015873 0 02 2 +O—f +
T a a a a a

0.8+0.038a” +0.0015873a* +0.0190Q (32)

Now, we assume that O and R'are of same order of magnitude and therefore, we take
1 1

a=0(0°%) and a=O(R'S). Substituting the values of K ,and K, from equations (31)
and (32) in equation (21) and utilizing sufficiently large values of Q in the resulting
equation, we obtain

R:Q[Hlj 0.015873 =Q£1+lj[ 1 lj (33)
y U 7 ) o.019, 0-0015873 y Uy \11.97+ ¢
T

Using above value of R, inequality (21) yields

2t
4 y J\11.97 +7

which further implies that

R. < 2(1 + lj for large values of Q (34)
e e

which is a necessary condition (dependent upon Soret parameter) for the validity of PES
for the onset of stationary convection in Soret-driven double-diffusive convection in the
presence of magnetic field when both the bounding surfaces are rigid, impervious and
thermally conducting.
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Now to study the effect of Soret parameter, Chandrasekhar number and Lewis number on
the double diffusive system, we examine the behaviour of OR/dy, OR/0Q and

OR/0t analytically.
From equation (33), we have

a_R__Q(7+2)( 1 j

oy - e 1197 +7¢7"

which is positive if y <0and negative if y >0. Hence, for fixed positive values of
Chandrasekhar number and Lewis number, the value of stationary Rayleigh number
increases with increasing values of Soret parameter if y <0 and decreases with increasing
values of Soret parameter if y > 0. Thus, for Soret-driven double-diffusive convection in
the presence of magnetic field, the Soret parameter has both stabilizing as well as
destabilizing effect on the onset of the stationary convection according as y <0 and

y>0.

Further, we can have from equation (33) that

8_R=7/+1( 1 J>0
o0 y> \11.97+¢7"

which implies that for fixed values of Soret parameter and Lewis number, the value of
stationary Rayleigh number increases with increasing values of Chandrasekhar number.
Thus, for the stationary convection Chandrasekhar number has a stabilizing effect on the
double diffusive system.

Also, we can have from equation (33) that

8_R=Q(7+1)( ! ) o

or 7’ 11.977 +1

which implies that for fixed positive values of Soret parameter and Chandrasekhar
number, the value of stationary Rayleigh number increases with increasing values of
Lewis number. Thus for the stationary convection Lewis number has a stabilizing effect
on the double diffusive system.

4. CONCLUSIONS

In the present analysis, the eigen value problem governing the Soret-driven
double-diffusive stationary magnetoconvection problem has been transformed into an
eigen value problem which behaves nicely for the variational treatment of the problem.
The variational principle for Soret-driven double-diffusive stationary convection problem
in the presence of magnetic field with realistic case of rigid, impervious and thermally
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conducting boundary conditions has been established. A necessary condition for the
validity of PES for this general problem utilizing the minimum property of variational
principle have been established. Further, a expression for Rayleigh number is obtained as
a function of the governing parameters, which characterize the stability of the system.
The analysis reveals that the onset of magnetoconvection in double diffusive flow
strongly depends upon of the Soret parameter. The effect of various parameters such as
Soret parameter, Chandrasekhar number and Lewis number on the onset of stationary
convection has been discussed. The following conclusions are drawn from our
investigations;

(1) For the case of stationary double diffusive convection in the presence of
magnetic field the Soret parameter has both stabilizing as well as
destabilizing effect on the double diffusive system according as y <0 or
y >0.

(i1)) The Chandrasekhar number and Lewis number has stabilizing effect on
the onset of stationary magnetoconvection in the double diffusive system
with Soret effect.
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Abstract: Upper bounds for the complex growth rate of an arbitrary oscillatory
perturbation which may be neutral or unstable in triply diffusive fluid layer heated from
below, which is kept under the effect of uniform vertical magnetic field with the viscosity
variation effects included are obtained. These results are uniformly valid for quite general
nature of the bounding surfaces.
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Introduction

When two stratifying agencies with gravitationally opposite contributions(for
instance heat and salt) are present in a viscous fluid, a variety of convective phenomena
are found to occur which are known as thermosolutal convection or thermohaline
convection or more generally double diffusive convection. Double diffusive convection is
now well known and for a broad view of the subject one may referred to Turner [25] and
Brandt and Fernando [2].

There are many important hydrodynamical systems in which the density depends
on more than two stratifying agencies having different molecular diffusivities. Some
examples of these are the earth’s core, sea water, solidifying alloys, geothermally heated
lakes, magmas and their laboratory models (Turner [24]). Earlier theoretical and
experimental studies of the hydro dynamical configurations where the density depends on
three stratifying agencies include the work of Griffiths [3-4], Pearlstein et al. [11], Moroz
[9], Lopez et al. [8]. In the latter studies, Terrones [22] studied the effects of cross
diffusion on the onset of convective instability in a horizontal triply diffusive fluid layer.
Straughan and Walker [20] investigated the penetrative convection in a triply diffusive
fluid layer. Straughan and Tracey [19] analysed multicomponent convection diffusion
with internal heating or cooling in a fluid layer. The long-time behaviour of a triply
convective-diffusive fluid mixture saturating a porous horizontal layer has been studied
by Rionero [13]. Shivakumara and Kumar [17] investigated the effect of couple stresses
on linear and weakly nonlinear stability of a triply diffusive fluid layer. Ryzhkov and
Shevtsova [16] analysed the long wave instability of a multicomponent fluid layer with
the soret effect included. Rionero [14] studied a triple convective diffusive fluid mixture
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saturating a porous horizontal layer, heated from below and salted from above and derive
sufficient conditions for inhibiting the onset of convection and guaranteeing the global
nonlinear stability of the thermal conduction solution. Rionero [15] also studied the
multicomponent diffusive convection in porous layer for the more general case when
heated from below and salted by m salts partly from above and partly from below.
Recently Prakash et al. [12] derived upper bounds for the complex growth rate in triply
diffusive convection.

It is, however, to note that, in most of studies cited in the preceding paragraphs,
the fluid viscosity is considered as constant with respect to temperature variations. For
many fluids, such as glycerine, silicone fluid, petroleum and some molten salts, the
variation of viscosity with temperature is often much rapid than that of the other
properties. Thus the effect of the variation of the viscosity due to temperature on the
stability analysis of any hydrodynamic system must be included to have realistic
approach.

The dependence of viscosity on temperature and/or depth for most fluids has
prompted several investigations on the onset of convection in hydrodynamics. The effect
of large variations of viscosity on thermal convection in a layer of fluid heated from
below has been numerically investigated by Torrance and Turcotte [23]. Korenaga and
Jordan [7] studied the influence of temperature-and depth-dependent viscosity on the
onset of convection in an incompressible fluid cooled from above on the basis of 2-D
numerical simulation. Kaddiri et al. [6] studied the effects of temperature-dependent
viscosity on the Rayleigh-Benard convection of non-Newtonian power-law fluids
confined in a square cavity, heated from bottom and cooled on the top with uniform heat
fluxes. Payne and Straughan [10] studied the nonlinear stability of thermal convection in
a porous layer when viscosity depends on temperature. Global stability for thermal
convection in a couple-stress fluid with temperature and pressure dependent viscosity has
been investigated by Sunil and Chaudhary [21]. Banerjee et al. [1] mathematically
analyse the stability of generalized Benard problem with a viscosity which is a linear
function of depth (on account of thermal effects). Gupta and Kaushal [5] analytically
investigated the rotatory hydromagnetic double diffusive convection problems by
considering the effects of viscosity variations due to temperature and concentration.

The present communication is primarily motivated by the investigations of Gupta
and Kaushal [5] and their work has been extended to magnetohydrodynamic triply
diffusive convection problems in the domains of astrophysics and terrestrial physics,
wherein the liquid concerned has the property of electrical conduction and the magnetic
field is prevalent. The choice of a temperature and concentration dependent viscosity on
the pattern of density in double-diffusive and triply-diffusive convection problems has a
limitation that viscosity is a linear function of the vertical coordinate [5] which may not
necessarily be so in a real physical situation. Thus in the governing equations of the
magnetohydrodynamic triply diffusive convection problem viscosity has been taken as an
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arbitrary function of the vertical coordinate which is in accordance with role of viscosity
in Rayleigh-Taylor instability problem. Since the resulting governing non dimensional
differential equations have variable coefficient of viscosity contrary to the case wherein
viscosity is considered as constant, thus these more general problems introduce extra
mathematical complexities. Thus an attempt is made to mathematically tackle problems
with more complexities and extending the domain of validity of the earlier results
concerning the region of the complex growth rate in the literature of the triply diffusive
convection problem with constant viscosity, which are important, especially when at least
one boundary is rigid so that exact solutions in the closed form are not obtainable.
Mathematical Formulation and analysis

An infinite horizontal layer filled with a Boussinesq viscous fluid is statically
confined between two horizontal boundaries z = 0 and z = d (kept under the influence
of a uniform vertical magnetic field), maintained at constant temperatures T, and T;(<
T,) and uniform solute concentrations Sy, S, and S1;(< S19), S21(< Syp) at the lower
and upper boundaries respectively. Let the origin be taken on the lower boundary z = 0
with z-axis perpendicular to it. It is further assumed that cross diffusion effects may be
neglected.

Z=d T, Si1 S21

T T g=(00,-9) l

Wo=pou(z) d H=(0,0,H)
> x
Z=0 To(>T1) S10(> S11) S,0(> S31)

Fig.1 Physical Configuration
The basic hydrodynamic equation that governs the magnetohydrodynamic triply diffusive
instability problem are given by (Prakash et al. [12], Gupta and Kaushal [5])

w(D? — a2)2w + D2u(D? + a®)w + 2DuD(D? — a®)w —E(DZ —a?)w = Ra%0 —

R;a’¢d; — Rya’¢d, — QD(D? —a*)h,, (1)
(D? —a® —p)8 = —w, (2)
(0?-a?-2)4, = -2, 3)
(D?—a?-2)g, = -2, ©
and (D2 —a?— %) h, = —Dw, (5)
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withw =0=0=¢; = ¢, = D?watz = 0 and z = 1 (both boundaries are
dynamically free) (6)
orw=0=0=¢; =¢, =Dw atz=0andz =1 (both boundaries are rigid) (7)
orw=0=0=¢; =¢, =Dw atz=0and (lower boundary is rigid)
w=0=0=d¢; =, =D?w atz =1 (upper boundary is dynamically free)  (8)
orw=0=0=¢, =¢,=D?w atz=0and (lower boundary is dynamically free)
w=0=0=0¢; =P, =Dw atz =1 (upper boundary is rigid) 9)
and either h, = 0 on both the boundaries if the regions outside the fluid are perfectly
conducting (10)

or Dh, = +ah, on the upper and lower boundary respectively if the regions outside the
fluid are insulating, (11)

. . . d . . . .
where z is the vertical coordinate, D = - 18 the differentiation along the vertical

direction, a? is the square of the wave number, 6 > 0 is the Prandtl number, 6; > 0 is the
Magnetic Prandtl number, tT; > 0 and T, > 0 are the Lewis numbers for the two
concentration components respectively, R> 0 is the Rayleigh number, R; > Oand
R, > 0 are the concentration Rayleigh numbers for the concentration components S; and
S, respectively, Q > 0 is the Chandrasekhar number, p = p, + ip; is the complex growth
rate, w is the vertical velocity, 0 is the temperature, ¢, and ¢, are the concentration of
two components S; and S, respectively and u' = p,u(z) where i, is constant having the
dimensions of viscosity and p(z) is twice continuously differentiable function of z and is
such that the ratio of the viscosities at the top and bottom boundaries is small
(Stengel[18]). It may further be noted that equations (1)-(5) describe an eigen value
problem for pand govern magnetohydrodynamic triply diffusive convection with
variable viscosity for the boundary conditions (6)-(11).

Now we prove the following theorem:

Theorem: If (w,0, by, d,,h,,p), p=pr +ipi>, Pr=0,pi #0R>0,R; >0,R, >0is
a non-trivial solution of equations (1)-(5) together with the boundary conditions (6)-(11)

then [p| < max[\/m, QO‘].

Proof: Equation (1) can further be simplified as

D(uD3w + DuD?w — 2a?pDw) + a*uw —E(D2 —a®)w + a?(D?p)w = Ra?0 —
Ria*¢; — Rya’¢d, — QD(D? — a*)h,. (12)
Multiplying both sides of equation (12) by w*(the superscript * henceforth denotes

complex conjugation), integrating the resulting equation over the vertical range of z, we
get
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fol w* D(uD3w + DuD?w — 2a?uDw)dz + a* fol u|w|?dz — gfol w* (D? —a?)wdz +
a’ fol w* D?uwdz = Ra? fol w* 8dz — R;a? fol w* ¢, dz — R,a? fol w* ¢, dz —
QJ, w*D(D? — a*)h,dz. (13)
Making use of equations (2)-(5), we can write
1, 1 1,
J, w* D(uD*w + DuD?w — 2a*puDw)dz + a* [ u|w|*dz — gfo w* (D? —a?)wdz +
a’ fol w* D?uwdz = —Ra? fol 0(D? — a? — p*)0* dz+R a’ty fol oY) (D2 —a?—
* % 1 * % 1 * "
E—l) ®1 dz + Rpa’t, [ b, (D2 —a?— E—Z) $3 dz—Q [ (D2 —aZ - %) hi(D? —
a?)h,dz . (14)

Integrating the various terms, by parts, for an appropriate number of times and making
use of the boundary conditions (6)-(11), we get

J; w(ID?w|? + 222|Dw|? + a*|w|?)dz + 2 [ (IDW|? + a%|w|?) dz +
1 1 1 .
a’ fo D?u |w|?dz + Qfo |(D? — a?)h,|%dz = Ra? fo (|DB|? + a?|6|% + p*|8|?) dz —
1 * 1
Ria’ty [ (IDG4|? + 2%, + f—l |$11%) dz — Rya’t, [ (IDG,|? + %[, | +
* * 1
=192 *) dz = Z221a{(Ih, |20 + (Ihy 21} + f, (IDh,I? + a|h,|?)dz] (15)
Equating the imaginary parts of both sides of equation (15) and cancelling p;(#
0)throughout from the imaginary parts, we have
= [ (IDW|? + a%|w|?) dz = — Ra? []|6|? dz + Rqa® [ | |? dz + Ry [ |¢,|? dz +
1
%4 [a{(Ih,1)o + (11?1} + J; (IDh, |2 + a2|h,[2)dz] (16)
Now, multiplying equation (3) by its complex conjugate, integrating the resulting

equation over the vertical range of z for an appropriate number of times and utilizing the
boundary conditions on ¢, we have

1 2p; (1
Jo ID?d4|? + 22%|Dpy |? + a*| 4 |*)dz + %fo (1D, |? + a%|d4|?) dz +

Ipl* (1 1 1
rloldlPdz = = [[Iwl* dz. (17)
Since p, = 0, we have from equation (17), that
[y 19112 dz < = [l w2 dz. (18)
In the same manner by using (4), we obtain

1 2 1 (1, 5
folq)ZI dzsﬁfo |W| dZ' (19)

Multiplying equation (5) by its complex conjugate, integrating the resulting equation over
the vertical range of z for an appropriate number of times and utilizing the boundary
conditions on h, , we have
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1 r 1
J1D? = a2, Pdz + 222 [af(1hy %) + (1,121} + J; (IDh, |2 + a%lh,|?)dz] +

2 2
BLos (Y, 1%dz = [ |Dwidz (20)
which implies that
f |h,|?dz < <5 |2 f |Dw|?dz (21)
and fo |(D? —a?)h,|%dz < fo |Dw|?dz (22)
respectively.

Now using inequalities (21) and (22), we obtain
1 1,
a{(Ih[*)o + (Ih,|*)1} + [, (IDh,|? + a*|h,|?) dz < — [ 'h,"(D? — a®)h,dz,
1

1

1.« 1 21
< |f5 by (0% = a®)h,dz| <[] Ih, 12 dz|? [ 1(D? — a?)h, |2dz] < 2dz (23)
Now utilizing inequalities (18), (19) and (23) in equation (16), we get
1 1 (Ry+R
[E_H]f IDw|? dz + a? [ (|1+|22)]f lw|?dz + Ra? [16]>dz < 0, (24)

which clearly implies that

Ip| < ‘max{ Jv(R; +R,y)0, Qo } ) (25)

The above theorem may be stated in an equivalent form as: the complex growth rate of an
arbitrary, neutral or unstable oscillatory perturbation of growing amplitude in a
magnetohydrodynamic triply diffusive fluid layer (with variable viscosity) heated from
below, must lie inside a semicircle in the right half of the (p,, p;) — plane whose centre is
at the origin and radius equals max{ (Ry + R3)go, Qc} . Further, it is proved that this
result is uniformly valid for quite general nature of the bounding surfaces.
Special Cases: The following results may be obtained from above theorem as special
cases:
i) For Magnetohydrodynamic Rayleigh-Benard convection with variable viscosity
(R =0=R;Q>0), |p|l<Qo.
i1) For Thermohaline convection of Veronis type [2] with variable viscosity (R; >
0,R; =0 =0Q), Ip| <yRyo.
iii)) For Magnetohydrodynamic Thermohaline convection of Veronis type [2] with
variable viscosity (R; > 0,R, = 0,Q > 0), |p| < max{\/m, QG}.
iv) For Magnetohydrodynamic triply diffusive convection analogous to Stern
type[25] with  variable viscosity (R<0,R; <0,R, <0,Q>0),]|pl<

max {\/W, QO‘}

Proof: Putting R; = —|R;| and R, = —|R,| in equation (1), and adopting the same
procedure as is used to prove above Theorem, we obtain the desire result.
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v) For Thermohaline convection of Stern type [25] with variable viscosity (R <

0,R; <0,R, =0=0Q),Ipl < V|R|0-

vi) For Magnetohydrodynamic Thermohaline convection of Stern type [25] with
variable viscosity (R < 0,R; < 0,R, =0,Q > 0), |p| < max {\/ |IR|o, Qc}.

Conclusion

A linear stability analysis is used to derive the upper bounds for complex growth rates in
magnetohydrodynamic triply diffusive convection problem with variable viscosity. This
analysis is important especially when both the boundaries are not dynamically free so that
exact solutions in the closed form are not obtainable. Further, the results so obtained are
uniformly valid for quite general nature of the bounding surfaces.
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Abstract

The present study is based on free vibrations of in — homogenous
viscothermoelastic hollow sphere. The material is assumed to be graded in radial
direction with a simple power law. Matrix Frobenious method of extended power series is
employed to obtain the analytical solution for displacement and temperature. Numerical
iteration technique has been used by MATLAB software tools. The computer simulated
results for polymethyl methecrylate material in respect of natural frequencies,
thermoelastic damping have been presented graphically.

Key Words: Functionally graded; Rigidly fixed; Vibrations; Frobenius; Thermoelastic
Damping.

1. Introduction

According to Schaflauch et al. [1] the great achievements have been made by the authors
[2 — 5] to obtain general solution of the vibration problems for an isotropic sphere. Ding
et al. [6] obtained the eigen frequencies of an anisotropic elastic sphere. Neuringer [7]
developed the procedure of Frobenius method when the roots of indicial equation are
complex. Othman et al. [8] studied the plane waves in viscothermoelasticity in the
context of generalized thermoelasticity by two relaxation times. Sharma et al. [9 — 10]
studied the free vibration analysis of homogenous isotropic viscothermoelastic solid
sphere and hollow sphere by using matrix Frobenius method. Keles and Tutuncu [11]
investigated the free and forced vibrations of functionally graded elastic spheres and
cylinders. Dhaliwal and Singh [12] have given a detailed look to such types of problems.

The purpose of present paper is to study the exact vibration analysis of
inhomogeneous isotropic, viscothermoelastic sphere subjected to rigidly fixed, thermally
insulated conditions. The problem has been modeled with the help of non-classical
theories of thermoelasticity developed by Lord and Shulman [13] and Green and Lindsay
[14]. The secular equations have been solved with the help of MATLAB software tools
for different modes of vibrations The computer simulated results in respect of natural
frequencies and thermoelastic damping are shown graphically.

2. Formulation of Problem
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Consider a thick walled thermally conducting viscothermoelastic hollow sphere of
inner radius a and outer radius /a initially at uniform temperature 7;, in the undisturbed
state. For plane strain problem, the components of displacement in spherical coordinated
(r, 0, ¢)system are expressed as wu, =u,=0and u, =u(r, r)respectively. The basic

governing equations are given by [12]:

Oy = Pl .

izi(rzKa—Tj—pCe(T+t0T)=T0,3*(é+t051ké) 2)

r° or or

where

c,, :(X+2u)a—u+2xz—ﬁ*(T+f182kT) )
or r

Ggp = (k+2u)z+7u(a—u+zj—ﬁ*(T+t182kT) )
v or r

Here u =u(r,t) is the displacement vector; T (r, t)is the temperature; o, and e
(i, j=r, t)are stress and strain components, respectively; pis mass density; C, is the
specific heat at constant strain; K is the thermal conductivity; #, and ¢, are the thermal
relaxation times and B~ is the viscothermoelastic coupling constant. The
quantity 6, ,(i =1, 2), is the Kronecker’s delta in which k =1corresponds to Lord-

Shulman (LS) theory and k£ =2 represents Green-Lindsay (GL) theory. The superposed
dots represent time differentiation.

We consider the material is isotropic and functionally graded in the sense that the
modulus of elasticity, thermal conductivity and density vary with the radial coordinate

accordingas A =2, (r), w=p,(r)', B"=B(rf, p=p.(r). K=K, (),
where the exponent [} essentially represents the degree of non-homogeneity.

The material parameter have been defined as

0 0 N 0
A=A | 1+a,— |, =u|l+o0,—|, =B, 1+B, —
0 e( & 82‘) Ho Me( oy 81‘) Bo =P ( Bo atj
B, =0(r, +2u, o, , By =(((3h,ay +2u,0,)0;)/B,) are the viscothermoelastic

parameters and viscothermoelastic coupling parameters. The quantities ¢, , «, are the
thermal relaxation times; A, x,are Lame’s parameters and o is the coefficient of linear

thermal expansion of the material.
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Boundary Conditions

We consider the exact analysis of non-homogenous hollow sphere which is
subjected to rigidly fixed, thermally insulated conditions at inner radius » =aand r =la .
Mathematically, this provides us:

Thermally Insulated boundary conditions u=0, 7,=0, at r=a, la.
(5)
3. Solution of the problem

In order to facilitate the solution we introduce the following non — dimensional quantities

u c t T . C (A +2 T.5°
=—, =—, z':l_, 0:_’ o = e( e ILle) , 8]": Oﬂe ,
a a a TO KO peCe(//i’e—’_z/’le)
- T, . .. A +2
g:o—ﬁe , 50=a0+252(a1—a0), cf:—( e ,ue)’ 022:&’
(ﬂ,e+2ye) P, P,
2
26 _G _G _G ~ G _G
8 _c_2 Py TO == to Iy TO - tO 5 ’Cl tl . a,o ;ao , al = a’l’
1
s C . ao c, o
Bo=—By, Q=" 1 =""5, Top =—25, (6)
a ¢ P.C P.C

Using quantities (6) and (3) - (4) in equations (1) and (2) and simplifying we get

2 ~ 2
[l+606j 6—({Jrﬁﬁ—(]+m—22 —s(l+[306j(1+r182k 6)[66+Bej:6 (2] (7)
otNOX® XoX X ot ooNoX X ot

2 2 * 2
0 (3 PR, £+roa—2 engQ(l+B06} g+r@61ka—2 (6U+ 2 Uj
oX® X oX ot ot € ot )\ ot ot \oX X

(8)
— 2 ~
where m=p+2, =2 1720 +6,@0P
(1+8,(0/00))
4. Introduction of time harmonics and transformation
We consider time harmonic vibrations and transformation as
e
U=X 2U exp(-iQr) (9)

_4B
0=X 2 O exp(—iQr)

Using equation (9) in equations (7) and (8) and simplifying we get
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+
dX 2X X?
(10)
. Q8B T . ~ o (1-282 *
Where a :li& ) b = iQ3m4BOT(; s m2 = 2(M_1] H m4 = ST_gz s
0 J, €

a,=iQ "' +4a,,d,=iQ " +a,, B, =iQ" +B,,8,=iQ" +5,,T =iQ " +1,5,,,

2
T, =iQ " +1,, T, =iQ"+1,.,5, , nzz(ﬂj -m, , szii(Xij
2 Xdx\ dX

5. Solution by applying Matrix Frobenius Method

Clearly, the dimensional domain of consideration a <r<la corresponds to
1< X <!/ in non-dimensional form. In order to apply the matrix Frobenius method to

solve equations (10) we look for power series of the type

Z= 7z x"" (11)
k=0
where Z = [17 ®] and Z, = [Ak Bk] , Here p is the eigen value and 4, ,B, are
unknown coefficients to be determined.
Substituting the solution (11) in equations (10) we get following system of equations

S [H(p+)X 2+ Hy(p+ )X+ H|X"Z, =0 (12)
k=0
(p+k)2—n2) 0
2
where H (p+k)= 0 {(p+k)2—(l+ﬁj ] ,
2
0 a*[p”“%j 0
H,(p+k)= . . H=|3,
—b*(p+k+7j 0 0 QQ°%,
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Equating to zero, the coefficients of lowest power of X (i.e. X?7*) in equation (12), we
obtain

H(p)Z,=0 (13)
The system of equations (13) will have a non-trivial solution iff |H ( p)| =0, which leads

to the indicial equation
1+ 8Y
[pz_nz]lzpz_( 2ﬁj }0 (14)

The roots of above equations are given as

ph=n , p,=—n p; :(¥J 5 D, :_[#j (15)

Clearly, these roots satisfy the property p,=-p,, p,=—p, . Here the roots
p; (i=1,2) are complex and the roots p, (i =3, 4) being real. Thus, in the former case
the leading terms in the series solution (11) are of the type

[4, B,]X7={4, B,}X"" ={4, B,}X"*{cos (p, log X )+isin (p, log X )}

In order to obtain two independent real solutions, it is sufficient to use any one of the
complex root and taking its real and imaginary parts see Neuringer [7].

For the choice of indicial roots, the system of equations (14) leads to:

1, /=1, 2 0,j=1, 2
AO(pj):{O 5.23 4 Bo(l’j):{l ;:3 4 (16)

Again equating to zero the coefficients of next lowest degree term X *~'in equation (13),
we obtain

Hl(pj+1)Zl+H2(pj)ZOZO (17)
The equation (18) on simplification gives us a solution
Z, =-D,Z, (18)

a*[p]_?,;Bj _b*[pj+l+3; j

AR (pﬁl)z_(lzﬁj

where

0 d,(p,
Dl:|: 12(p]) d;l(p]):

and d(p,)=
dy (p,) 0 } e
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Now equating the coefficients of like powers of X”**equal to zero, we obtain the
recurrence relation:

H(p,+k+2)Z,,+H,(p,+k+1)Z,,+HZ, =0, k=0,1,2,3,... (19)
On simplification the equation (19) implies that

__[ 0 Hé@,)}z _{Hﬁ@,) 0
k+2 — k+1

Z, , k=0,1,2,3,.. (20)
H;l(pj) 0 0 Hfz(pj):l ‘

" B-1
R el
i . (p] 2

where H(p.)= , HE(p)=
u(p;) 8o(p; +h+2)7 —n| 2(P)) (p, +k+2)* —n’
—b*[p +k+1+3_j
J 2 m.Q*7
Hj(p;)= . Hy(p)= 0

(pj+k+2)2—(1—;[3J (pj+k+2)2—[1;Bj

For k =0, the equation (20) upon simplifications provides us

Z,=D,Z, (21)
where
di(p)) 0 ) Hy(p)dy(p)| Hpy(p))dy(p))
D, = ! 2 ddy(p;)= s dy(py)=
[ 0 dzzw,»)} i dutr) {Hm» } @) {H;(p,) }

and putting k=1, 2,3, 4 ....so on. Continuing in this manner it can be easily shown that
the matrices D,,(p;)have similar form as that of H,(p+k) and the matrices

D,,, (p,)arealike H,(p+k). Thus, in general, we have
ZZk(pj):DZk(pj)ZO , k=123, (22)
ZZk+l(pj) = _D2k+l(pj)ZO , k=1,2,3.. (23)

de(p') 0 0 d””(p-)
where D2k (p/) = " ’ 2% > D2k+1 (pj) = 2k+1 B !
0 d;, (pj) d;, (p_,-) 0

d(p))={HZ > (p a2 (p)-HZ 2 (p)dP 2 (p))}

d2(p)={HZ(p)dZ (p,)-HE(p)dX2(p,)]
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A2 (p)={-HY¥ ' (p)d(p)+H¥(p)d " (p,)}
A (p)={- HX(p)di (p)+ HE (p )d2 " (p,)]
where dj\(p;)=1=dy,(p,) ; j=1,2,3,4.

6. Convergence Analysis
From equation (22) — (23), it can also be shown that

D, (p)=0k")E" . Dy.(p)=Ol")E" (24)

whereE*za O* and o 0* a
0 -b -b 0

Now according to Cullen [15], a matrix sequence {Ak}in the complex filed converges,

(%im A, = A), if each of the &k’ component sequence is convergent. Upon utilizing the

above stated fact, we see that both the matrices D, (p,)—>0 and D, (p,)—>0,

ask — oo . This implies that the series (11) is absolutely and uniformly convergent having
infinite radius of convergence and the derived series is analytic functions and hence can
be differentiated term by term.

Thus the series solution (11) becomes
Z=(I-DX+D,X’-D,X’+D,X*-D,X°+.. YX"Z, (25)

where /is an identity matrix of order two and matrices D.(i=1,2,3...) have been
defined above

7. Formal Solution to obtain displacement and temperature gradient

In the light of the above discussion, the series solution (26) with help of equations (5) via
equation (9) displacement, temperature and temperature gradient are written as:

X Z{E i (POX "+ End (p)X 7 = Exd ™ (p) X7 ] o B!

k=0

2k+1 1+ X ’ exp( ZQT)
—Edy (p)X ™"

1+

: I_B 2k+1
Z 2k+7+p] E].al21 (pj)
2 e*iQ‘r (26)

Jj=1 2k+p;-

»MS

[ ok 1HB 2
+Z(2k jXE d%(p,)

Jj=3

where E; (j =, 1, 2, 3,4) are arbitrary constants to be evaluated.
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8. Secular dispersion equations

We assume the viscothermoelastic sphere is subjected to rigidly fixed and
thermally insulated conditions (5) at its surfaces (X =1 , /). The system will have a

nontrivial solution if and only if the determinant of the coefficients
E; (j=1, 2,3,4) vanishes. This requirement of nontrivial solution leads to following

dispersion equations as discussed below:

Case I: Fork =0. In this case the secular equations are obtained as:

det (my)=0, (i,j=1,2,3,4) 27)
where the elements m; have been defines as below:
ml*jzl ; J=1,2. ’ ml*j:_dllz(pj); Jj=3.4
l+ﬁ % 1 p/+1—ﬂ
m2/ (l) 2 ; J= 5 m2j:d12(pj) (l) 2 5 j:374'
my,; =—[—+P1szl(p,) J=1,2.5 my=0;  my,=—(1+p) (28)

my, =my, () e s J=1,2 5 mg=0 5 my=my, ()P

Case: Il Fork > 0. In this case the secular equations for Set I and Set II are obtained as:
det (m)=0, (i,j=1,2,3,4) (29)

where the elements of m are defined as below:

m;=dj ; j=1,2. ; m;=—dy"(p;); j=3,4

4B 1+8
. 4 p/+l—7 .
my=di(p) O 25 j=1,25  my==d3"(p)(D) * ; j=3,4.

(30)
1— . . 1+ .
m3j:_|:(2k+7[3+pjjd221kl(pj)j|5]:172'; m3j:|:(2k_TB+pjjd222k(p./):|’]:3’4'
2k+p;= % . 2k+p;= % .
my; =ms; (I) ; j=1,2. ; my; =msy;(l) ; j=3,4.

The secular dispersion equations (27) and (29) govern axisymmetric vibrations of
functionally graded viscothermoelastic sphere under rigidly fixed thermally insulated
conditions prevailing at its surface.

9. Numerical results and discussion
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In order to illustrate the analytical development, we propose some numerical
results in this section. Here numerical computations have been carried out in case of
rigidly fixed thermally insulated sphere by employing fixed point iteration numerical
technique with the help of MATLAB software. The polymethyl methacrylate material has
been considered for numerical computations whose physical data is given below Othman
et al. [8]:

£, =0.045 , o =111x10"s" , T,=773K, &°=0.333,
d,=4,=0.05, t,=0.02, 1,=0.03, p=1190 kg m~> ,
K=019"m' K", C =1400Jkg”’' K" , a,=77x10° K"

Due to the presence of dissipation term in heat conduction equation (2), the secular
equations are, in general, complex transcendental equations and hence provide us
complex values of the natural frequency Q. If we write Q" =Qy +iQ7}, the non —
dimensional frequency and dissipation factor are given by f =Q} and D=Q} ,
where m is the mode number which corresponds to the roots of the transcendental
equation (29). The numerical computations have been done from equation (29) by taking
sufficient number of the values of Frobenius parameter (k) in order to obtain the natural
frequency f, and dissipation factor (D) of different modes. The computer simulated

natural frequency, thermoelastic damping and frequency shift have been presented
graphically for viscothermoelastic (VTE), thermoelastic (TE), viscoelastic (VE) and

elastic (E) spheres. Here the thermoelastic damping (Q') and frequency shift (Qs) are
L=

E
v

(viscothermoelastic), TE (thermoelastic), VE (viscoelastic) materials and E denotes
elastic one.

defined as [16], Q7' =2/—| and Qs =

v

respectively. Here M stands for VTE

Figs. 1 and 2 present variation of non — dimensional frequency (f,) versus mode number
(m) for [ =2, [=4 and different values of grading index () . It is observed that the
non — dimensional frequency (f,) increases with mode number (m) for
[ =2 and /=4. The frequency increases with grading index (B) in the
order f=-2.0, 0.0, -5.0, 2.0, 5.0 for /=2 where as it happens in the order
p=0.0,-2.0,20, -5.0,5.0 for/ =4 . Thus, the magnitude of the frequency
(f,)remains large for B =5 in both the cases for all considered values of (m) in
comparison to other values of (B) and it has small magnitude for f= —2.0 and
B= 0.0 in case of /=2 and /=4, respectively. This depicts the effect of in —

homogeneity parameter on the variations of non — dimensional frequency.
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Non dimensional Frequency

mode number (m)

Fig. 1: Non — dimensional frequency (f,) versus mode number (m) for different values
of f and [=2.

Non dimensional Frequency

1 2 3 4 5 6 7 8 9 10

mode number (m)

Fig. 2: Non-dimensional frequency (f,) versus mode number (m) for different values
of B and [=4.
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1.6

1.4

0.8

0.6

Thermoelastic damping

0.4

0.2

(o]

mode number (m)

Fig. 3. Thermoelastic damping (Q ') versus mode number () for VTE, TE and
VE (B=0,7=2).

Thermoelastic damping

mode number (m)

Fig. 4: Thermoelastic damping (Q')versus mode number (m) VTE, TE and
VE B=2,1=2).
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Frequency Shift (Qs) .

mode number (m)

(m) for VTE, TE and VE

Fig. 5: Frequency shift ({2s) versus mode number

B=0,/=2).
1 - . B
Fig. 6
— 0.8 ,‘" “". // \\
% PN\ —VTE
= AN '
€ 061 | /f -—-TE
) H K . VE
m I|l f’ \\
5 044 [y .
3 /
Ca 2
s 02y NN
() T T T T T 1
1 2 3 4 5 6 7 8 9 10
mode number (m)
for VTE, TE and

mode number (m)

Fig. 6: Frequency shift (Qs) versus

VE (B=2,1=2).
Figs. 3 and 4 show the variations of thermoelastic damping (Q~") between VTE, TE
and VE for B=0,/=2 and B=2,/=2. It is revealed that thermoelastic damping (Q")
profiles initially increase to attain their peak values and then decrease with increasing mode
varies  according  as

number (m) . This peak value of the quantity
Orr <Oy <O,y for B=0,1=2 and obeys the inequalities Q. <O, <O, for
B=2,/=2. Thus, the in — homogeneity index () significantly affects the existence of

peak value. The peak value of Q,,, seems to be more or less the average of Q;; and Q,, in
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both the cases with reversed trends. The variations of frequency shift (€2s) versus mode
number (m) have been plotted in Figs. 5 and 6 for f=0,/=2 and B=2,/=2. It is

noticed that frequency shift of vibrations is quite high for VE materials as compared to that
for VTE and TE spheres in both the cases f=0,/=2 and f=2,/=2.

10. Conclusion

The Matrix Frébenius method has been successfully implemented to study
axisymmetric rigidly fixed vibrations of viscothermoelastic spheres. The in-homogeneity
parameter significantly affects the vibration characteristics. The analytically observed
relations for different cases of vibrations have been analyzed numerically for polymethyl
methacrylate material. Thermoelastic damping and frequency shift may also be handled with
this index to enhance the quality of the signals of different modes of vibrations. The energy
loses (othermoelastic damping) can also be optimized with the help of grading index. The
thermal relaxation time and thermoelastic coupling parameters have significant vibrations
effect on vibration characteristics such as thermoelastic damping and frequency shift. The
study may find applications in industry and medicine to control the stress distribution.
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A Survey of the work on Almost Injective Modules
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Abstract. Properties of almost injective modules and indecomposable almost self-
injective modules derived by various researchers since the inception of these modules
(i.e. 1989) have been surveyed. The conditions have been studied as to when a direct sum
of almost injective modules is again almost injective. It is observed that for any module
M to be an indecomposable almost self injective module then End (M) is local.

Keywords: Almost Injective Modules, Local rings, Uniform Modules, Injective Hull.

Introduction. This is a brief survey on ‘almost injective modules’ that has been studied
mostly by Harada and his collaborators. Harada and Tozaki in [3] defined ‘almost M-
projective modules’ which is generalized from the concept ‘M-projective modules’.
Further, Baba in [2] introduced the concept ‘almost M-injective modules’ analogous to
the concept of ‘almost M-projective modules’. He generalized the Azumaya’s theorem
concerning to ‘M-injective module’ to the case of ‘almost M-injective module: N is M;-
and M,-injective module iff N is M; @ M,-injective module for modules M; and M, to
the case of ‘almost M-injective modules’. Harada in [4] extended the theorem proved by
Baba in [2]to the case of Artinian modules. Mainly, in this paper, we analysed and
reproduced the results of Alahmadi and Jain [1].

Preliminiries. In this paper, we always assume that R is a ring with identity and every
module is unitary right R-module. For module M, the socle and injective hull of M will
be denoted by Soc(M) and E(M). N c, M will denote that M is an essential extension of
module N. If Endz (M) is a local ring, we say M is an LE module.

Definition1.1. Harada in [3] defined the concept of almost M-projective modules. Let M
and N be two right R-modules. Let v: M — M / i be the canonical epimorphism and

hN-M / i be any R-homomorphism. If there exist an R-homomorphism k: N — M

such that the diagram 1 commutes, i.e. vk = h, or there exist a non-zero direct summand
M; of M (denoted by Mg 2 M) and an R-homomorphism k": M; = N such that hk’ = v
restricted to M; as shown in the diagram 2 then N is called almost M -projective module.
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N
h
k
;M

M /K » 0
v
Diagram 1
Mg 2 M, K’ N
f h
» M / K » 0
v
Diagram 2

Definition1.2. Baba in [2] defined the concept ‘almost M-injective modules’. M is called
almost N — injective module if for each submodule X of N and each homomorphism
f:X = M, either there exists homomorphism g: N - M such that diagram 3 commutes
or there exists homomorphism h: M = N such that diagram 4 commutes where N ;is a
nonzero direct summand of N, and 7 : N — Nj is a projection onto N;.
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f
9
M
Diagram 3
0 X : N=N, @ N,
f T
h
EE——
M N;
Diagram 4

Definition 1.3. (Almost self-injective module). If an R-module M is almost M-injective
then M is called almost self-injective module.

Definition 1.4. (Right almost self-injective ring). A ring R is called right almost self
injective if it is almost self injective as a right module over itself.

Definition 1.5. (Essential extension). An R-module M with submodule N is said to be
essential extension of N if for each submodule Hof M, H N N = {0} implies that H =

{0},

Definition 1.6. (Injective hull). An R-module E is called the injective hull of an
moduleR—-module M if E is an essential extension of M and E is an injective module.

Definition 1.7. (Uniform module). An R-moduleM is called a uniform module if
Intersection of any two non-zero submodules of M is non-zero.

Definition 1.8. (Local ring). A ring R is called local if set of non-unit elements in R
forms an ideal.
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Definition 1.9. (Indecomposable module). An R-module M is said to be
indecomposable if it is non-zero and it cannot be written as direct sum of two non-zero
submodules.

Definition 1.10. (-injective module) .An R-module M is called quasi-continuous or -
injective if for any two submodules M; and M, of M with M; N M, = 0, each projection
m;: My @ M, - M; for i = 1,2, can be extended to an endomorphism of M.

Theorem 1.11. [Azumaya Theorem] Let N, M;and M, be R-modules. If N isM;-and M,-
injective, then N is M; @ M, injective.

Baba in [2] generalized the Azumaya’s above theorem to the case of almost M-injective
modules as following:

Theorem1.12. Let U, be the uniform modules of finite composition length for k =
0,1,2 ... n, then the following two conditions are equivalent:

(1) Uy is almost Y.j—; @ Uy -injective.

(2) U, is almost Uy- injective for every k = 1,2 ...n and if Soc(Uy)=Soc(U;) = Soc(U;)(
for any k,l € {1,2..n}, k # 1) then (i) U, is Uy-and U;-injective or (ii) U, @ U; is
extending for simple module.

Harada in [4] generalized the above theorem proved by Baba [2] to the case of Artinian
Modules as following:

m
Theorem 1.13. Let U, and {Uj, Ik}:,l_l be LE and Artinian modules such that Uy is ;-
=1 k=1

injective for all j and Ujis almost U;-injective but not for all i. Then U, is almost
Qi® U) @ (XD I)) injective iff },;®D U;)is an extending module.

Definition1.14. Harada in [5] introduced the concept of ‘almost M-simple projective
modules’ and ‘almost M-simple injective modules’. He introduced a little weaker
condition to the definition of almost M-projective module. In the diagram 1 and 2, he
takeonly h : N = M / N Whose image is simple. If for any h in these diagrams, there exist

a homomorphism h, then N is called almost M-simple projective module. Similarly in the
diagram 3 and 4, he take only those f: X — M whose image is simple. If for any f in the
diagram 3 and 4, either there exist g: N = M such that diagram 3 commutes or there exist
h: N; - M such that diagram4 commutes, then N is called almost M —simple injective
module. He proved that the above weaker conditions coincide with the original one when
R is semi perfect ring and M and N are R-modules of finite length. He gave a criterion for
an R-module M, to be almost M;-projective, where R is a perfect ring and M; is
indecomposable R-module.

We have reproduced the results of Alahmadi and Jain of [1] as following:

108



Lemmal.15. An indecomposable almost self-injective module is T-injective and hence
uniform.

Proof. Let A and B be non zero submodules of an indecomposable almost self-injective
module M such that ANB = 0. Then the projection m: A @ B — Acan either be
extended to an endomorphism of M by diagram 3 or there exists a homomorphism
g € End(M) such that g = i by diagram 4. The later implies ker (7r)=0, a contradiction.
So M is m-injective and hence uniform module.

Lemma 1.16. Let M be a uniform module then E(M) (injective hull of M) is again
uniform module.

Proof: Let K; K, be submodules of E(M) with K;NK, =0, then M NK;, M NK, are
submodules of M and (M N K;)N(M N K,) = MN(K;NK,) = MNO = 0. M being
uniform module implies thatM N K; = 0 or M N K, = 0. So by the definition of E (M),
either K; = 0 or K, = 0 which shows that E (M) is a uniform module.

Theorem 1.17. By [7] A module M is almost N — injective iff for any homomorphism
f € Hom(E(N),E(M)) such that f(N) € M, the following holds:

(i) N = N; @ N,for some submodules Ny, N, with N; # 0.

(i) fis monic on E(Ny),E(M) = f(E(N,)) ®K; such that f(E(N,))Nmy(M) S
f(N;) where my: E(M) = f(E(N;)) is a projection via Kj.

(iii) f(N,NL) € Ky, where L = {x € N: f(x) € M} = f~1(M)NN.

(iv) For the projection m:E(M) — f(E(N,)) via K;, there exist an isomorphism
g:E(N;) = f(E(N;)) such that m;(M) € g(N,),g maps E(N;) onto f(E(N;)) and
g(x1) = f(x1) + £ (x2).

Proposition 1.18. Let M and N be uniform modules. Then M is almost N-injective
module if and only if for every f € Hom (E(N),E(M)) either f(N) €M or f is an
isomorphism and f~1(M) S N.

Proof. Assume M is almost N-injective module.

To prove: For every f € Hom (E(N), E(M)) either f(N) S M or f is an isomorphism
and f~1(M) €N..

Let f € Hom (E(N),E(N))and X = {n € N|f(n) € M } then f|x : X— M. Since M

is almost N— injective then, either diagram 3 or the diagram 4 holds. If diagram 3 holds,
then there exists g: N = M such that f|x = g|x.

Claim M n(g—f)(N) = 0.
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Assume that m € M N (g — f)(N) that imply m € Mand m € (g — f)(N) such that
m = (g- f)(n), forsomen € N.Then f (n) = g(n) - m € M.(because m € M

and g : N — Msuch that g(n) € N forall n € N that impliesg(n)- m € M, which
impliesn € X. Som = g(n) — f(n) = 0 (because flx = g|x)-

ButM C e E(M). Hence (g — f)(N) =0.Thatis f (N) & M.

If diagram 4 holds, then there exists h: M — N such that hof (x) = I(x) which shows f
is one-one. Since M and N are uniform modules then by lemma 1.16, E(M) and E(N) are
uniform which implies that we cannot decompose M,N,E(N) and E(M). Hence, by
theorem 1.17, f is an isomorphism. Clearly h|¢x) = f _1|f(X).

Again claimingM N (f"1—h ) (M) =0. Letm' € M N (f~1 — h ) (M) such that there
existn’ € N,n' = (f~1 — h)(m')for somem’ € Mthen f~Y(m) = h(m’)+n €N.
Apply f to both sides, we getm'= ff(m’) = f(h(m') +n’) which implies m’ € f(X). So
n' = (f~' = h)(m") = 0 because h|gxy = f~*|¢x) and m' € f(X). Hence our claim is
true. Since N S, E(N), (f"'— h)(M) = 0 . That means f (M) = h(M) € N. The
converse is clear.

Lemma 1.19. Let R be a ring with unity. Let End(Rg) denote the ring of endomorphism
of R regarded as a right R-module. Then R = End(Ry) as rings.

Lemma 1.20. An R module M # 0 is indecomposable iff End(M) has no non-trivial
idempotent.

Proposition1.21. Let R be a ring with no nontrivial idempotent. Then R is right almost
self- injective if and only if for every ¢ € E(Rg), either ¢ € R or there exists r € R such
thacr = 1.

Proof. Assume first R is right almost self —injective module. Lemma 1.19 and 1.20
implies that Ry is an indecomposable module. So Ry is uniform by lemma 1.15.

Let c € E(Rg) and I.: R = E(RpR) be the left multiplication homomorphism. i.e. I.(r) =
cr. Then there exits f : E(Rgr) — E(Rg) suchthatl.|p = f|r.

By proposition (1.18) either f(R) € R or f is an isomorphism and f~'(R) € R.
If f(R) € R, then [.(1) =c=f(1) € R which implies that c € R. If fis an
isomorphism and f~}(R) € R, then there exists r € R such that f(r) = 1. So, cr =
lc(r) = f(r) = 1. Conversely, suppose for every ¢ € E(Rg), either ¢ € R or there
existsr € R such that cr = 1. We claim that E(Rg)is uniform.

Let e € End(E(Rg)be an idempotent then for e(1) € E(RR), either e(1) € R or there

exists 7 € R suchthate(1)r = 1.Ife(1) € R, then e(1) is an idempotent in R and by

assumption e(1) =0 or e(1) =1. Hence e = 0 or e = lg,) because e(r) =

e(l.r)y=e(l)r=0.r=0 implies e=0or e(r)=e(l.r)=el)r=1r=r
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implies e = 1. Hence e = Qor = 1gg, . If e(l)r =1 for some r € R, then
e(r)=1.Soe(1) = e(e(r)) =e?(r) = e(r) = 1implies elr, = 1gpg-

We proceed to show that e = 1g(g,y. Suppose that there exists x € E(Rg) such
that e(x) # x,thene(x) —x # 0,since R S, E(Rg), then there exists r € R, such that
(ex — x)r'"# 0 and (ex — x)r' € R.So (ex — x)1r' = e(ex — x)r’ = (e’x —
ex)r' = (ex — ex) r = 0, a contradiction to the fact that (ex - x) r’ # 0. Therefore,
e = 1lggp)- This proves E(Rg) is indecomposable and hence uniform. Thus R is
uniform. Now let f € End E(Rg). Then by assumptionf (1) € E(Rg)implies either
f(1) € Ror f()r = f(r) = 1LIff(1) € Rimplies f(R) S R because forall r € R,
we have f(r) = f(1.r) = f(1)r € R.If f(r) = 1 for some r €R, thenf|,z: IR— R is an
isomorphism (because (E(Rg)) is uniform and injective ), f is an isomorphism on
E(Rg) and f"1(R) =rR S R.By proposition 1.18, R is almost self injective module.

Lemma 1.22.Let M be an indecomposable almost self injective module. Then for every
f,g €S =End (M),(i)ifker (f) & ker (g) then Sg & Sf (ii) if ker (f) = ker(g)
then either Sf € Sg or Sg < Sf.

Proof. Let @ : f(M) — g(M) be an R-homorphism defined by @(f(m) ) = g(m).

(1) We have Ker(f) & ker (g) then @ is not one-one map since there exist 0 # m, €
Ker (g) such that m; & Ker (f) such that @(f(m,;)) = g(m,) = 0. Since M is almost
N-injective module which implies diagram 4 cannot hold and only diagram 3 holds

because M is an indecomposable module. By assumption @ can be extended to M. Then

there exist h € S such that h(f(m)) = @(f(m)) forallm € M. Let] € S be an
identity map. Then/ 0 g € Sg and log(m) = I(g(m)) = g(m) = @(f(m)) =
h (f(m)) forallm € M so h(f(m)) € Sf implies Sg & Sf.

Let ker(f) = ker(g). In this case @ is one — one. Because if @ is not one-one implies
S msuchthat f(m) # 0 such that @(f(m))= 0 = g(m)whichimpliesm €
ker (g) = ker (f)which is contradiction because m & ker (f) ). So either @ is extended
to an endomorphism h € S or there exist n € S such that nogp= I¢y. Ifp = hon f(M)
then as above Sg < Sf. Ifno¢= I¢yy). Let I be identity map. That imply I € S. Then
Iof(m) € Sf.Iof(m) = f(m) = nop(f(m)) = n(¢(f(m))) =n(g(m)) =
nog(m) forallme M. Thus Sf S Sg.

Lemma 1.23. Let M be an indecomposable almost self-injective module and let S =

End(M).Then the left ideal H of S generated by non-isomorphic monomorphisms in S is
a two-sided ideal.

Proof. Given that H is left ideal generated by non-isomorphic monomorphism in S. We
need only to show that fg € H for each g € S and for each non-isomorphism f € S
with ker (f) = 0. If ker(fg) #0 which impliesfg € H (by lemma 1.22).
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If Ker(fg) = Othenfg is one-one implies g is one-one. If fg were an isomorphism that
implies f would be onto which is contradiction because f € H. That implies fg € H is
non-isomorphic monomorphism.

Theorem 1.24. If M is an indecomposable almost self injective module then End (M) is
local.

Proof. Given that M is an indecomposable almost self injective module.To prove
End (M) is local, we have to prove the set of non-units of End (M) forms an ideal.

Let S = End(M)then by lemmal.20, S has only trivial idempotent. Let F be set of all
non-isomorphic monomorphism in S. If F is empty, then ¢ € S is an isomorphism iff
ker(¢) = 0. Let K be set of non-units in S. We have to prove K is an ideal. Let h,g €
K and suppose that h + g € U(S) where U(S) is group of units of S. Let x €
ker (h) N ker(g) then (h + g)(x) = 0 implies thatx = 0. Since M is uniform,
either ker (h) = Oor ker (g) = 0. This means either h or g is an isomorphism. Which
is contradiction because h,g € K impliesthath + g € K.Letr € S,h € K, ifrhis
non-units then rh € K. If rh € U(S) that imply h is one-one . So his an isomorphism
(because F is empty) which is contradiction because h € K. Sorh € K. HenceS is local.
Suppose F is non-empty. Let H = ¢ Sf. By Lemma 1.22, S\U(S) € H. Now let
h € H.We show that h is not invertible. Write h = Y1*.; g;f;, where f; € F,g; € S.By
Lemma 1.22Sf; Sf,,........,Sfpare linearly order.So Sf; € S5f, € ---....C Sf,after
reordering if necessary. Hence h = g f,, for some g € S. Now if h is invertible, then
fnis left invertible. Since S has no nontrivial idempotents, f,, is invertible, a contradiction
because f,, €EF. Thus H = S\U(S). Since H is two- sided ideal of S by lemma 1.23, it
follows that S is local.

Theorem 1.25. Let {M;}/-, be the finite set of indecomposable almost self-injective
modules. If M; is almost M;-injective for each pair i and j in {1,2,....,n} then @;_; M;
is almost self- injective module.

Definition 1.26 .(Generalization N-injective modules). In [6], Hanada K. et al.

introduced a generalization of relative injectivity.For two modules M and N, M is called
generalized N-injective module, if for any submodule X of N and any homomorphism

f:X > M, there exist decompositions N = N®N, M =M@ M, a homomorphism
f:N - M, and a monomorphism f: M — N satisfying properties (*), (**)

(") Xc N @ g(M)

(**) For x € X, we express x in N = N ® Nasx = X ®X, whereX[IN, then f(x) =
f(X) + f(%), where f = g~*.

M is called generalized self-injective module if Mis generalized M-injective module.
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Proposition 1.27. If M is generalized N- injective module, then M is almost N- injective
module.

Proof. Let X be a submodule of N and f: X — M be a homomorphism. Then there exist
decompositionsN = N ®N, M= M®M, a homomorphism f:X—>M and a
monomorphism g.M >N satisfying the properties f:X — M(*), (**). If f can be
extended to N, then N # N .This means N # 0.Define h: M - N by h = gomy
where my; 1 M - M is the canonical projection of M onto M with respect to the
decomposition M = M @ M. For every x €X, express x inN=N@®Nasx = ¥ ®
%, where ¥ € N and ¥ € N. Then by (**) hf (x) = h(f(%) + f(X), where f = g1
=g h(f (X)) +f (D)
=g(f(X)
X

=17 0 ix(X)
Hence M is almost N- injective module.

Remark 1.28. Clearly, if M and N are indecomposable modules, then M is almost N-
injective module if and only if M is generalized N-injective module.

Definition 1.29. For two modules M and N, M is said to be essentially N-injective
module if for every submodule X of N, any homomorphism f: X — M with
ker (f) €. X, then f can be extended to a homomorphismg: N — M provided
ker (f) S, N..

Proposition 1.30. If M is generalized N-injective module, then M is essentially N-
injective module.

Proof. Let X be a submodule of N and let f: X — M be a homomorphism with
ker f €, X. Let Y be a submodule of Nwith X @ Y S, N. Define g: A = X @
Y > M by glx+y) = f(x). Since X @ Y S, N andker (f) S, X, We see
ker (g) €. N. By assumption, there exist decompos1t10n M=M®MandN = N®
N, a homomorphism § : N > M, and a monomorphism h: M-N satisfying, for
a=a+awthaeN and G€N, g(a) = (g(a) + g(a@), where § = h™1. Since
ker (9) S, N, we see Im(h) = 0and hence M = 0. Now definef*: N=N® N -
Mby f* (n+n) = g(n). Then we see f*|xy= f. Thus M is essentially N-injective
module.
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Abstract

This paper deals with the convection of micropolar fluids heated from below in the
presence of suspended particles (fine dust) and uniform vertical magnetic field
H (0,0,H ) in a porous medium and using the Boussinesq approximation, the linearized
stability theory and normal mode analysis, the exact solutions are obtained for the case of
two free boundaries. It is found that the presence of the suspended particles number
density, the magnetic field intensity and medium permeability bring oscillatory modes
which were non—existent in their absence. It is found that the presence of coupling
between thermal, micropolar effects, magnetic field intensity and suspended particles
may introduce overstability in the system. Graphs have been plotted by giving numerical
values to the parameters accounting for magnetic field intensity H (0,0,H ), the dynamic
microrotation viscosity x and coefficient of angular viscosity y' to depict the stability
characteristics, for both the cases of stationary convection and overstability. It is found
that Rayleigh number for the case of overstability and stationary convection increases
with increase in magnetic field intensity and decreases with increase in micropolar
coefficients and medium permeability, for a fixed wave number, implying thereby the
stabilizing effect of magnetic field intensity and destabilizing effect of micropolar
coefficients and medium permeability on the thermal convection of micropolar fluids.

Keywords: Micropolar fluid; Magnetic field; Suspended particles (fine dust); Medium
permeability; Microrotation; Coefficient of angular velocity.
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Introduction

Micropolar theory was introduced by Eringen [5] in order to describe some physical
systems which do not sastisfy the Navier Stokes equations. These fluids are able to
describe the behaviour of colloidal solutions, liquid crystals; animal blood etc.The
equations governing the flow of micropolar fluid theory involve a spin vector and a
microinertia tensor in addition to velocity vector. A generalization of the theory including
thermal effects has been developed by Kazakia and Ariman [7] and Eringen [6].
Micropolar fluid stabilities have become an important field of research these days. A
particular stability problem is the Rayleigh-Bénard instability in a horizontal thin layer of
fluid heated from below. A detailed account of thermal convection in a horizontal thin
layer of Newtonian fluid heated from below has been given by Chandrasekhar [4].
Ahmadi [1] and Pérez-Garcia et al. [13] have studied the effects of the microstructures on
the thermal convection and have found that in the absence of coupling between thermal
and micropolar effects, the principle of exchange of stabilities may not be fulfilled and
consequently micropolar fluids introduce oscillatory motions. The existence of oscillatory
motions in micropolar fluids has been depicted by Lekkerkerker in liquid crystals [9, 10],
Bradley in dielectric fluids [3] and Laidlaw in binary mixture [11]. In the study of
problems of thermal convection, it is frequent practice to simplify the basic equations by
introducing an approximation which is attributed to Boussinesq [2]. In geophysical
situations, the fluid is often not pure but contains suspended particles. Saffman [17] has
considered the stability of laminar flow of a dusty gas. Scanlon and Segel [18] have
considered the effects of suspended particles on the onset of Bénard convection, whereas
Sharma et al.[19] have studied the effect of suspended particles on the onset of Bénard
convection in hydromagnetics and found that the critical Rayleigh number was reduced
because of the heat capacity of the particles. The separate effects of suspended particles,
rotation and solute gradient on thermal instability of fluids saturating a porous medium
have been discussed by Sharma and Sharma [20]. The suspended particles were thus
found to destabilize the layer. Palaniswami and Purushotham [14] have studied the
stability of shear flow of stratified fluids with the fine dust and found that the presence of
dust particles increases the region of instability. On the other hand, multiphase fluid
systems are concerned with the motion of liquid or gas containing immiscible inert
identical particles.

The theoretical and experimental results of the onset of themal instability (Bénard
convection) in a fluid layer under varying assumptions of hydromagnetics, has been
depicted in a treatise by Chandrasekhar [4]. Lapwood [8] has studied the convective flow
in porous medium using linearized stability theory. The Rayleigh instability in flow
through a porous medium has been considered by Wooding [15]. The problem of thermal
convection in a fluid in porous medium is of importance in geophysics, soil-science,
ground—water, hydrology and astrophysics. The physical property of comets, meteororites
and inter—planetary dust strongly suggests the importance of porosity in the astrophysical
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context (McDonnel [12]). Moreover, Saffman and Taylor [16] have shown that the
motion in a Hele—Shaw cell is mathematically analogous to two dimensional flow in
porous medium. In recent years, there has been a considerable interest in the study of
breakdown of the stability of a layer of a fluid subjected to a vertical temperature gradient
in a porous medium and also in the possibility of convective flow.

When a fluid permeates a porous material, the gross effect is represented by Darcy’s law.
As a result of this macroscopic law, the usual viscous term in the equations of motion of

1
microscopic fluid is replaced by the resistance term {—k—(ﬂ-i-l(') q}, where x4 and x
1

are viscosity and dynamic microrotation viscosity respectively, k, is the medium
permeability and q is the Darcian (filter) velocity of the fluid. Sharma and Gupta [21]
have studied the thermal convection in micropolar fluids in porous medium and have
found that medium permeability has stabilizing effect on stationary convection and
destabilizing effect on the overstable case. Sharma and Kumar [22] have studied the
thermal instability of micropolar fluids in hydromagnetics in porous medium. Keeping in
mind the importance and relevance of porosity and hydromagnetics in chemical
engineering, geophysics and biomechanics, thermal instability of micropolar fluids in the
presence of a uniform vertical magnetic field to include the effect of suspended particles
(dust particles) in porous medium has been considered in the present paper.

Mathematical formulation and analysis

Consider an infinite, horizontal layer of an incompressible electrically conducting
micropolar fluid of thickness d permeated with suspended particles (or fine dust) in an
isotropic and homogeneous medium of porosity ¢ and medium permeability k. This
fluid-particles layer is heated from below but convection sets in when the temperature

gradient (,3 = ‘ d%z ‘) between the lower and upper boundaries exceeds a certain

critical value. A uniform vertical magnetic field H (0,0, H) pervades the system. This is
the Rayleigh-Bénard instability problem in micropolar fluids. Both the boundaries are
taken to be free and perfect conductor of heat. The mass, momentum, internal angular
momentum, internal energy balance equations using the Boussinesq approximation are

V-q=0, (1

l(iJrq_,vjq:_ivp_ 1 (ﬂ+K)q+£Vx9—(l+@jgéZ+LE(U—Q)

e\ 0t & Po Po ky Po Po o €

+L&(VXH)XH, @
Py 4r
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pojl(%+ﬂ-vj8:(8’+ﬂ’)V(V-9)+y’V29+5vXq—2KS, 3)
& &

[poc,e+ p.c,(1- 5)]%+ PoC, qQ-VT =k, VT +5(Vx8)-VT . 4)

where q, 9, p, p, 9, p,, 4. and U, denote the filter (seepage) velocity, the spin,
the pressure, the fluid density, the acceleration due to gravity, the reference density,
magnetic permeability and velocity of the suspended particles, respectively. NV (X,t)
denotes the number density of dust particles and x is the dynamic microrotation
Viscosity.X:(x, y,z). K=6rur, r being the particle radius, is the Stokes drag

coefficient and &, c,,c,c, ,0, i denote, respectively, the thermal conductivity, the

pt>
specific heat at constant volume, the heat capacity of solid matrix , the heat capacity of
particles, the coefficient giving account of coupling between spin and heat flux , and
microinertial constant. ', ',y are the coefficients of angular viscosity.

Assuming dust particles of uniform size, spherical shape and small relative velocities
between the two phases (fluid and particles), the net effect of the particles on the fluid is
equivalent to an extra body force term per unit volume KN (u - V), as has been taken in
equation [2]. We also use the Boussinesq approximation by allowing the density to
change only in the gravitational body force term.

The density equation of the state is

p=pli-a(-T,)] :

where p,,T, are reference density, reference temperature at the lower boundary and
a s the coefficient of thermal expansion.

Since the force exerted by the fluid on the particles is equal and opposite to that exerted
by the particles on the fluid. The distance between the particles is assumed to be so large
compared with their diameter that interparticle reactions are ignored. The buoyancy force
on the particles is also neglected. If mN is the mass of suspended particles per unit
volume, then the equations of motion and continuity for the particles, under the above
assumptions, are

mN(£+E-Vj u=KN(q-u), (5)
ot ¢

ON
5E+V-(Nu)—0 (6)
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The Maxwell’s equations yield

5%=Vx(qu)+5nV2H, (7)
V-H=0. (8)
where 77[2 ] is called resistivity and o is electrical conductivity.

4rmu,o

In the quiescent state, the solution of equations [1] —[8] is

q=0,u=0,8=0, N=N,(constant), T=T, - Bz, p=p,(1+apz),

p:po_gpo(z"'aﬂzz Ja ©

T
where p, is the pressure at z=0 and S = Od L (T, >T,) is the magnitude of

uniform

temperature gradient.

Assume small perturbations around the basic state, and let
q =(u,v,w), u =(€,r,s), w, p', p', & and h(hx,hy,hz) denote, respectively,
the perturbations on fluid velocity q, particles velocity u, spind, pressure p,

density p, temperature 7 and magnetic field H (0,0,H ) , so that the change in density
p' caused by the perturbations @ in temperature is given by

p'=-pab. (10)

Then the linearized perturbation equations of the microplar fluid become

V-q=0, (11)
KN,

&(QJFE-qu =—Vp'—i(,u+l( )a+x(Vxw)+gpafé. +—2(u—q)+

e \o0t ¢ k, g

He (v xh)xH, (12)

4r

. a q ! ' rv72 K
poii| 5727V w=(¢ +,8)V(V-w)+7/Vw+;qu—2Kw, (13)
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[p, c.e+pc(1-¢)] (£+9-Vj0:ﬁ (w+hs)+k,V20+5 [VO-(Vxw)-(Vxw), - A,

£
(14)
g%sz(qxh)+gnV2h, (15)
V-h=0, (16)
0 u
mNo[—+—-Vju:KNo(q—u), (17)
ot ¢
gaﬂ+v-u:0, (18)
ot
where H1:1+h1,h1:fc‘m, f:mNO and M =2
¢, Po N,
Using the non—dimensional numbers
5 .
cezd, 0=pdo. =P qifrg vy
y7, d d
Ky« UK s Kr UK ;)2
u=—u, = , w=—"w", h=| =L | h 19
7 P="5p PE (dzj (19)
Equations [11] - [18] in the non-dimensional form are
V-q=0, (20)
V2 A N,
—(—+— Vj =—Vp' ——1+K) q+K,Vxw+é, RO+—2(u-q)+
£ £
(Vxh)xH, (21)
q ' 1
—+— Viw=C/V(V-w)-CVx(Vxw)+K,|—Vxq-2w |, (22)
£
9.
EHlpl[ = Je Bw+hs)+x,V0+5[VO-(Vxw)-(Vxw).], (23)
£
g (qxh)+—V2h (24)
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V-h=0, (25)

[a(i+q-VJ+l}u=q, 26)
ot
where the following non-dimensional parameters are introduced
K - = o , ' , &+ p+y
K=", =0, 5=—0 -0 _ =tFPrr
u d poc,d pud ud
-k 2
E=et(-e)2% | f=F N oxn, 4= A
PoC, d H Kd*  p,
a d* v v k
R:%’plz—’pzz—’ K, = T 27)
HKrp Kr n PoC,

Eliminating s between equations [23] and [26] and applying the curl operator twice to
resulting equation, we obtain

LZ[EHlplg—Vz}6’=(a%+Hljﬂw—Lz5_QZ. (28)

Eliminating u between equations [21] and [26] and on linearizing, we obtain

&L, q=L{—vp'—ki(lﬂg)q+K1va+R9 é. + Z‘e (Vxh)xH ,(29)
1 T
where
2
leaaz+Fi, Lzzai+1 and
ot ot ot
F=f+1.

Applying the curl operator to equations [21], [22] and [24] taking z —component,

we get

(1+K,)V¢, L, + X0

0 1
e'L,—¢. +e' NG, (L, -1)=—= ,
Zaté/z Zé/z( 2 ) kl 472_ 62 2

(30)

- 08,
J2 EY)

=C,\V’Q. —K1[1v2w+292], (31)
g
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AR (32)
ot ot D,

where & =(Vxh)., £.=(Vxq)., are the z—components of current density and

vorticity, respectively. K, and C; account for coupling between vorticity and spin

effects and spin diffusion, respectively.
Taking the z —component of equations [24], we get

Oh g f gy (33)
ot oz p,

g

Applying the curl operator twice to equations [21] and taking z —component, we get

H
LV w=L| RV 0- (14K, )Viw+ Kk v2Q, +HL 0 g2y | (34)
. Ar Oz
2 2 2 2 2
where Vf:az+a—2, 2:62+62+62,QZ:(V><(»)2. (35)
ox~ 0y ox~ 0y 0z

The boundaries are considered to be free. The case of two free boundaries is little
artificial except in astrophysical situations but it enables us to find analytical solutions.

Thus the boundary conditions appropriate to problem are

2
=T 2 (vxq). =0.(vxh). =(Vxw). =0, 6= -

~ = =0atz=0andz=d.
0z 0z oz

(36)

Now we analyze the perturbations into a complete set of normal modes and then examine
the stability of each of these modes individually. For the system of equations [28], [30]-
[34], the analysis can be made in terms of two dimensional periodic waves of assigned
wave numbers. Thus we ascribe to all quantities describing the perturbation dependence
on x,y and ¢ of the form expli(kxx+kyy)+ ntJ, where &, ,k, are the wave numbers

1
along the x- and y- directions, respectively, k :(kf +k? )A is the resultant wave

number, n is the stability parameter which can be, complex, in general. The solution of
the stability problem requires the specifications of the state for each k. The above
considerations allow us to suppose that the perturbation quantities have the form

[w,2.,¢.,£..0,h.]= W (2),2,(2),Z(2),G(2),0(z2), B(z) exp ik x + ik y +nt), (37)
then the equations [28], [30]-[34], become
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(an+1){EH, pn—(D* =k*)}@ = (an+ H,) W —(an+1)5 @,, (38)

(0 _kz){(anwnp

]%(an+1)(l+K1)(D2 —kz)}W:(an+1 {-REO+K, (D> - k)@

1

+M(D —k )DB} (39)
1 uH
{ an’ +Fn (an+1)T(I+K1)}Z: < (an+1)DG, (40)
k, 4r
{tn+24-(D? -k ) @, =—4&7 (D> k)W, (41)
{n—— )}G ¢'H DZ, (42)
{ _L(Dz_kz)}B_ -1
n =¢'HDW, (43)
P>
-4
A==L 0 =7, 2.
where C,: 1 = J2 K,

The boundary conditions [36] transform to

W=0, D’W=0,DZ=0,G=0,Q,=0,0=0, DB=0 at z=0 and 1. (44)
Using boundary conditions (44), equations (38)—(43) transform to

D’©=0, D’Q,=0, D’Z=0, D’G=0, D’B=0, (45)

Differentiating [39] twice with respect to z and using boundary conditions [45], it can be

shown that D* = 0. It can be shown from equations.[38]-[43] and boundary conditions
[44], [45] that all even order derivatives of W vanish on the boundaries .The proper
solution of W belonging to the lowest mode is

W=W,sinrz, (46)
where W, is a constant.

Eliminating @, I', ©, from equations [38] - [43] and substituting the solution given
by equation [46], we obtain the dispersion relation
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sz{mpiz}{(cm+H1)(£1n+2A+b)—(an+1)g154b}=b{gl(cm2 +Fn)+%l(an+1)(l+Kl)}

(EH,pn+b )(Eln+2A+b){n+i}—g‘1K1Ab2(an +1)(EH1p1n+b){n+i}+
P, P,
H’rx

(EH pnb+b*)(an+1)e™ (£,n+24+b). (47)

where b=7"+k’.
The case of oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in the stability problem
due to the presence of magnetic field intensity and suspended particles number density.
Equating the imaginary parts of equation [47], we have

2 3 273
n{nfEaleplﬁla'l + nf(— 24ab’e —ab’e™ - 2EH1p1Aﬂa"l - 2EH1p1Aﬂa'l _ab
P Y2 P

-1
lie

b* 1
—EFH,pbe™ —EFH,pb’c™ —Fb*(, e —EH,pl,e” —+ {— 2AEH,p,ab— EH, p,ab® —

D, 1

ab*/,
P>

2 3
- EH,p/, ab” _ 2AEH, p,abK, — EH,p Kb’ —ab’(,K, — EH, p ! bK, +b—“1<1}+ Rk*al | +

2 P>

5 4 4 3 2
242" +b—F31]+“b +2 (Awi{AaKl +AEHllel}]+b—(é2Ab3EH1p1K1
P, P, P, P, k, P, \ k,

+Riea gA—sza)erz ,izAKl +b(Rk2 {—Hl +ode™ —%a—iHl él} ~2Rk*>4H, |=0.
k, P, P>
(48)
It is evident from equation [48] that n, may be either zero or non-zero, meaning thereby

that the modes may be non-oscillatory or oscillatory. In the absence of suspended
particles and solute parameter equation [48] reduces to

n, (247K, + Rk*54b)=0 (49)
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and term within the brackets is definitely positive, which implies that n, =0. Therefore,

the oscillatory modes are not allowed and principal of exchange of stabilities is satisfied
for porous medium in the absence of suspended particles and magnetic field. The
presence of the suspended particles number density, the magnetic field intensity and
medium permeability bring oscillatory modes (as », may not be zero) which were non—

existent in their absence.
The case of overstability

The present section is devoted to the possibility that instability may occur as
overstability. Since we wish to determine the Rayleigh number for onset of instability via
a state of pure oscillations, it suffices to find the conditions for which equation [47] will

admit of solutions with n, real. Substituting n = in, in equation [47], and then equating
the real and imaginary parts of equation [47] we obtain

R 2o b (1— 57 54))- niz{bﬁl(l + i} +af2AH E+b(1- gISA)}H -
P

2 2

[

N

1+K EH
n, EHlplélbzgfla@ + glab{bﬁl(l +—1plj} + EH, p,e”' (2a4 + FEI)}
p

i
1 2

- niZH(ZA +b)gl(1 + B, ] LELpdt, HzaAEH1 (1+TK1)b3 +be ™ (2ad + Ffl)}

)2 P, 1
1
{EHlpl LK) e aE}+b4a£1E ¢ +_K1)[1 LD j ~K,Aep’
k, P> k, P
2
{Elel +ag” [1—?— Elel j}:|+ H4ﬂ g [_ niz{bfl(EI‘hpl +a)+ EI‘I1p1<9_1 (2A+b)}]
P>

P, 1 P, 1

{L{M—EIKIA}E +£{2A(1+TK1)H (50)

and

2 2
Rk{— al \n} +2AH,n. + H bn, —n.6Abe™ +%ani +b—ani +iH1£1ni —b—glanigA} =

P P> P> P>
2 3 293
EabH,p,( n’e” —24ab’n}e™ —ab’n)e™ —ZEHlplanﬂe‘l —2EH1plni3Aﬂ(s‘l _ab
2 P> P>
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5
¢ nie™ —EFH pn)be™ —EFn]H pb’c™ —Fb*l nje™ —EH pln e b—+ 242

P> P>
4 37,2 2
bl b
Fn,e™ +I)—Frzl..s"1 < —~2AEH p,abn] — EH p,n’ab’ —L—EH1 on L
P, ky P D
b* ab’ 3 3 2 2) 3 b’
+24an;, —+ n,K, —2AEH \p,n;abK | — EH pn; K \b" —ab"l \n; K, +2A4an, —K,
P> P D
ab* 3 ) 3 b’ b b
+ n,K,—EH pn;l b+24b"n, +b’n, + 2AEH ,p\n, —+ EH ,pn, —+ —1( ,n,K,
P> P, P> P>

2 b3 b3
—EH,pnl bK, +2A4b°n.K, +2AEH pn, b—K1 +2AEH pn,—K, +—nK, |.

2 D, P,

(51)
Eliminating R between equation (50) and (51), we get

-1
nl{bz{ G H (IJ;{K )} b{g “lepl (EfMl—abg15A—F€1)—g1b3a€1HlE(E+(l+Kl)JH

1 1 P> kl

(1+K,)

k,
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) 1 P

E 1 1
pp1 a’p,H(H, —1)}+b {pZ EH, p,aF(1-¢"'84)+ EH, p,0}a* —(H, —1)— EH,p,( K,a
2 2 2

2 2 E .

-84+ £ B par(i-£'54) + b{ UL ym (H-1)-2 ”glgla[agl—plael+plglfsf1]
2 P> 4 b

2H’ 7

(1+K) 1

+2AF*s ' (2-K,Ep, )}+b{—2—2A2E2aHI p(H, -F)-

2

~2Aal H E’

elal 4

1

E _ _ 1+ K, a’ =
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P,

D, pz kl )2
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M—EHlplfl L 2-e54)- 252 pag 4K) H'm o Hip (2-&754)— EH, p,54
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2 2
{(1—5-15/1)(“]1” 1 —1j+ 2ABa (1 —1)H +b{—g-l % A% (H, —1)+@M}
)2

P, P P, ky
: E(H, EH
+b{¥g‘(2 £ 5A) = e A T (H, —1)} 0. (52)
P P,

It is evident from the equation [52] that overstable modes will not be present for all
values of parameters. For example, in the absence of coupling between spin and heat

flux (é_' = O), magnetic field (I:I = 0), 1;1 — o and in the absence of suspended particles
(a =0=f= hl), equation [52] allows only 7, =0 and so overstable solution will not
take place if EK p, <2.

For stationary convection, the marginal state is characterized by n, = 0 ; and the Rayleigh
number is given by

2
b’ M—g’IKIA +2b? A(1+K) H T (24+b)e b,
. k k 4

k*{2H,A+b(l-5754) | ' 3)

In the absence of magnetic field intensity (H:O) and suspended particles
(a=0=f=h,) equation [53] reduces to

R =

1 kl
k2{2A+b(l—g"5A)} ’ G

aresult in good agreement with Sharma and Gupta [21].

Discussion of Results

Equation [52] has been examined numerically using the Newton—Raphson method
through the software Fortran 90. We have plotted the variation of Rayleigh number with
respect to wave-number using equation [51] satisfying [52] for overstable case and
equation [53] for stationary case, for the fixed permissible values of the dimensionless

parameters K, =1, 4=0.5, 5_:1,61 =1, p,=5,p, =1 a=10,F =1.005,
H, =1.01,6=0.5, E=0.9, 1;1 =2. Figures [1]-[3] correspond to three values of
magnetic field intensity H = 70, 100 and 120 Gauss, respectively. The graphs show that
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Rayleigh number increases with increase in magnetic field intensity depicting thereby the
stabilizing effect of magnetic field intensity. Moreover, the magnetic field introduces the
oscillatory modes in the system. Figures [4]-[6] correspond to three values of medium
permeability Igl =5, 10 and 30. The graphs show that the Rayleigh number for the
stationary convection and for the case of overstability decreases with the increase in
medium  permeability  depicting thereby destabilizing effect of medium
permeability.Figures [7]-[9] correspond to three values of micropolar coefficient
x =0.5, 0.7 and 1.0, respectively, accounting for dynamic microrotation viscosity. The
graphs show that the Rayleigh number for the stationary convection and for the case of
overstability decreases with the increase in micropolar coefficient x implying thereby
the destabilizing effect of dynamic microrotation viscosity.

Figures [10]-[12] correspond to three values of micropolar coefficient »' =1.0, 1.2 and

1.4, respectively. The graphs show that the Rayleigh number for the stationary
convection and for the case of overstability decreases with the increase in micropolar
coefficient »' implying thereby the destabilizing effect of coefficient of angular

viscosity, therefore micropolar coefficients have destabilizing effects on the system.
Conclusion

There is a s competition between the large enough stabilizing effect of magnetic
intensity and the destabilizing effect of the micropolar coefficients. The presence of
coupling between thermal and micropolar effects, magnetic field and suspended particles
number density may bring overstability in the system. It is also noted from the figures
[3], [4], [7] and [10] that the Rayleigh number for overstability is always less than the
Rayleigh number for stationary convection, for a fixed wave-number. However, the

reverse may also occur for large wave-numbers, as has been depicted in figures [1], [2],
[5], [6], [8], [9], [11] and [12].
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Abstract

An investigation of the effects of porosity, Hall current and radiation on unsteady
hydromagnetic free convection flow of a viscous, incompressible, electrically conducting
and optically thin radiating fluid past a heated moving vertical plate embedded in porous
medium is carried out. The dimensionless governing coupled; partial differential
equations are solved by using Laplace transform technique. The effects of various
physical parameters, encountered in the problem, on the primary and secondary fluid
velocities and fluid temperature are numerically evaluated and shown through graphs,
while the effects on skin-friction and rate of heat transfer are numerically evaluated and
discussed with the help of tables.

Keywords: Hall current; Hydromagnetic flow; Porosity; Radiation; Free convection
Mathematical subject classification (2010): 76D05, 76D10
Introduction

The problems of MHD free convection flow in porous media have drawn attention of
many researchers due to significant effect of magnetic field on the boundary layer
control. On account of their varied importance, these flows have been studied by several
authors. Bejan and Khair [5] investigated the vertical free convection boundary layer
flow with heat and mass transfer in a porous medium. The combined heat and mass
transfer effects on MHD free convective flow through porous medium have been studied
by Chaudhary and Jain [6]. Singh and Kumar [17] discussed the heat and mass transfer
MHD flow through porous medium. Mishra et al. [13] considered free convective MHD
flow of a viscous incompressible and electrically conducting fluid past a hot vertical
porous plate embedded in a porous medium. The effects of heat transfer on MHD free
convective flow through porous medium with viscous dissipation have been analyzed by
Poonia and Chaudhary [14].

Radiation effects on free convection flow have numerous applications in Science and
engineering. Israel-Cookey et al. [10] discussed the influence of viscous dissipation and
radiation on an unsteady MHD free convective flow past an infinitely long heated vertical
plate in a porous medium with time dependent suction. Shankar et al. [16] analyzed
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radiation and mass transfer effects on MHD free convection fluid flow embedded in a
porous medium with heat generation/absorption. Radiation effect on the natural
convection flow of an optically thin viscous incompressible fluid near a vertical plate
with ramped wall temperature in a porous medium has been studied by Das et al. [9].
Kishore et al. [12] considered the effects of thermal radiation and viscous dissipation on
MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a
porous medium with variable surface conditions. The effects of thermal radiation and
chemical reaction on MHD unsteady mass transfer flow past a semi-infinite vertical
porous plate embedded in a porous medium in a slip flow regime with variable suction
have been analyzed by Ahmed and Das [1]. Balla and Naikoti [4] performed a numerical
analysis to study the unsteady magnetohydrodynamic convective flow of a viscous,
incompressible, electrically conducting Newtonian fluid along a vertical permeable plate
in the presence of a homogeneous first order chemical reaction and taking into account
thermal radiation effects.

The magnetohydrodynamic free convection heat and mass transfer of a heat generating
fluid past an impulsively started infinite vertical porous plate with Hall current and
radiation absorption has been studied by Kinyanjui et al. [11]. Takhar et al. [18]
investigated the unsteady free convective flow past an infinitely long vertical porous plate
due to the combined effects of thermal and mass diffusion, magnetic field and Hall
currents. Ahmed and Kalita [3] presented some model studies on the effect of Hall
current on MHD convection flow. The problem of an MHD transient flow with Hall
current past a uniformly accelerated horizontal porous plate in a rotating system has been
discussed by Ahmed et al. [2]. Hall effects on an unsteady MHD free convective flow of
a viscous incompressible electrically conducting fluid past a uniformly accelerated
vertical plate in the presence of a uniform transverse applied magnetic field have been
investigated by Sarkar et al. [15]. Das et al. [8] analyzed the effects of Hall currents and
radiation on MHD flow of a viscous incompressible electrically conducting fluid past a
moving vertical plate with variable temperature in the presence of a uniform transverse
magnetic field.

Objective of the present investigation is to extend the work of Das et al. [8] and to study
the effects of porosity, Hall current and radiation on unsteady hydromagnetic free
convection flow of a viscous, incompressible, electrically conducting and optically thin
radiating fluid past a heated moving vertical plate embedded in porous medium. The
Laplace transform technique is used to solve the governing equations in order to obtain
the analytical results for velocity and temperature profile, rate of heat transfer and shear
stresses.

Formulation of the problem

134



Consider unsteady  hydromagnetic  free .
convective flow of a viscous, incompressible,
electrically conducting and optically thin
radiating fluid past an infinite vertical plate
embedded in porous medium by taking Hall
current into account. Coordinate system 1is
chosen in such a way that x -axis is taken
along the plate in the upward direction, y -axis E

normal to it and z-axis perpendicular to xy -

plane. A uniform magnetic field of strength B,

is applied perpendicular to the plate. Fig. 1 Physical model of the problem

Initially, at time 7 < 0both the fluid and the plate are at rest and assumed to be at the
same temperature 7, . At time ¢>0the plate at z=0 starts moving in its plane with

uniform velocity U,and is heated with temperature 7 (r,-T )L. Since the plate is
o0 w 0 tO

infinitely long in x and y directions, therefore all the physical quantities except pressure
depend upon z and t only.

Under the usual Boussinesq approximation, equations governing the flow are given by

oz
ou 0’u cB; vu (2)
= T -T V= ———90 (4 — - =
o "Vt eI L) P(1+m2)(u "=k

2 2
L T B 3)
ot 0z p(l+m2) K

— =K

"ot 0z 0z
In above equations u,v,w—denote the components of velocity in the boundary layer in
x,y andz directions respectively; j,j,, . —the current density components; T —the

temperature of fluid in the boundary; 7/, —the temperature of the free stream; 7, — the
temperature of the plate; ¢—the time; #, — the characteristics time; p—the fluid
pressure; S —the volumetric coefficient of thermal expansion; p — the density of fluid;
g —the acceleration due to gravity; v —the kinematic viscosity; K —the permeability of
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the medium; C, — the heat capacity of fluid at constant pressure; B, —the magnetic field

strength; x —the thermal conductivity of the fluid; g —the radiative heat flux.

The initial and boundary conditions for velocity and temperature profile are:

u=0,v=0,T=T, forall z and <0

uzUO,v:o,Tsz+(Tw_Tw)tLatz=0fort>0 (5)

0

u—>0,v—>0,T—>T, as z—>ow fort>0

Following Cogley et al. [7], it is assumed that fluid is optically thin with a relatively low
density and radiative heat flux is given by

dq

L —a(r-T)I 6

oz ( w) ©)

where ; _ TK {ae” ] Ja (7
0 . aT w

In equations (7) K is the absorption coefficient, A is the wavelength, e, is the Plank’s

function and the subscript ‘ w’ pointed out that all quantities have been evaluated at the
temperature 7, which is the temperature of the wall at timez <0. Thus the study is

limited to small difference of plate temperature to fluid temperature.
On the use of the equation (6), the equation (4) becomes

oT 0T
— =K
Pot 0z?

-4(T-T,)1 ®)

To solve above equations, introducing following non-dimensional variables and
parameters:

; T-T C
ulzu,vlzV,U:ZUO,T=U0t,0=( m)’Pr:,Up
U, U, v v (r,-T,) K
2 2
Gr:gﬂU(T";_T“’),Mz:GBO;),KIZKUO,R:4IZUZ )
UO on U2 UOK

Using these dimensionless quantities, equations (2), (3) and (8) transform to
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oug 0%, MP(u-mv) w o (10)
or an’ (1+m?) K,

ﬁi_azvl_Mz(vl+mu])_v_1 (]1)
ér dn? (1+m?) K,
2
120009 gy (12)
or on’

where M ,K,,Gr,Pr and R represents the magnetic parameter, the permeability
parameter, the Grashof number, the Prandtl number and the radiation parameter
respectively. In above non-dimensionalisation process, the characteristics time #, can be
defined as ¢, = LZ
0

The corresponding initial and boundary conditions are

u, =0,v,=0,0=0forall ; and 7<0

u, =1y, =0,0=rat , = o for >0 (13)
u, —>0,v, >0, >0as, ,, , forz>0

Method of solution

To solve the system of equations (10) and (11), we combine these equations as follows
and get
OF 0°F (14)

—= ——a,F +Gré
or on

2
where £ =, 41, a4 =rz+L’rz=M and ; = /~1
K] T+ m)

The corresponding initial and boundary conditions are

F=0,0=0forall 7 and 7 <0

F=LO0=ratn=0for >0

F—>0,0>0an—oforz>0 (15)

Applying Laplace transformation and on using initial conditions, equations (12) and (14)
become
d’F

> —(s+al)f:—Gr§ (16)
dn
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d’e
dn’

~(sPr+R)6 =0 (17)

where f(,]’s):]EF(n,r)e’”dr and 0(n,s)= Ta (m.7) "dr

The corresponding boundary conditions are

- 1 - 1
F(0,5s)=—, 0(0,5)=—
(05)=1, 9(0.5)= 1
F >0,0 >0 a pg—o>o (18)

The solutign of equations (16) and (17) subject to boundary conditions (18) are given by

[1_(;1_(;1]6-:7 (s+a) n (;1 e—n (s+a,) +G [1_‘_1} —17\/(s Pr+R) _b2 (G1 e—q (sPr+R)

s bs bs bl (s—b) bis bs’ P (s—b)
F(n,s)= when Pr 1
[l+ije—nm_ie—n ) when Pr=1(19)
S Sz S2
5(77,s)= Lze”’ (sPreR) when Pr=1
S
Lze—ww) when Pr=1 (20)
N

Taking inverse Laplace transform of equations (19) and (20), we get the following
expressions for velocity and temperature profile:

1 G, Gt G\n Jar n 1 G, Glr G [
_ 177]77]7 1 nNa N — 177 m
|:2[ b,z 3 5 ,_albl]e erfc[2 ,_T+ alrj+2[ b]z 3 2 ,_b Je ezfc(z — alrﬂ
n —nAfa +b n

+ a, +b )t |+e erfc - a, +b T]
RS ‘)] (zﬁ Ve = b)

+{Gl[ . 77«/_] 7me,ﬁ(m/ﬁ+ azr]+Gl[1+f_ n/Pr ]evmerfc(ﬂz\/ﬁ_ azrj:|
] 1 ‘

G e’ [
AL {e” “ b'erfc(
2

2\Ja,b eNE 260 b 2 ayb,
Fnr)= _cer {Wf[’gf N B WH
1 T
when Pr # 1

%Kl + G, + 2G\/Zj ”‘/—erfc[zj/;+ alz'j-%—{l +G,r - ZG\}Z]e ”‘/—erfc[zj/;— alrﬂ
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7;—[(Gzr + —f\z/%je”ﬁerfc(zf/r_ + ~/RT ) + ;—[Gzr - —f\?%je”’ﬁerfc(z:]/r_ - \/ﬁj:|

when Pr=1 (21)
B R N e Ry R A e
0(n,7)= when Pr # 1
3 ) e e (5 M) (o - ) e (32 - R
~ whenPr=1 (22)

Some important characteristics of flow
From the velocity field equation (21), the expression for the dimensionless shear stress
(t) at the plate is given by

6 GGy — 1 (G Ge) .
sz ﬁ[l b b H”f( “r) \/ﬁ_t(l b, j

_G;:r {\/(al ot (Jf +bl)7-')+le(“'”")’}—{ G, Pr [G+GI)TJW}0’(J"7)

T 2a, b, \ b} |

x J oo J
T :[a_j = Pr (i+ Glrje(”z’) + G Pr (”:*bl)f:|
n=0

Zzp.r {\/Pr(a2 + b, )erf (\/(a2 + b, )'[)+ \/;e

on Jzr L b2 b,
when Pr # 1
L\/_ +(1+G,z) \/_}rf(\/al_f)—(lj/_?e"'f+{2?/2E+G21\/E}4(\/E)+G2J§e*
when Pr=1
N (23)

From the temperature field equation (22) the expression for the dimensionless rate of heat
transfer coefficient (Nu) at the plate is given by

06
N“:_[%l_o = [rm+ ZJjjr_zJerf (\/ﬁ)+ _\r/;r e T
[T a, + Z\I/ZJerf (\/E)+ \/Z_:e’”Zr when Pr =1

when Pr # 1

(24)
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Results and Discussion

In order to analyze the effects of Hall current, thermal buoyancy force, thermal
radiation and permeability of the medium on the flow field in the boundary layer region,
numerical computations have been carried out for variations in the governing parameters
such as the Hall parameter (m ), the Grashof number ( Gr), the radiation parameter (R ),
the permeability parameter (K,), the Prandtl number (Pr) and the magnetic field

parameter (M ). For illustration of these results, numerical values are plotted in figures
(2-8). Our results agree with the results of Das et al. [8] in the absence of porous medium.

M=245 Y
. i,

ui 4 \\\

(R \

0 fju/ \\\Q{\[:!

i ’f,/ lkl-\ -
Fig.2 Velocity profile for Fig.3 Velocity profile Fig.4 Velocity profile for
different values of the for different values of different values of the
Prandtl number (Pr) the permeability magnetic parameter (M )
when Gr =5, M =2, R= parameter (K,) when when Gr= 5, K, = 0.1,
4, m =04, K,=0.1, 7 Gr =5, M=2, R=4, R =4, m =04, Pr =
=0.5 m =04, Pr =0.7, 0.7, 7 =0.5

=0.5
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Fig.5 Velocity profile
for different values of
the radiation parameter
(R)when Gr=35, K, =
0.1, M =2, m =04,
Pr =07, 7 =0.5

Fig.6 Velocity profile
for different values of
the Hall parameter (m)
when Gr=35, K,=0.1,
M= 2, R= 4, Pr=
0.7,  =0.5

Fig.7 Velocity profile
for different values of

the Grashof number
(Gr)when m= 04, K,
=0.1, M=2, R =4, Pr
=07, 7=0.5

From fig.2 it is observed that the primary velocity and the magnitude of the secondary
velocity decrease with an increase in the Prandtl number. The fluids with high value of
the Prandtl number have greater viscosity, which makes the fluid thick and hence move
slowly. It is found from fig.3 that both the primary and the secondary fluid velocities

increase with an increase in the permeability parameter (K,) in the boundary layer

region. This is due to the fact that the presence of a porous medium decreases the
resistance to flow. Fig.4 shows that the primary velocity is diminished and the secondary
velocity is increased when the magnetic parameter ( M ) is increased. When a transverse
magnetic field is applied then the Lorentz force acts in a direction opposite to the flow
which tends to resist the flow thereby reducing the primary velocity. On the other hand,
for the secondary flow this force acts as an aiding force. This will serve to accelerate the
secondary velocity. Fig. 5 displays the effect of the radiation parameter on the primary
and the secondary velocities. It is noticed that increase in the radiation parameter
decreases primary and secondary velocities. Increase in the radiation emission reduces
the rate of heat transfer through the fluid, which results in the decrease in temperature in
the boundary layer. The velocity decreases due to reduction in buoyancy forces
associated with the decreased temperature. The effect of Hall current on the primary and
the secondary velocities is depicted through fig. 6. It is inferred from the figure that the
Hall current promotes the flow along the plate. This is because, the Hall current reduces
the resistance offered by the Lorentz force. From fig.7 it is observed that the primary
velocity and the magnitude of the secondary velocity increase with an increase in Grashof
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number. There is a rise in the fluid velocity due to the enhancement of thermal buoyancy
force

0.5
o.45 o Pr R G}" m Kl M
041 I 07 4 5 04 01 2
o0.3s 11 70 4 5 04 0.1 2
s m 07 6 5 04 01 2
IV 07 4 5 05 01 2
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005 q
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Fig.8 Temperature profile for different values of Pr,R, m and K, for 7=0.5
Fig.8 reveals that fluid temperature in the boundary layer decreases on increasing the
Prandtl number and the radiation parameter. This result qualitatively agrees with
expectations, since thermal diffusivity decreases with increase in the Prandtl number and
the effect of radiation is to decrease the rate of energy transport to the fluid, thereby

decreasing the temperature of the fluid.

Table 1 Numerical values of shear stress (g_Fj - _(Tr +17, )at the plate
77 n=0 '

Pr Gr R M K, m -7, -7,

0.7 5 2 2 0.1 0.4 3.2515 0.19956
7.0 5 2 2 0.1 0.4 3.3921 0.19268
0.7 10 2 2 0.1 0.4 2.831 0.21135
0.7 5 4 2 0.1 0.4 3.2794 0.19816
0.7 5 2 4 0.1 0.4 4.5585 0.58808
0.7 5 2 2 0.5 0.4 1.8418 0.31122
0.7 5 2 2 0.1 1.0 3.0433 0.30642
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Table 2 Numerical values of Rate of heat transfer coefficient p, - _ [%j at the plate
n=0

an
R Pr T Nu
4 0.7 0.5 1.1744
6 0.7 0.5 2.3065
4 7.0 0.5 1.3676
4 0.7 1.0 2.1750

Numerical results of the shear stresses due to the primary and the secondary flow at the
plate are expressed in the table 1 for different values of governing parameters. From table

1 it is observed that the absolute value of shear stress 7 increases with increase in the

Prandtl number, the radiation parameter and the magnetic parameter but decreases with
the Grashof number, the permeability parameter and the Hall parameter whereas the
absolute value of the shear stress 7, decreases with an increase in the Prandtl number and

the radiation parameter whereas increases with remaining parameters. From table 2 it is
noticed the rate of heat transfer at the plate increases with an increase in the radiation
parameter, the Prandtl number and time.

Conclusions
From the study the following conclusions are drawn:

e Porosity, Hall current and thermal buoyancy forces promote the flow throughout the
boundary layer region by accelerating both the primary and secondary velocity
components.

e Primary and secondary velocity components decrease in the presence of thermal
radiation.

e Applied magnetic field retards the primary flow and supports the secondary flow.

e Thermal buoyancy forces, Hall current and porosity reduce the shear stress at the
plate.

e There is an enhancement in rate of heat transfer at the plate with thermal radiation
and thermal diffusion.
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ABSTRACT

Thermosolutal instability of Veronis(1965) type in a couple-stress fluid in the presence of
uniform vertical magnetic field in a porous medium is considered. Following the
linearized stability theory and normal mode analysis, the paper mathematically
established the condition for characterizing the oscillatory motions which may be neutral
or unstable, for any arbitrary combination of free and rigid boundaries at the top and
bottom of the fluid. It is proved analytically that all non-decaying slow motions starting
from rest, in a couple-stress fluid of infinite horizontal extension and finite vertical depth
in a porous medium, which is acted upon by uniform vertical magnetic field opposite to
force field of gravity and a constant vertical adverse temperature gradient, are necessarily
non-oscillatory, in the regime established, the result is important since the exact solutions
of the problem investigated are not obtainable in closed form, for any arbitrary
combination of free and rigid boundaries. A similar characterization theorem is also
established for Stern (1960) type of configuration.

Key Words: Thermosolutal convection; couple-stress Fluid; Magnetic Field; Rayleigh
number; Chandrasekhar number.

MSC 2000 No.: 76A05, 76E06, 76E15; 76E07.
1. INTRODUCTION

A detailed account of the theoretical and experimental study of the onset of thermal
instability in Newtonian fluids, under varying assumptions of hydrodynamics and
hydromagnetics, has been given by Chandrasekhar [1] and the Boussinesq approximation
has been used throughout, which states that the density changes are disregarded in all
other terms in the equation of motion, except in the external force term. The formation
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and derivation of the basic equations of a layer of fluid heated from below in a porous
medium, using the Boussinesq approximation, has been given in a treatise by Joseph [2]

When a fluid permeates through an isotropic and homogeneous porous medium, the gross
effect is represented by Darcy’s law. The study of layer of fluid heated from below in
porous media is motivated both theoretically and by its practical applications in
engineering. Among the applications in engineering disciplines one can name the food
processing industry, the chemical processing industry, solidification, and the centrifugal
casting of metals. The development of geothermal power resources has increased general
interest in the properties of convection in a porous medium. The problem of thermohaline
convection in a layer of fluid heated from below and subjected to a stable salinity
gradient has been considered by Veronis[3]. Double-diffusive convection problems arise

in oceanography (salt fingers occur in the ocean when hot saline water overlies cooler
fresher water which believed to play an important role in the mixing of properties in
several regions of the ocean), limnology and engineering. The migration of moisture in
fibrous insulation, bio/chemical contaminants transport in environment, underground
disposal of nuclear wastes, magmas, groundwater, high quality crystal production and
production of pure medication are some examples where double-diffusive convection is
involved. Examples of particular interest are provided by ponds built to trap solar heat
Tabor and Matz [4]and some Antarctic lakes Shirtcliffe[5]. The physics is quite similar

in the stellar case in that helium acts like salt in raising the density and in diffusing more
slowly than heat. The conditions under which convective motions are important in stellar
atmospheres are usually far removed from consideration of a single component fluid and
rigid boundaries, and therefore it is desirable to consider a fluid acted on by a solute
gradient and free boundaries.

The flow through porous media is of considerable interest for petroleum
engineers, for geophysical fluid dynamists and has importance in chemical technology
and industry. An example in the geophysical context is the recovery of crude oil from the
pores of reservoir rocks. Among the application in engineering disciplines one can find
the food processing industry, chemical processing industry, solidification and centrifugal
casting of metals. Such flows has shown their great importance in petroleum engineering
to study the movement of natural gas, oil and water through the oil reservoirs; in
chemical engineering for filtration and purification processes and in the field of
agriculture engineering to study the underground water resources, seepage of water in
river beds. The problem of thermosolutal convection in fluids in a porous medium is of
importance in geophysics, soil sciences, ground water hydrology and astrophysics. The
study of thermosolutal convection in fluid saturated porous media has diverse practical
applications, including that related to the materials processing technology, in particular,
the melting and solidification of binary alloys. The development of geothermal power
resources has increased general interest in the properties of convection in porous media.
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The scientific importance of the field has also increased because hydrothermal circulation
is the dominant heat-transfer mechanism in young oceanic crust Lister [6] Generally it is
accepted that comets consists of a dusty ‘snowball’ of a mixture of frozen gases which in
the process of their journey changes from solid to gas and vice - versa. The physical
properties of comets, meteorites and interplanetary dust strongly suggest the importance
of porosity in the astrophysical context Mc Donnel [7] The effect of a magnetic field on
the stability of such a flow is of interest in geophysics, particularly in the study of Earth’s
core where the Earth’s mantle, which consists of conducting fluid, behaves like a porous
medium which can become convectively unstable as a result of differential diffusion. The
other application of the results of flow through a porous medium in the presence of a
magnetic field is in the study of the stability of a convective flow in the geothermal
region. Also the magnetic field in double-diffusive convection has its importance in the
fields of engineering, for example, MHD generators and astrophysics particularly in
explaining the properties of large stars with a helium rich core. Stommel and Fedorov [8]
and Linden [9] have remarked that the length scales characteristics of double-diffusive
convective layers in the ocean may be sufficiently large that the Earth’s rotation might be
important in their formation. Moreover, the rotation of the Earth distorts the boundaries
of a hexagonal convection cell in a fluid through a porous medium and the distortion
plays an important role in the extraction of energy in the geothermal regions. Brakke [1 0]
explained a double - diffusive instability that occurs when a solution of a slowly diffusing
protein is layered over a denser solution of more rapidly diffusing sucrose. Nason et al.
[1 1] found that this instability, which is deleterious to certain biochemical separations,
can be suppressed by rotation in the ultracentrifuge.

The theory of couple-stress fluid has been formulated by Stokes [12]. One of the
applications of couple-stress fluid is its use to the study of the mechanisms of lubrications
of synovial joints, which has become the object of scientific research. A human joint is a
dynamically loaded bearing which has articular cartilage as the bearing and synovial fluid
as the lubricant. When a fluid film is generated, squeeze - film action is capable of
providing considerable protection to the cartilage surface. The shoulder, ankle, knee and
hip joints are the loaded — bearing synovial joints of the human body and these joints
have a low friction coefficient and negligible wear. Normal synovial fluid is a viscous,
non-Newtonian fluid and is clear or yellowish. According to the theory of Stokes [12],
couple-stresses appear in noticeable magnitudes in fluids with very large molecules.
Since the long chain hyaluronic acid molecules are found as additives in synovial fluids,
Walicki and Walicka[l3] modeled the synovial fluid as a couple-stress fluid. The
synovial fluid is the natural lubricant of joints of the vertebrates. The detailed description
of the joint lubrication has very important practical implications. Practically all diseases
of joints are caused by or connected with malfunction of the lubrication. The efficiency

148



of the physiological joint lubrication is caused by several mechanisms. The synovial fluid
is due to its content of the hyaluronic acid, a fluid of high viscosity, near to gel. Goel et
al. [14] have studied the hydromagnetic stability of an unbounded couple-stress binary
fluid mixture under rotation with vertical temperature and concentration gradients.
Sharma et al. [15] have considered a couple - stress fluid with suspended particles heated
from below. In another study, Sunil et al. [16] have considered a couple- stress fluid
heated from below in a porous medium in the presence of a magnetic field and rotation.
Kumar et al. [17] have considered the thermal instability of a layer of couple-stress fluid

acted on by a uniform rotation, and have found that for stationary convection the rotation
has a stabilizing effect whereas couple-stress has both stabilizing and destabilizing
effects.

Pellow and Southwell[I8] proved the validity of PES for the classical
Rayleigh-Bénard convection problem. Banerjee et al [19] gave a new scheme for

combining the governing equations of thermohaline convection, which is shown to lead
to the bounds for the complex growth rate of the arbitrary oscillatory perturbations,
neutral or unstable for all combinations of dynamically rigid or free boundaries and,
Banerjee and Banerjee [20] established a criterion on characterization of non-oscillatory
motions in hydrodynamics which was further extended by Gupta et al [2 1]. However no
such result existed for non-Newtonian fluid configurations in general and in particular,
for Rivlin-Ericksen viscoelastic fluid configurations. Banyal [22] have characterized the
oscillatory motions in couple-stress fluid.

Keeping in mind the importance of non-Newtonian fluids, as stated above, this article
attempts to study couple-stress fluid of Veronis and Stern type configuration in the
presence of uniform magnetic field in a porous medium, and it has been established that
the onset of instability in a couple-stress fluid in a porous medium Veronis type
configuration, cannot manifest itself as oscillatory motions of growing amplitude if the
Thermosolutal Rayliegh number R, the Chandrasekhar number Q, the magnetic Prandtl

number p,, the thermosolutal Prandtl number p,, the medium permeability P, the
porosity & and the viscoelasticity parameter F satisfy the

: . F 1 )
inequality R, <47*q—+ - 1- szz , for all wave numbers and for any arbitrary
B E pse

V4
combination of free and rigid boundaries at the top and bottom of the fluid. A similar
characterization theorem is also proved for Stern [23]type of configuration, for all wave

numbers and for any arbitrary combination of free and rigid boundaries at the top and
bottom of the fluid.
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2. FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS

Here we consider an infinite, horizontal, incompressible couple-stress fluid layer
of thickness d, heated and soluted from below so that, the temperatures, densities and
solute concentrations at the bottom surface z = 0 are Ty, po and Cy and at the upper
surface z = d are Ty, pg and Cq4 respectively, and that a uniform temperature gradient

dr

oI

4 z

j are maintained. The gravity

j and a uniform solute gradient [3/ (:

field g(0,0,—g) and a uniform vertical magnetic field # (0,0, H) pervade the system. This
fluid layer is assumed to be flowing through an isotropic and homogeneous porous
medium of porosity € and medium permeability k;.

N

Letp, p, T, C, a, o, g, 1M, W and g(u,v,w) denote respectively, the fluid pressure,
density, temperature, solute concentration, thermal coefficient of expansion, an analogous
solvent coefficient of expansion, gravitational acceleration, resistivity, magnetic
permeability and fluid velocity. The equations expressing the conservation of momentum,
mass, temperature, solute concentration and equation of state of couple-stress fluid
(Chandrasekhar [1]; Joseph [2]; Stokes [12]) are

- - - —> / - - -
Hog voolo (Do, afin ] 1, # v q+A[vXHij,
el ot € k,

0 Po Po 47rp,
(1)
V.q=0, @
Ea—T+(§.va= VT | 3)
ot
E/a—c+@.VJC:K/VZC, @)
ot
p=po [1 - o (T-Tp) + o (C-Co)], (5)

Where the suffix zero refers to values at the reference level z = 0 and in writing equation

(1), use has been made of Boussinesq approximation. Here E = €+ (1- e)( Ps “J is a
pO i

constant and E' is a constant analogous to E but corresponding to solute rather that heat;
Ps, Po, Cs and C; stand for density and heat capacity of solid (porous matrix) material and
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fluid, respectively. The magnetic permeability L., the kinematic viscosityv, couple-stress

viscosity u/ , the thermal diffusivity x and the solute diffusivity &’ are all assumed to be
constants.

The Maxwell’s equations yield

ed—H:(]tI)-Vj(_])+enV2;I, (6)
dt
and V-;Izo, (7

d o0 . : o
where o = 6_+ €' G-V stands for the convective derivative.
t ¢

The steady state solution is

q(,v,w) =(0,0,0), T = To-pz, C = Cy - Bz,

p=po (I+ apz - a/p'z). (8)
Here we use linearized stability theory and normal mode analysis method. Consider a

small perturbation on the steady state solution, and let dp, dp, 6, v, #4(h,,h,,h.)and

IR
q(u,v,w) denote, respectively, the perturbations in pressure p, density p, temperature T,

solute concentration C, magnetic field H(0,0,0)and velocity ¢(0,0,0). The change in

densitydp, caused mainly by the perturbations 0 and y in temperature and concentration,
is given by

8p = - po (B — a'y). 9)

Then the linearized perturbation equations become

- - / - - -
la—q:—LVé'p—g(a@—a/;/)—i(v—'u—vzqurL(Vxh)xH, (10)
€ 0t Po k, 0 47p,

V.g =0, (11)

Eﬁzﬂw KV, (12)
ot

E%:ﬁ“w K'V3y, (13)
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—

e%—hz(ﬁ-ng+env22, (14)
t

and V.h=0. (15)
3. NORMAL MODES ANALYSIS

Analyzing the disturbances into normal modes, we assume that the perturbation
quantities are of the form

[w,0,h.,y]=[W(z),0(z), K (2),['(z)] exp(iksx + ikyy + nt), (16)
where ky, ky are the wave numbers along the x- and y- directions respectively, k=
(k7 +k; ) is the resultant wave number and n is the growth rate which is, in general, a
complex constant. W (z),K(z),0(z) andI'(z) are the functions of z only.

Using (16), equations (10)-(15), within the framework of Boussinesq approximations, in
the non-dimensional form transform to

(p —az{ﬁ(z)2 —az)—(g+%HW = Ra*0-R,a’T-Q(D* - a’ DK , (17)
! /

(D* -a* -Epo)o=-W, (18)

(Dz—az—E/p30)F=—W, (19)

And

(D* —a* - p,o)k =-DW, (20)

Where we have introduced new coordinates (x', y',z') = (x/d, y/d, z/d) in new units of
length d and D = d / dz'. For convenience, the dashes are dropped hereafter. Also we have

nd’ v o v .
, p, =—, 1s the thermal Prandtl number;, p, = — 1is the
v K K

substituted a =kd,o =

. . k, .
thermosolutal Prandtl number; p, = Y s the magnetic Prandtl number; F, = —- is the
d

. . ) . Npd?) . . .
dimensionless medium permeability, F = M, is the dimensionless couple-stress
1
4 "' g4
parameter; R = gapd , 1s the thermal Rayleigh number; R, :M is the
KV KV
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2

u H>d

thermosolutal Rayleigh number and Q =
4rp,vne

, 1s the Chandrasekhar number. Also

2 ‘72
we have Substituted W =W, @zﬂd ®@,F=%F@, KZH—dK@ and D, =dD,
K K en

and dropped (@) for convenience.

We now consider the cases where the boundaries are rigid-rigid or rigid-free or free-rigid
or free-free at z = 0 and z = 1 respectively, as the case may be, and are perfectly
conducting maintained at constant temperature and solute concentration. Then the
perturbations in the temperature and solute concentration are zero at the boundaries. The
appropriate boundary conditions with respect to which equations (17) -- (20), must
possess a solution are

W=0=0=TI, on both the horizontal boundaries,
DW =0, on a rigid boundary,
D*W =0, on a dynamically free boundary,
K=0, on both the boundaries as the regions outside the fluid
Are perfectly conducting, (21)

Equations (17)-(20), along with boundary conditions (21), pose an eigenvalue problem
for o and we wish to characterize o, wheno, > 0.

We first note that since W, K ,® and r satisfyW(0)=0=w(),
K(0)=0=K(1),0(0)=0=0()and I'(0)=0=T(1) in addition to satisfying to
governing equations and hence we have from the Rayleigh-Ritz inequality Schultz [24]

j-|DW|2dz > 7z2j-|W|2dz ,j-
0 0

0

1 1
DK|2dz > 7Z2J-|K|2dZ ,.[
0

0

1
D®|2dz > 7z2J-|®|2dz ,
0

1 1

and [|DT"dz > 7* [ |1 dz, (22)
0 0

Further, for W (0) = 0 =W (1), Banerjee et al [25] have shown that

ﬂDZW\zdz > ﬂ2j|DW|2dz. (23)
0 0
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4. MATHEMATICAL ANALYSIS
We prove the following lemma:
Lemma 1: For any arbitrary oscillatory perturbation, neutral or unstable

1
Jloof «aef Jie = Jlowfas.

0
Proof: Multiplying equation (18) by ®" (the complex conjugate of ® ), integrating by

parts each term of the resulting equation on the right hand side for an appropriate number
of times and making use of boundary condition on ® namely ®(0) =0 = 0O(1), it follows

that

1 1 1
j{D@F +a*e|’ }dz +Eo,p,[|6]"dz = Real part of{j®*Wdz},
0 0

0

< .(i;®*WdZ

1 1
SH@"W}dZ SHG)*
0 0
1
1 1 3 (1 3
< [le|wiaz < { | |®|2dz} { | |W|2dz} : (24)
0 0 0
(Utilizing Cauchy-Schwartz-inequality),
So that by using inequality (22) and the fact that o, > 0, we obtain from the above that

1
1 1 2 (1 D
(> +a*)[|of dz < {j|®|2dz}2{j|W|zdz}z :
0 0 0

And thus, we get

{£|®|2dz}2 gﬁ{“m dz} , (25)

Since o, >0 and p,)0, hence inequality (24) on utilizing (25) and (22), gives
l 2 2 1
jQD®| +a?|of Jiz < —j|DW| dz, (26)
0 7 (r° +a )

This completes the proof of lemma 1.
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Lemma 2: For any arbitrary oscillatory perturbation, neutral or unstable

1 1
(orf + | bz < ———[|pwla:.
Jlor s ot e = Jlow

Proof: Multiplying equation (19) by I'" (the complex conjugate of I'), integrating by
parts each term of the resulting equation on the right hand side for an appropriate number
of times and making use of boundary condition on I' namely I'(0) =0 =TI'(1), it follows

that

1 1 1
J-{DF|2 Jraz|1“|2 }lz +E/arp3.[|l“|2dz =Real part Of{IF*WdZ} ,
0 0

0

< sﬂr*W}dz sjr*

1
0 0

W|dz ,

j-F*Wdz
0

2

1
1 1 3 (1
<[z < { | |F|2dz} { | |W|2dz} : 27)
0 0 0
(Utilizing Cauchy-Schwartz-inequality),
So that by using inequality (22) and the fact that o, > 0, we obtain from the above that

1 1
1 1 2 (1 2
(7 +a)[[r| dz < {ﬂrrdz}z{ﬂmzdz}z,
0 0 0

And thus, we get

1 1
tee |2 1 (o |2
0 (7" +a”) |3
Since o, >0 and p,)0, hence inequality (27) on utilizing (28) and (22), gives

1 1

jQDrF +a2|1"|2)dzsm“DW|2dz, (29)
0 0

This completes the proof of lemma 2.

Lemma 3: For any arbitrary oscillatory perturbation, neutral or unstable
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S — —

1 1
{DK|2 +a’[K| }lz < ?£|DW|2dz

Proof: Multiplying equation (20) by K~ (the complex conjugate of K ), integrating by
parts each term of the resulting equation on the left hand side for an appropriate number
of times and making use of boundary conditions on K namely K(0)=0=K(l), it
follows that

1 1 1
j{D1<|2 +a2|K|2}dz+arp2“K|2dZ =Real  part of{jK*DWdz} <
0 0

0

jK*DWdz
0

1
< hK*DW}dz, < ﬂK*\|DW|dz < j|K||DW|dz < {j|1<|2 dz}z {hDWde}z , (30)
0 0 0 0 0

(Utilizing Cauchy-Schwartz-inequality),
Inequality (30) on utilizing (22), gives

PR ER B 2 %
{j|1<| dz} s—z{ﬂDm dz} : (31)
0 a 0
Since o, 20 and p,)0, hence inequality (30) on utilizing (31), give
1 1 1
jQDKF +a2|K|2)2’z <— [|pw|*dz, (32)
0 4 0

This completes the proof of lemma 3.

Now we prove the following theorems:

Theorem 1: If R)O0,R)0 F)0, 0)0, F)0, p,)0, p,)0, o, 20, o, #0,
Q_pzz <land R, > R then the necessary condition for the existence of non-trivial solution

T
(W, 0, K ) of equations (17) — (20), together with boundary conditions (21) is that

Ryar' Ly (1—ijj .
B E pse 4

Proof: Multiplying equation (17) by W (the complex conjugate of W) throughout and
integrating the resulting equation over the vertical range of z, we get
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Fio. 1,
E!W (p? —az)szz—[%+El[W (D? - a? =

1 1
- Rasz*@)dz - RsaZIW*Fdz —QjW*D(D2 —a*)Kdz, (33)
0 0

Taking complex conjugate on both sides of equation (18), we get
(DZ _az _Eplo_* b* — —W*, (34)
Therefore, using (34), we get

jW*@dz:—j(a(Dz —d* - Ep,c”)9dz, (35)
0

0

Taking complex conjugate on both sides of equation (19), we get
(D*—a*—Epo =", (36)

Therefore, using (36), we get
1 1
[Wrdz=-[r(D* ~a* - E'p,o* )z, (37)
0 0

Also taking complex conjugate on both sides of equation (20), we get
D> —a* - p,o’ K =—DW", (38)
Therefore, equation (38), using appropriate boundary condition (21), we get

R [ e O e R
0 0 7

(39)
Substituting (35), (37) and (39), in the right hand side of equation (33), we get

Ej-W*(DZ —az)szz—(ngiij*(D2 —a*Widz = —Razj[G)(D2 —a’ —Epla*)(a*dz
Pl 0 & Pl 0 0

1
+R @ [N(D* =a> = E'p,o )'dz ~o[ k(p* ~a* \D* ~a® - pyo” K (40)
0 0

Integrating the terms on both sides of equation (40) for an appropriate number of times
and making use of the appropriate boundary conditions (21), we get
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i]{D W[ +2a* D) +a* |’ }JZ+[;+—] QDW| o) )iz

1o

1
_ azjﬂp@r +a’lef +Eplo'*|®|2)dz—Rsa2mDF|2 v a1 + E' pyo | b
0

0
—QszK\2 +2a’|DK|’ +a4|K|zjdz—szo'*MDK|2 valkPhz, @
0 0

now equating real and imaginary parts on both sides of equation (41), and cancelling
o,(# 0) throughout from imaginary part, we get
& ot o

1
— ra* [ (D[ + 6] + Ep,o [0 Jiz - Raa? [(DIT + @[ + £ peos, I b
0

0

1
EI{DZW\Z w20’ | D[ +a' |’ }dz +[
By €

—QszK\2 +2a’|DK|’ +a“|1<|2jarz—szc:,Mmq2 va? |kl e, (42)
0 0
and

iy 1 !
EJ-{DWF +a2|W|2}d = —RazEp1j|®|2dZ+RsazE/p3J‘|1"|2dZ +Qp2.MDK‘2 +a2‘K‘2)dz,
0 0 0

0

(43)
of which the equation (42) can be rearranged in the form
El{ S ) 2y 2% o, 1 IQ 2 o2
PZ! D*w| +2a’|DW|" +a'[w iz + S h _([DW| +a’|w| )dz
1 1 1
— ra* (Dol +a?l0f k- R.a* [ (DX +a*[1f bz - Of [(0* - a* K[ d=
0 0 0
1 1 1
+O'{RazEpl‘HGFdz—RsazE/p3J-|F|2dz—QpZIQDK|2 +a2|K|2)dz} , (44)
0 0 0

The equation (43) together with o, > 0, yields the inequality
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1 1 1
o, {RazEpl.H@rdz - RsazE/p3J.|F|2dz - Qp2'|.QDK|2 + a2|K|2)dZ} <0, (45)
0 0

0
Now, utilizing the inequality (22), we have
1 1
j{DrF +a2|r|2}izz(;z2 +a’)[[r dz, (46)
0 0
While from the equation (43), we get

j oWl —— P2 j (DKT +a?|&] )iz (47)

1
_“F|2d22 -
7 Ra’E' p.e

RAaEp3

So that using inequality (47), we can write the inequality (46) as

1 2 2
!{DF|2+a2|F|2}dz %“Dm dz - Q}’;Z:”EZ )!;QDK| |k e,
(43)

Now, if permissible let R, > R, Then in that case we derive from equation (44) and
utilizing the inequalities (23), (26), (32), (45) and (48), we get

R 2
(7° +a?) £, /1 [1—Qp;j a j|Dw| dz+ 1,40, (49)
P E'pce V4 i (m*+a®) |3
a’F o 1 IQ 2 2 1 2
Where [, = +—L DW| +a*w| Mz +O||\D* —a? K| dz, is positive
(e ot s e of o -t i
definite. Therefore, we must have
(r*+a*)* | F 1
pyT G ra) ) F L1 On (50)
a P E'pe T
and thus we necessarily have
RS>47Z4{£+ E (1—Qp;j} (51)
B E pse 4
2(_2 2 \?
Since the minimum value of M isd4z*at a® = 7°)0.
a

Hence, if
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o, 20 and o, #0, then R Ydr* ]+ 4 (1—Qp2j : (52)
A B E pse

And this completes the proof of the theorem.

Presented otherwise from the point of view of existence of instability as stationary
convection, the above Theorem 1, can be put in the form as follow:-

Corollary 1: The sufficient condition for the onset of instability as a non-oscillatory
motions of non-growing amplitude in a thermosolutal couple-stress viscoelastic fluid
configuration of Veronis type in the presence of uniform vertical magnetic field in a

. . F 1
porous medium heated from below is that, R, <4r* {P_ + Z (1 - Q1922 j}, where R,
1 P3¢

7T
is the Thermosolutal Rayliegh number, Q is the Chandrasekhar number, p, is the
magnetic Prandtl number, p, is the thermosolutal Prandtl number, P is the medium
permeability, ¢ is the porosity and F is the couple-stress parameter, for any arbitrary
combination of free and rigid boundaries at the top and bottom of the fluid

or

The onset of instability in a thermosolutal couple-stress viscoelastic fluid configuration of
Veronis type in the presence of uniform vertical magnetic field in a porous medium
heated from below, cannot manifest itself as oscillatory motions of growing amplitude if
the Thermosolutal Rayliegh number R, the Chandrasekhar number Q, the magnetic
Prandtl number p,, the thermosolutal Prandtl number p,, the medium permeability P,
the porositye and the couple-stress parameter F, satisfy the inequality
F 1 . o ..
R, <4r*i—+ - [I—szzj , for any arbitrary combination of free and rigid
B E pse 4
boundaries at the top and bottom of the fluid

The sufficient condition for the validity of the ‘PES’ can be expressed in the form:

Corollary 2: If(W, ®,FO'), o=0,+io,, o, 20 isasolution of equations (17)— (20),

with R) 0 and,
R o<4n] g ] (1—ijj :
A b E'pse T

Then o, =0.
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In particular, the sufficient condition for the validity of the ‘exchange principle’ i.e.,

o, =0= 0, =0 ifR, §4714{£+ I [I_szj}'

P E'pe z’

In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability’
in the present configuration of Veronis type, we can state the above theorem as follow:-

Corollary 3: The necessary condition for the existence of instability in ‘oscillatory
modes’ and that of ‘overstability’ in a thermosolutal couple-stress fluid configuration of
Veronis type in the presence of uniform vertical magnetic field in a porous medium
heated from below is that the Thermosolutal Rayliegh number R, the Chandrasekhar

number Q, the magnetic Prandtl number p,, the thermosolutal Prandtl number p,, the

medium permeability P, , the porosity ¢ and the couple-stress parameter F must satisfy the

: . F 1 . o
inequality R Y47z *d—+ - 1- szz , for any arbitrary combination of free and
B E pse

V4
rigid boundaries at the top and bottom of the fluid.

Special Cases: It follows from theorem 1 that an arbitrary neutral or unstable mode is
non-oscillatory in character and ‘PES’ is valid for:

(1). Thermal convection in couple-stress fluid heated from below, i. e. when Q=0=R,.
(Sunil et al [16])

(i1). Magneto-thermal convection in couple-stress fluid heated from below ( R =0), if

(QIDZZ J S 1 13

T

(ii1) Thermosolutal convection of Veronis (1965) type in couple-stress fluid heated from
below (Q =0), if

R, <4z’ L /1 :
‘ B E pse

A similar theorem can be proved for thermosolutal convection in couple-stress fluid
configuration of Stern type in a porous medium as follow:

Theorem 2: If  R(O0,R(0, F)0, P)0, p)0,p)0,0,>0, o, =0,

Q—pzzsland|R|2|Rs| then the necessary condition for the existence of non-trivial
Vs
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solution (W, @,F) of equations (17) — (20), together with boundary conditions (21) is

that
Rpart) Ly ] [1—Q—p;j .
F Epe T

Proof: Replacing R and R by —|R| and —|RS

and proceeding exactly as in Theorem 1 and utilizing the inequality (29), we get the
desired result.

, respectively in equations (17) — (20)

Presented otherwise from the point of view of existence of instability as stationary
convection, the above Theorem 2, can be put in the form as follow:-

Corollary 4: The sufficient condition for the onset of instability as a non-oscillatory
motions of non-growing amplitude in a thermosolutal couple-stress fluid configuration of
Stern type in the presence of uniform vertical magnetic field in a porous medium is that,

|R| <4r* £+;(1—Q—pjj , where R 1is the Thermal Rayliegh number, Q is the
P Epe

T
Chandrasekhar number, p,is the magnetic Prandtl number, p, is the thermal Prandtl
number, £, is the medium permeability, ¢ is the porosity and F is the couple-stress
parameter, for any arbitrary combination of free and rigid boundaries at the top and
bottom of the fluid

or

The onset of instability in a thermosolutal couple-stress fluid configuration of Stern type
in the presence of uniform vertical magnetic field in a porous medium, cannot manifest
itself as oscillatory motions of growing amplitude if the Thermal Rayliegh number R , the
Chandrasekhar number Q, the magnetic Prandtl number p,, the thermal Prandtl

number p,, the medium permeability P, the porosity & and the couple-stress parameter

1 (1_ Op,

2

F, satisfy the inequality |R|< 47[4{5 +
T

j , for any arbitrary combination
P Epe

of free and rigid boundaries at the top and bottom of the fluid

The sufficient condition for the validity of the ‘PES’ can be expressed in the form:

Corollary 5: If (W, @,Fa), o=o0,+io,, o, 20 isasolution of equations (17)—(20),
with R) 0 and,
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Rl<an]fy L1222l
P Epel 7’

In particular, the sufficient condition for the validity of the ‘exchange principle’ i.e.,

P Epe w

Then o, =0.

In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability’
in the present configuration of Stern’s type, we can state the above theorem as follow:-

Corollary 6: The necessary condition for the existence of instability in ‘oscillatory
modes’ and that of ‘overstability’ in a thermosolutal couple-stress fluid configuration of
Stern type in the presence of uniform vertical magnetic field in a porous medium is that
the Thermal Rayliegh number R, the Chandrasekhar number Q, the magnetic Prandtl

number p,, the thermal Prandtl number p,, the medium permeability P, the porosity &
and the couple-stress parameter F must satisfy the

inequality|R|)47r4 £ + ! (1 - Ql722 j , for any arbitrary combination of free and rigid
B Epe T
boundaries at the top and bottom of the fluid.

Special Cases: It follows from theorem 1 that an arbitrary neutral or unstable mode is
non-oscillatory in character and ‘PES’ is valid for:

(1). Thermal convection in couple-stress fluid i. e. when Q =0 =R.

(i1). Magneto-thermal convection couple-stress fluid (R=0), if

(%j<1
7[2 o

(ii1). Thermosolutal convection of Stren [23] type in couple-stress fluid ( Q = 0), if

R|<4rx* LA
r Epe
5. CONCLUSIONS

Theorem 1 mathematically established that the onset of instability in a thermosolutal
couple-stress fluid configuration of Veronis type in the presence of uniform vertical
magnetic field in a porous medium, cannot manifest itself as oscillatory motions of
growing amplitude if the Thermosolutal Rayliegh number R, the Chandrasekhar number
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Q, the magnetic Prandtl number p,, the thermosolutal Prandtl number p,, the medium

permeability £, the porositye and the couple-stress parameter F satisfy the

: . F 1
inequality R, <47*q—+ - [
B E pse

rigid boundaries at the top and bottom of the fluid

I_QPZ

2
T

j}, for any arbitrary combination of free and

The essential content of the theorem 1, from the point of view of linear stability theory is
that for the thermosolutal configuration of Veronis type of couple-stress fluid of infinite
horizontal extension in the presence of uniform vertical magnetic field in a porous
medium, for any arbitrary combination of free and rigid boundaries at the top and bottom
of the fluid, an arbitrary neutral or unstable modes of the system are definitely non-

. . : F 1 . : :
oscillatory in character if R, <4z*s—+ ; (1— szzj , and in particular PES is
B E pse 4
valid.

The similar conclusions can be drawn for the thermosolutal configuration of Stern type of
couple-stress fluid of infinite horizontal extension in the presence of uniform vertical
magnetic field in a porous medium, for any arbitrary combination of free and rigid
boundaries at the top and bottom of the fluid from Theorem 2.
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Abstract:In the present paper, the stability analysis of double-diffusive convection
problems (Veronis and Stern Types) with cross-diffusions effects (Soret and Dufour
effects) have been carried out mathematically with temperature dependent
(variable)viscosity. The eigenvalues equations governing these problems have been
casted into mathematically tractable forms for stability analysis using some linear
transformations. The stability of the oscillatory modes and consequently the bounds for
the complex growth rate for arbitrary neutral or unstable oscillatory perturbations are
derived which are valid for each combinations of rigid (slip free) and dynamically free
(stress-free) boundaries and are of general nature. Various consequences of the derived
results are also worked out.

Keywords: Double-Diffusive Convection; oscillatory motions; complex growth rate;
temperatre-dependent viscosity; eigenvalue problem; Soret effect; Dufour effect.

1. INTRODUCTION

A broader range of dynamical behaviour is observed in the convective motions that
may occur in a gravitational field containing two components (for example, temperature
and solute) of different diffusivities that affect the density of the fluid and the
phenomenon is known as double-diffusive convection. The phenomena of double-
diffusive convection occur when the temperature and concentration gradients are of
comparable magnitude and operate on different scales and lead to large scale convection.
These kinds of double-diffusion processes are found in astrophysics (big Helium-stars),
the earth core, metal alloy, refilling of gas reservoirs, etc. Double-diffusive convection is
also of importance in various other fields of practical interest such as high quality crystal
production oceanography, production of pure medication, solidification of molten alloys,
limnology and engineering.

The double diffusive process was first recognized by Stommel et. al. [1] through his
‘thought experiment’ with ocean flow/circulation in mind. Two fundamental
configurations have been studied in the context of thermohaline instability problems, the
first one by Stern [2], wherein the temperature gradient is stabilizing and the
concentration gradient is destabilizing and the second one by Veronis [3], wherein the
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temperature gradient is destabilizing and the concentration gradient is stabilizing. Stern
found that the steady motion is the preferred mode of onset of instability whereas Veronis
observed that oscillatory mode of instability is the preferred mode of convective
instability.  Since then numerous authors have investigated the double diffusive
convection problems under varying assumptions of hydrodynamics both numerically and
analytically. For a broader view of the subject of double-diffusive convection one may
refer to Turner [4 ], Brandt and Fernando [5], Schmitt [6 ] and Nield [7].

The stability properties of binary fluids are quite different from pure fluids because of
Soret and Dufour effects. An externally imposed temperature gradient produces a
chemical potential gradient and the phenomena known as the Soret effect, whereas the
analogous effect that arises from a concentration gradient which produces a heat flux is
called the Dufour effect. The stability of Dufour-Soret driven double-diffusive
convection in a horizontal layer of a fluid subjected to thermal and solutal gradients has
been investigated theoretically by means of a linear stability analysis by many authors
including Groot and Mazur [8], Fitts [9] and McDougall [10]. It is well known fact that
the viscosity is one of the properties of a fluid which are most sensitive to temperature
and the variation of viscosity of liquids with temperature is extremely rapid (cf.
Straughan [11]) which plays an important role in several physical situations wherein the
fluid viscosity is a function of temperature and/or depth.

Dhiman and Kumar [12] have investigated the stability of oscillatory modes for
thermohaline configuration with temperature dependent viscosity and derived a condition
for the stability of oscillatory modes and obtained the bounds for complex growth rate of
arbitrary neutral or unstable perturbations. These results have been recently improved
upon by Dhiman.et. al. [13] by eliminating the curious condition on D?f (> 0), where, f
is the temperature dependent viscosity function and D? represents the double derivative
with respect to z.

Motivated by the above analysis and discussions, the aim of the present paper is to
extend the analysis of Dhiman et. al. [13] to a more general problem, namely Double-
Diffusive Convection with Cross-Diffusions, when viscosity of the fluid is temperature
dependent. Here, we shall investigate the stability of the oscillatory motions and derive
the bounds for complex growth rate, if they exists. In the present analysis, some non-
trivial integral estimates obtained from the governing eigenvalue equations are used to
obtain these results, which are also free from the curious condition; D?f > 0.The present
analysis is thus an attempt to study the effects of viscosity variation and cross diffusions
on the onset of double diffusive convection for general cases of boundary conditions.
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2. PHYSICAL CONFIGURATION AND EIGEN VALUE PROBLEM

Consider a viscous, incompressible (Boussinesq) fluid of infinite horizontal
extension and finite vertical depth statically confined between two horizontal boundaries
z=0and z =d at constant temperatures T, and T; (T, > T;) at the lower and upper
boundaries respectively,and uniform concentrations S, and S; (S, > S;), in the force

field of the gravity. The uniform temperature gradient (ﬂ = %)and concentration

gradient (B’ = %) make opposing contributions to the vertical density p =

poll + aBz + a’B’'z], where, aand a’ are respectively the coefficients of thermal
expansion and analogous concentration expansion. The extra effects that we have
considered here are that of coupled fluxes of the two properties due to irreversible
thermodynamic effects; namely Soret and Dufour effects.

Following the usual steps of linear stability theory, the non-dimensional linearized
perturbation equations and the boundary conditions governing the onset of Double-
Diffusive Convection in the presence of Soret and Dufour effects with temperature
dependent (variable) viscosity are given by (c¢f- Dhiman and Kumar [12]);

fD? = a®)w =2 (D2 = a®)w + 2(DF)D(D? — a®)w + D*f(D? + aP)w =

= Rra’f — R,a’g (1)
(D? —a? —p)8 + D (D* —a®)p = —w (2)
(D2 —a? —g)(p+ST(D2 —a?®)e = —% (3)
The above equations must be solved subject to either of the boundary conditions;
w=0=0=¢@=D?w atz=0andz=1 4)
(Both boundaries dynamically free)

w=0=0=¢@=Dwatz=0andz=1 ®))
(Both boundaries rigid)

w=0=0=@=Dwatz=0andw=0=60=¢ =D?*watz=1 (6)

(Lower boundary rigid and upper boundary dynamical free)
w=0=0=¢=D*watz=0andw=0=0=¢@=Dwatz=1 (7)
(Lower boundary dynamical free and upper boundary rigid)

The system of equations (1)-(3) together with either of the boundary conditions
(4)-(7) thus constitutes an eigenvalue problem for p for given values of other parameters;
namely a?, g, Ry, R, T, St and Dy. Further, a given state of the system is stable, neutral
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or unstable according as p, (real part of p) is negative, zero or positive respectively.
Further, if p, =0 implies p; = 0 for every wave number a, then the principle of
exchange of stabilities (PES) is valid, which means that instability sets in as stationary
convection, otherwise we shall have overstability at least when instability sets in as
certain modes.

Further, we note that the mathematical structure of the system of equations (1)-(3)
governing Double-Diffusive Convection in the presence of coupled Soret and Dufour
effects with temperature dependent viscosity is qualitatively different from those
governing double diffusive convection problems in the absence of these effects, since the
latter involves the coupling amongst the eigen-functions w, 8, and ¢ and thus obstructs
any attempt for the elegant extension of the results derived in double diffusive convection
problems. The nasty behaviour of these equations is arrested by introducing some
indigenous linear transformations.

Let us introduce the transformations;

!

W' Ko’ TFp'

ST ' EtT

= 5 k0 = Wersorn) T REvsFD) andyp = (KE+57FD) ° (KE+57FD) P
where,
B = —K,E — (ST+B)K, F = (ST+B)DT
T Dt+K Dt+K

and K is any positive root of the equation K + K(t — 1) — 1SyDr = 0.

Now, using the above transformations in equations (1)-(3) and in boundary conditions
(4)-(7) and dropping the dashes for convenience in writing, we have the following
reduced forms of equations

f(D? —a®)?w —Z(D? — a*)w + 2(Df)D(D* — a®)w + D*f(D? + a*)w = R'ra?0 —

R'sa’¢ (8)
[K1(D? — a®) — plo = —w ©)
|[K2(D% - a?) =B = =% (10)
together with either of the boundary conditions (4)-(7).
where, R’ = (DT+K)(RTB+RSST),R’5 = Sr+BYRKARDT) e respectively the effective
BK-StDr BK-StDT
TSTDT

thermal and Salinity Rayleigh numbers and K; = 1 + , K,=1- STKDT are non-

K
. . StD . .
negative constants smce% >0 as S; Dr >0 and K is also positive constants, as

defined earlier.
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Remark 1: The above system of equations (8)-(10) and boundary conditions (4)-(7)
governing the eigenvalue problem of the present problem yields eigenvalue problem
governing;

i) Double Diffusive Convection (DDC) with variable viscosity, if we take
D; = Sy = 0.Consequently,K; =1 =K, and R; = Ry(the usual thermal
Rayleigh number), and Rg' = Rg(the usual solutal Rayleigh number).

ii) Soret Driven Double-Diffusive Convection (SDDDC) with variable

viscosity, if we take Dy = 0. Consequently, K; =K, =1 and Ry = Ry —

IRsT is the modified thermal thermal Rayleigh number, and R;' = Ry — ﬂf%‘?
is the modified solutal Rayleigh number.

iii) Dufour Driven Double-Diffusive Convection (DDDDC) with variable

viscosity, if we take S; = 0. Consequently, K; = K, =1 and RT' =Ry +
% IRTDT s the
modified solutal Rayleigh number.

iv) Further, when f = 1, the above eigenvalue problems refer to the respective
configurations with constant viscosity.

V) The system of equations (8)-(10) together with boundary conditions (4)-(7)
describes the Veronis Type Configuration, when R’y > 0and R'g > 0,
whereas it describes the Stern Type Configuration, when R'; <
0Oand R'5 < 0.

is the modified thermal Rayleigh number, and Ry’ = Ry +

3. MATHEMATICAL ANALYSIS
Stability of The Oscillatory Modes

In the following theorem, we shall investigate the stability of the oscillatory modes for
Veronis type configuration;

Theorem 1. If (p,w,68,9),p = p, +ip;, p; # 0,is a non-trivial solution of equations
(8)-(10) together with one of the boundary conditions (4)-(7), Ry’ > 0,Rs >

Oand R; < 27 K1 [fmm + ] then p, < 0.

Proof: Multiplymg both sides of the equation (8) by w* and integrating the resulting
equation over the range of z, we get

fiw [f(p2 — a?)?w —2(D? - a®)w + 2(Df)D(D? — a®)w + D2 f(D? + aZ)w] dz =
R;'a? [ ow*dz — Rs'a® [, pw" dz (11)
Taking complex conjugate of both sides of equations (9) and (10) and using the resulting
equations respectively in the first two terms in the right hand side of equation (11), we
get
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fiw [f(p2 — a?)?w —2(D? - a®)w + 2(Df)D(D? — a®)w + D2 f(D? + aZ)w] dz =
—R;'a? fol 0[K,(D? — a?) — p*10*dz + Rs'a? folfp [I('Z(D2 —a?)— p?] p*dz  (12)

Now, integrating the various terms of equation (12) by parts an appropriate number of
times and using the relevant boundary conditions (4)-(7), we have

J, FUD?wI? + a*lwl? + 2a?|Dw|?ldz + 2 [ (IDW|? + a?|w|?)dz + a? [, (IDw|? +
a?|lw|?)dz + a® folDZflwlzdz =

Rr'a? [ K, [ID62 + a?|61%)dz — Ry’ @ [, TK,[IDo|? + a?|¢|?] dz

+a?p’ [Ry' [}1012dz = Rs' [, lpl*dz] = 0 (13)

Equating the real and imaginary parts of equation (13) to zero and cancelling p;(# 0)
throughout from the imaginary part, we get

[, FUD*w? + a*|w|? + 2a?|Dw|?] dz +
%fol(IDWI2 + a*|w|*)dz + a? f01D2f|W|2dZ — R;'a®K, fol[IDG?I2 + a?|6|*] dz +

! 1 ! 1 / 1
Rs'a*tK; [ (IDp|? + a*|p|*)dz — a’p; [RT J,161%dz = Rs' [ 1ol dZ] =0 (14)
and

1 1 1 ! 1

ifo (|Dw|? + a?|w|?)dz + R;' a? fo |6|%2dz — R’ a? fo lp|?dz=0 (15)
If permissible, let p. = 0

Now, multiplying equation (15) by p,- and adding the resulting equation to equation (14),
we obtain

folf[|D2W|2 + a*|lw|? + 2a?|Dw|?] dz +

2py 1 1 ! 1

%fo (IDw|? + a®|w|*)dz + a® [ D? flw|?*dz — Ry a®K, [ [IDO]* + a*|6]*]dz +
Rs'a®tK, [ [, 1IDgI? + a?lp[?]dz =0 (16)
Equation (15) implies that

101 -

—J, Dw|? + a®|w|*)dz < R'a® [l¢|* dz (17)

Since,w, 8 and ¢ vanish atz = 0 and z = 1, therefore Rayleigh Ritz inequality (Schultz
[14]) yields

follDWIZdZ > 12 follwl2 dz (18)

[, 1D6?dz > n% [16|? dz (19)
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[, 1Dp|? dz > % [ |¢|? dz (20)

Now, combining inequalities (17) and (18), we have

Z+a?) (1 ' 1
T (Mwl2 dz < Ry a? [l dz 1)
Also, upon using inequality (20), we can have

' 1 2442 1
Rs'a® [[[IDg|* + a®|p|*] dz = @fo lw|? dz (22)

Now, utilizing Schwartz inequality, we have

1 1 1 1 Bt L
nzf |W|2dZSJ- |Dw|?dz < —J- w*D?w|dz SJ- [|W|2dZ]5J- [|D?w|?dz]z
0 0 0 0 0
which on simplification yields
1rin2.,,112 4 (1,12
fo [|D?w]|]?dz > fOIWI dz (23)

Using inequalities (18) and (23), we have
folf[|D2W|2 + 2a?|Dw|* + a*|w|?] dz = fipin(* + a?)? follwlzdz (24)
where, f,in. is the minimum value of f in the closed interval[0,1].

Now, multiplying equation (9) by its complex conjugate and integrating the various
terms on left hand side of the resulting equation by parts an appropriate number of times
and making use of relevant boundary conditions; 8(0) = 8(1) = 0, we obtain

1

1
f K2 |(D? — a®)0|%dz + Zerlf
0

1 1
[IDO|? + a?|0|%] dz + Iplzj |6|2dz = f |w|? dz
0 0 0

(25)
Since, p,- = 0, therefore equation (25) gives
1{12 foll(DZ —a2)9|2dz < f01|W|2dZ (26)

Further, emulating the derivation of inequalities (23) and (24), we have the following
inequality

1(D? = a?)8|? = [ [ID?61? + 2a?|D6|? + a*|6|%dz] > (n? + a®)? [ 1612 dz (27)
Now, combining inequalities (26) and (27)

1 1
fo lw|?dz > (m? + a?)?K,? fo |6]2 dz (28)
Again, we know that
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[Hwlzdz = [ iwl?dz]: [ TIwl?dz)z (29)

which upon using inequalities (26)and (28), we have

1 1
1 1 201 2
J- lw|?dz > (m? + a?®)K,* {f |(D? — aZ)HIZdz} {f IHIZdZ}
0 0 0

> (w2 + a?)K,* |— fol 0*(D? — a2)9| (using Schwartz inequality)

> (w2 + a®)K,? [} [ID]? + a?|6/?] (30)
Let us consider the integral

fol(fw*)Dzwdz =— fol(fDW* + Dfw*) Dwdz

S ) 1,

=—J, fIDw|*dz — [ w*DfDwdz (31)
Let, = [ w'DfDwdz = — [ (w*D*f + DfDw*)wdz = — [, (D*f)|w|?dz — I'(32)
which implies that

I +1" = 2Re (I) = — [ D*f|w|?dz (33)

Where Re stands for real part of the quantity.

Also, from inequalities (31) and (33), we have
f01D2f|W|2dZ = 2Re fol(fw*)Dzde + folfIDWIZdZ (34)
Also, folfl(D2 +a®)w|?dz = folf(DZW + a’w)(D*w* + a’w*)dz
= j1[|D2w|2 + a*|w|?] dz + 2a?Re (fl(fw*)Dzwdz>
0 0
which yields
[IID?w|? + a*wl*dz = [, fI(D? + a®)w|® dz — 2a®Re (fol(fw*)Dzwdz) (35)

Further, in view of equations (34) and (35), we can have

1 1
f fIID?*w|? + 2a?|Dw|? + a*|w|?]dz + azf (D?f)|w|? dz
0 0
1 1 1
= ] fI(D? + a®)w|?dz + 4a2f fIDw|?dz > fmin_j (n* + a* + 2a®n?)|w|?dz
0 0 0
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> fonin (02 + a®)? [ Iw]? dz (36)
Using inequalities (22), (30), (36), in equation (16) and the fact that p,, = 0, we have
) (i + ) [l dz < Ry [ 1wl dz (37)

(r?+a )3

Since, the minimum value of

gives
27m* 7K, A5 .
KlT(fmin. +T) —Rr j lw|“dz < 0
0

The above inequality clearly implies that

27m* K (TK2+0 fmin)
4R7'0

<1 (38)

which is a contradiction to the hypothesis of the theorem.
Hence, we must have p, < 0.
This completes the proof of the theorem.

The above theorem clearly implies that the oscillatory modes of system are stable,
27m* K1

when R;' < (fmm Tiz). Alternatively, one can also say that the oscillatory

modes of growmg amplitude are not allowed in Double-Diffusive convection problem

(Veronis type) in the presence of coupled effects and with variable viscosity, if Ry’ <
27 Kl TKZ

(f min T _)

It is to note that this sufficient condition for the stability of the oscillatory modes
is independent of the condition; D?f > 0 on the double derivative of the temperature
dependent viscosity function (¢f. Dhiman et. al [14 ]).

Further, in view of Remark 1 above, we have the following corollaries;

Corollary 1: Under the hypothesis of Theorem 1, for DDC with variable viscosity, if
< (fmm + E), then p, < 0.

Corollary 2: Under the hypothesis of Theorem 1, for SDDDC with variable

viscosity, Ry < (fmm Tfs T) then p,. < 0.

Corollary 3: Under the hypothesis of Theorem 1, for DDDDC with variable
viscosity, Ry < (fmm = RTDT) then p, < 0.
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It is to note that when the viscosity is constant or varying linearly or exponentially, we
have fni, = 1, and Corollary 1 implies that for DDC problem if Ry < (1 + g), then
pr < 0, aresult obtained by Gupta et.al. [15].

We shall now derive an analogous result for Stern’s type configuration.

Theorem 2. If (p,w, 0, 9),p = p, + ip;,p; # 0 is a nontrivial solution of equation (8)-
(10) together with one of the boundary conditions (4)-(7) and R; < O0,Rs' <0

4
and |Ry'| <& " i [fmin + %], then p,. < 0.

Proof. Following the analysis adopted in the derivation of the result for the case of
Veronis type configuration, analogous result can be easily derived for the case of Stern’s
type Double-Diffusive Convection in the presence of coupled effects with temperature
dependent viscosity, just by replacing Rr'and Rg’" with—|R;'|and —|R;'|respectively in
Theorem 1.

Further, we can easily obtain the analogous results contained in Corollaries 1-3 Stern type
configuration.

In the following analysis, we have derived bounds which arrest the complex growth rate
of the arbitrary neutral or unstable (p,- = 0) oscillatory motions (p; # 0).

Bounds for the Complex Growth Rate

Theorem 3: If(p,w,0,¢)p =p,+ip;,pr =0,p; # 0 is a non-trivial solution of
equations (8)-(10) together with one of the boundary conditions (4)-(7), Rt' > 0,Rg’ >
0, then

Rr'oVMZ-1

(0f min.+tTK2) "’

4RT’O'
27m*Ky (tK2+0 fmin)’

Ip| < where, M =

Proof: Proceeding exactly as in Theoreml, utilizing the fact that p,, > 0, we have from
equation (25), the following inequality

K2 [11(D? — a®)01? dz + |p|? [ 1612dz < ['|wl? dz 39)

Using inequality (27), inequality (39) gives

Klz(r[z + a?)? [1+#|j.az)2] follglz dz < f01|W|2 dz (40)
1

Now,

1 1
f [|DB|? + a?|0|*]dz = ‘—] 0*(D? — a?)0dz| <
0 0

1
f 8(D? — a?)6dz
0
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1 1
< |l 161102 = a®)6ldz| < [;1617]" [, 1(D? — a®)|2dz|*  (using Schwartz inequality)

which upon using inequality (40) yields

-1
[ IDOI + a?]6]2)dz < Ipl” |* fowidz (41)

1
Klz(n2+a2)z[ K 2(m2+a2)?

Now, making use of inequalities (22), (37) and (41) and using the fact that
pr = 0, equation (16) implies that

| |
2 !
(nea) I(fmmlq ) - il dz < 0 “2)
Ip|? 2
l Klz(n2+a2)2 J
(n2+a?)’
Utilizing the minimum value of — with respect to a? a
get
1
[ 1 Ip|? ]E 4Rr'0
K1?(m2+a?)? K12774(0 f min.+TK2)

which can be written as

Ip| < K;(m? + a®?)VM2 — 1 (43)
where, M = 4Rr'o

27m*Ky (K2 +0 fmin)’

Ip|?
K12 (m24a?)?

1
Since, [1 + ]2 > 0, therefore it follows from inequality (42) that

R7'a%c
K1 (2 +a?)%(0 fmin.+7K2)

(m* +a®) < (44)

(2)

which upon using the minimum value of with respect to a? is 472, yields

RT’O'
K1(0 fmin.tTK2)4m?

(n? + a?) < (45)

Using inequality (45) in inequality (43), we obtained

RT,O'
(0 fmin.+TK2)4m2

Ip| < MZ—1. (46)

This completes the proof of the theorem.
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From the point of view of hydrodynamic theory, we may state the above theorem
as;

The complex growth rate p = p,. + ip; of an arbitrary oscillatory perturbation of growing
amplitude (p, = 0) lies inside a semi-circle in the right half of the p,p; — plane whose
RT,O'

M2 —1.

centre is at the origin and whose radius is given by|p| < CF ik

Further, in view of Remark 1 above, we have the following corollaries;

Corollary 4: Under the hypothesis of Theorem 3, for DDC with variable viscosity,

Ip| < — B9 /M'? — 1, where, M’ = 404Rs

(0f min+T)4m2 27 4(T+0'fmin)'

Corollary 5: Under the hypothesis of Theorem 3, for SDDDC with variable

(R TRgST ‘L'RSsT)

e ) VM"? —1,where, M" = tolrr

(0 f min+7)4m2 27 *K (tK2+0 fmin)’

viscosity, |p| <

Corollary 6: Under the hypothesis of Theorem 3, for DDDDC with variable

, RTDT RyDT
(RT' 1-T )U \/M”IZ — 1. where. M"" = 40—(RT+ 1-T )
b b

(0 f min+7)4m2 T 27 4K (K40 fmin)’

viscosity, |p| <

It is to note that when the viscosity is constant or varying linearly or exponentially, we
have f,;n = 1, and Corollary 4 yields the bound for DDC problem as derived by Gupta
et.al. [15].

We shall now derive the analogous bound for Stern’s type configuration.

Theorem 4. If (p,w,0,9),p = p, +ip;, p; # 0 is a non-trivial solution of equations
(8)-(10) together with one of the boundary conditions (4)-(7) and Ry’ < 0,Rs' < 0, then

IRs'|oVN"? -1

4n2(K1+0 fmin)

|P| < 4|Rs'|o
271%1Ky (K140 fmin)’

Proof. Proceeding exactly as in Theorem 3, we can easily prove the theorem.
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Abstract

Condition for characterizing non oscillatory motions, which may be neutral or unstable,
for triply diffusive convection analogous to Stern type in a porous medium is derived by
using Darcy-Brinkman model. It is analytically proved that the principle of the exchange

of stabilities, in triply diffusive convection in a porous medium, is valid in the regime
|R|Ec

Py 1, where R is the thermal Rayleigh number, ¢ is the Prandtl number, E is a
constant. It is further proved that this result is uniformly valid for all combinations of

rigid and dynamically free boundaries.

Keywords: Triply diffusive convection, Porous medium, Darcy-Brinkman model, The
principle of the exchange of stabilities, Concentration Rayleigh number.

Introduction

Research on convective fluid motion in porous media under the simultaneous action of a
uniform vertical temperature gradient and a gravitationally opposite uniform vertical
concentration gradient (known as double diffusive convection) has been an area of great
activity due to its importance in the predication of ground water movement in aquifers, in
assessing the effectiveness of fibrous materials, in engineering geology and in nuclear
engineering. Double diffusive convection is now well known. For a broad view of the
subject one may be referred to Nield and Bezan [12], Murray and Chen [10], Nield [11],
Taunton et al. [29], Kuznetsov and Nield [8], Lombardo and Mulone [9], Basu and
Layek[2].

All these researchers have considered double diffusive convection. However, it
has been recognized later that there are many fluid systems, in which more than two
components are present. For example, Degens et al. [3] reported that the saline waters of
geothermally heated Lake kivu are strongly stratified by heat and a salinity which is the
sum of comparable concentrations of many salts. Similarly the oceans contain many salts
having concentrations less than a few percent of the sodium chloride concentration.
Multi-component concentrations can also be found in magmas and substratum of water
reservoirs. The subject with more than two components (in porous and non porous
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medium) has attached the attention of many researchers Grifiths [4, 5], Poulikakos [15],
Pearlstein et al. [14], Terrones and Pearlstein [26], Rudraiah and Vortmeyer [20], Lopez
et al. [7], Tracey [27, 28], Rionero [17], Straughan and Tracey [24]. The essence of the
works of these researchers is that small salinity of a third component with a smaller mass
diffusivity can have a significant effect upon the nature of convection; and ‘oscillatory’
and direct ‘salt finger’ modes are simultaneous possible under a wide range of conditions,
when the density gradients due to components with greatest and smallest diffusivity are
of same signs. Terrones [25] studied the effects of cross-diffusion on the onset of
convective instability in a horizontally infinite triply diffusive and triply stratified fluid
layer. Ryzhkov and Shevtsova [21] investigated the long-wave instability of a vertical
multicomponent fluid layer induced by the Soret effect. Rionero [18] investigated a triply
convective diffusive fluid mixture saturating a porous layer and derived sufficient
conditions for inhibiting the onset of convection. Rionero [19] further studied the
multicomponent diffusive convection in porous layer salted by m salts partly from above
and partly from below.

The wvalidity of the principle of the exchange of stabilities (PES) (i.e.
nonoccurence of oscillatory motions) in stability problems removes the unsteady terms
from the linear perturbation equations which results in notable mathematical simplicity
since the transition from stability to instability occurs via a marginal state which is
defined by the vanishing of both real and imaginary parts of the complex time eigenvalue
associated with the perturbation. Pellew and southwell [13] proved the validity of PES for
Rayleigh-Benard problem. However no such result exists for other more complex
hydrodynamic configurations. Banerjee et al. [1] derived a sufficient condition for the
validity of PES for hydromagnetic Rayleigh-Benard problem. Gupta et al. [6] extended
Banerjee et al.’s [1] criterion to rotatory hydromagnetic thermohaline convection
problem. To the author’s knowledge no such result exists for triply diffusive convection
analogous to Stern [23] type in porous medium. Thus the present paper provides a
sufficient condition for the validity of PES in triply diffusive convection analogous to
Stern [23] type in porous medium may be regarded as a first step in this scheme of
extended investigations. The following result is obtained in this direction:
|R|Ec

2m4
neutral or unstable mode of system is definitely nonoscillatory in character and in

particular PES is valid where R is the Raleigh number, ¢ is the Prandtl number, E is a
constant. It is further proved that this result is uniformly valid for all combinations of
rigid and dynamically free boundaries and the results for Rayleigh-Benard convection in
porous medium and double diffusive convection of Stern [23] type in porous medium
follow as a consequence

For triply diffusive convection in porous medium, if < 1, then an arbitrary
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Mathematical Formulation and Analysis

A viscous finitely heat conducting Boussinesq fluid layer, saturating a porous medium, of
infinite horizontal extension is statically confined between two horizontal boundaries
z = 0 and z = d which are respectively maintained at uniform temperatures T, and T; (>
T,) and uniform concentrations S;g, S0 and S;;(> S14), S21(> S,0)(as shown in Fig.1).
It is assumed that the saturating fluid and the porous layer are incompressible and that the
porous medium is a constant porosity medium. It is further assumed that the cross-
diffusion effects of the stratifying agencies can be neglected. The Darcy- Brinkman
model has been used to investigate the triple diffusive convection in porous medium.

Non-dimensional hydrodynamical equations that govern the problem are given by Vafai
[30], Prakash et al. [16]

A(D? —a*)?w — (p + D31)(D? — a®)w = —|R[a® [J w* 0 dz + | Ryla® [ w" [1; dz +
| R,|a? folw* 1, dz.

(1)
(D2 —a?—Eop)0 = —w, (2)
2 2 El(Sp _ w
(D —a —T)[l— —;, (3)
E
(p?—a? - 22B) 0, = - 2. “4)

The equations (1) — (4) are to be solved by using the following boundary conditions:

w=0=1[0;=0,=Dw=0atz=0and at z= 1, (when both the boundaries are rigid)

(5)

or w=0=[;=,=D*w=0atz=0and at z= 1, (when both the boundaries are free)

(6)

or w=10=1[0,;=[0,=Dw = 0atz = 0, (whenlower boundary is rigid)

and w = 0 = [J; =, = D?w= 0atz = 1, (when upper boundary is free)}

(7)

or w=0=1[;=0,=D?w = 0atz = 0, (whenlower boundary is free)

and w =0 = [;=0,=Dw= 0atz = 1, (when upper boundary is rigid)}

(8)

where z is the real independent such that 0 < z <1, D is the differentiation w.r.t. z, a’is

square of the wave number, ¢ = V?u is the Prandtl number, 1, = % and T, = % are the
pd*

. . . d*
Lewis numbers, R = gaT is the thermal Rayleigh number, R; = % and R, =

182



4
% are the two concentration Rayleigh numbers, p = p, + ip; is the complex
growth rate where p, and p; are the real constants, w is the vertical velocity, 0, is the
temperature, [1; and [], are the two concentrations. It may further be noted that in Egs.
(1)-(4) together with the boundary conditions (5)-(8) describe an eigenvalue problem for
p and govern triply diffusive convection in porous medium for any combination of
dynamically free and rigid boundaries.

Now we prove the following theorem

Theorem. If (w, 6, (14, (5, p), p = pr + ipi, pr =0 is a solution of Egs. (1) — (8) with

R<0, R{ <0,R, <0and “:lio <1 then p; = 0. In particular p, = 0 implies p; = 0, if
|R|Eo <1.
274

Proof:Multiplying equation (1) by w* (the superscript * henceforth denotes complex
conjugation) on both sides and integrating over vertical range of z, we obtain

Afolw* (D% —a?)?wdz — (p+D31) fol w* (D? —a?)wdz = —|R|a? fol w*0dz +

| R |a? folw* 1, dz + | R,|a® folw*[z dz. 9)
Making use of Egs. (2) — (4) and the fact that w (0) =0 =w (1), we can write
|R| a2 folw* 0dz = |R|a? fole(D2 —a?— Eop")o'dz, (10)
| Ry|a? folw* ,dz = —| Ry|a%y, fol 04 (D2 —a? - Elcp*) idz,

1
(11)
| Rzlaz fol Wﬂ< [de == _I Rzlaz'[z fol [2 (DZ - az - EZ‘ELp*) [;dZ.

2

(12) Combining Egs. (9) — (12), we obtain

Afol w* (D? —a?)?wdz — (p +D31) folw* (D? —a?)wdz = |R|a? fole (D% —a% —
E Gp*)e*dz - | R1|32T1 fol q)l (DZ - az - E%p*) d);dZ - I Rzlaz'[z fol (I)Z (D2 - az -

1

)d)’édZ- (13)

Integrating various terms of equation (13), by parts, for an appropriate number of times
and making use of either of the boundary conditions (5) — (8), it follows that

E,op”

T2

183



Af01(|D2W|2 + 2a%|Dw|? + a*|w|?) dz + (p + D; 1) fol(IDWI2 + a?|w|?) dz =
1 \ 1
—|R]a? fo (IDO|% + a?|0]* + Eop*|6|?) dz + |R,|a%1, fo (|DD1|2 + a%|04]% +
Eicp” 1 E,oc p*
2|0 [2) dz + | Rola?ty f, (1D + a2l )? + 2222 |y ?) (14)

T1 T2

Equating imaginary parts on both sides of equation (14) and cancelling p;(# 0)
throughout, we have

1 1 1
fo (|Dw|? + a?%|w|?) dz = |R|a12}520f0 |0]2dz — |R,|a%E;c fo |0, ]%dz —
IR, |a%Ec [0, %dz. (15)
Now, multiplying equation (2) by its complex conjugate and integrating the resulting
equation for a suitable number of times and use the boundary condition on 6 namely,
0(0) = 0 = 06(1), we obtain
J, (ID?6]% + 2a?|D6|? + a*(6|?) dz + 2Eop, [, (ID8|? + a?|6]*)dz +
2 1 1
E26°[p|2 [ 160]2dz = [ [wldz. (16)
Since p, = 0, it follows from equation (16), that
1 1
2a% [ |D6|?dz < [ |wl|?*dz. (17)

Now, since 0 and w satisfy the boundary conditions 6(0) = 0 = 6(1) and w(0) = 0 = w(1)
respectively, we have by Rayleigh-Ritz inequality (Schultz [22])

1 2 2 (11912
fOIDGI dz=n fOIOI dz, (18)
and folllede > n? follwlzdz.
19)
Utilizing inequality (18) and (19) in inequality (17), we get
2 (12 11 2
a fo |0]%dz < ﬁfo |Dw|?dz.
(20)
Utilizing inequality (20) in Eq. (16), we obtain
IR|Ea] (1
[1 - o= ] J, IDw|?*dz +
1 1 1
a® [ |w|*dz + |Ry|a®Eso [, |111]%dz + [R;[a®Ezc [ |T2]%dz < 0. 21)
which, clearly implies that
|R|Ec
2t L (22)
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|R|Ec
2m*

Hence if < 1, then we must have p; = 0.

This proves the theorem.

The essential content of the theorem from the physical point of view are that for
the problem of triply diffusive convection analogous to Stern type in porous medium, an
arbitrary neutral or unstable mode of the system is definitely nonoscillatory in character

RIE
| |f < 1. Further
2T

this result is uniformly valid for any combination of rigid and / or free boundaries.

and in particular the principle of the exchange of stabilities is valid if

Special Cases: It follows from theorem1 that an arbitrary neutral or unstable mode is non
oscillatory in character and in particular PES is valid for:

1. Rayleigh-Benard convection in porous medium (R; = R, = 0).
2. Thermohaline convection of Stern (1960) type in porous medium (R < 0,R; <
0,Ry < 0)if HET <1

2nt T

Conclusion

Linear stability theory is used to derive a sufficient condition for the validity of the
‘PES’ in triply diffusive convection in porous medium. It is further proved that this result
is uniformly valid for any combination of rigid and / or free boundaries.
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Abstract

Thermal instability in a horizontal layer of a porous medium saturated by
viscoelastic fluid in electrohydrodynamics 1is studied both analytically and
numerically. Rivlin-Ericksen fluid model is used to describe the behaviour of a
viscoelastic fluid and for the porous medium, Brinkman model is employed. The fluid
layer is induced by the dielectrophoretic force due to the variation of dielectric
constant with temperature. By applying perturbation solutions and linear stability
theory, we derive the dispersion relation describing the influence of viscolasticity,
Brinkman-Darcy number, Darcy number and electric Rayleigh number. It is observed
that Rivlin-Ericksen viscoelastic fluid behaves like an ordinary Newtonian fluid in the
stationary convection. The effects Brinkman-Darcy number, Darcy number and AC
electric field studied both analytically and numerically for free-free boundaries on the
stationary convection. The present results are in good agreement with the earlier
published results.

Key words: Rivlin-Ericksen fluid, AC electric field, Viscosity, Viscoelasticity, Porous
medium.

1. Introduction

Electrohydrodynamics (EHD) can be regarded as branch of fluid mechanics which
deal with the dynamics of electrically charged fluids, also known as electro-fluid-
dynamics (EFD) or electrokinetics. EHD covers the fluid transport mechanisms such as
electrophoresis, electrokinetics, dielectrophoresis, electro-osmosis, and electrorotation.
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Recently, the study of electrohydrodynamic instability in dielectric fluid attracts many
researchers because it has various applications in climatology, oceanography, EHD
enhanced thermal transfer, EHD pumps, EHD in microgravity, micromechanic systems,
drug delivery, micro-cooling system, nanotechnology etc. Chen et al. [1] discussed the
applications of electrohydrodynamics in brief. They said that EHD heat transfer came out
as an alternative method to enhance heat transfer, which is known as
electrothermohydrodynamics (ETHD). Many researchers have been studied the effect of
AC or DC electric field on natural convection in a horizontal dielectric fluid layer by
taking different types of fluids. The onset of electrohydodynamic convection in a
horizontal layer of dielectric fluid was studied by Landau [2], Robert [3], Castellanos [4],
Lin [5], Gross and Porter [6], Turnbull [7], Maekawa et al. [8], Smorodin and Velarde [9],
Galal [10], Rudraiah and Gayathri [11] and Chang et al. [12]. Takashima and Ghosh [13]
studied the electrohydrodynamic instability in a viscoelastic liquid layer and found that
oscillatory modes of instability exist only when the thickness of the liquid layer is smaller
than about 0.5 mm and for such a thin layer the force of electrical origin is much more
important than buoyancy force while Takashima and Hamabata [14] studied the stability
of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal
AC electric field.

The study of Newtonian fluid heated from below saturating a porous medium has
attracted many researchers for the last few decades since it has various applications in
geophysics, food processing, oceanography, soil sciences, ground water hydrology and
astrophysics etc. Chandrasekher [15] discussed in detail the thermal instability of
Newtonian fluid under the various assumptions of hydrodynamics and hydromagnetics. A
good account of thermal instability problems in a porous medium is given by Wooding
[16], Ingham and Pop [17], Vafai and Hadim [18] and Nield and Bejan [19].

Reiner [20] and Rivlin and Ericksen [21] developed the non-linear constitutive
equations for non-Newtonian compressible and incompressible fluid respectively. Green
[22] was the first who studied the problem of convective instability of a viscoelastic fluid
heated from below while Vest and Arpaci [23] studied the problem of overstability of a
viscoelastic fluid. With the growing importance of non-Newtonian fluids having
applications in geophysical fluid dynamics, chemical technology and petroleum industry
attracted widespread interest in the study on non-Newtonian fluids. There are many
common materials such as paints, polymers, coolants, plastics, magma, saturated soils
and Earth’s lithosphere which behave as viscoelastic fluid. There are many elastico-
viscous fluids that cannot be characterized by Maxwell's constitutive relations or by
Oldroyd's constitutive relations. One such type of fluids is Rivlin-Ericksen viscoelastic
fluid having relevance in chemical technology and industry. Rivlin-Ericksen viscoelastic
fluid forms the basis for the manufacture of many important polymers and useful
products. Such polymers are used in agriculture, communication appliances and in bio
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medical applications. Examples of these applications are filtration processes, packed bed
reactors, insulation system, ceramic processing, enhanced oil recovery, chromatography.

In the case of Rivlin-Ericksen fluid, the term [,quq] in the equations of motion is

replaced by the term {_ki[ /R %jq} , where p and g 'are the viscosity and
1

viscoelasticity of the incompressible Rivlin-Ericksen fluid, &; is the medium permeability
and q is the Darcian (filter) velocity of the fluid. Also the constitutive equation is one of
the simplest viscoelastic laws that accounts for normal stress effects responsible for the
periodic phenomena arising in viscoelastic fluids. Because of these reasons, the model
has been widely accepted for experimental measurements and flow visualization on the
instability of viscoelastic flows. A good account of thermal instability problems of
Rivlin-Ericksen fluid in porous medium has been studied by Sharma et al. [25], Rana and
Thakur [26], Chand and Rana [27], Rana and Sharma [28] and Chand et al. (2015).

Shivakumara et al. [29] studied the electrothermoconvection in a rotating Brinkman
porous layer while Rana et al. [30] studied the electrohydrodynamic instability of Rivlin-
Ericksen viscoelastic dielectric fluid layer. In the present paper thermal instability in a
Brinkman porous medium layer saturated by a viscoelastic fluid in electrohydrodynamics
is studied which include an additional parameter Brinkman-Darcy number. The Darcy-
Brinkman equation is a governing equation for flow through a porous medium with an
extra Laplacian (viscous) term (Brinkman term) is added to the classical Darcy equation.
The equation has been widely applied to examine high-porosity porous media.

2. Theoretical Model and Mathematical Analysis

We consider an infinite horizontal layer of an incompressible Rivlin-Ericksen
viscoelastic fluid of thickness d saturating a porous medium, bounded by the planes z =0
and z = d as shown in fig.1. The fluid layer is acted upon by a gravity force g = (0, 0, -g)
aligned in the z direction and the uniform vertical AC electric field applied across the
layer. The temperature T at the lower and upper boundaries is assumed to take constant
values Tpand T (< Ty) respectively. The Darcy-Brinkman law is assumed to hold and the
Oberbeck-Boussinesq approximation is employed.
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AC Electric field | 8= £0.0,-g)

Heated from below

Fig. 1 Physical configuration

2.1 Governing Equations

Let p,u, 1, 1,0, p, K, q(u, v, w), g, T, x, A and E denote respectively, the
density, viscosity, effective viscosity, viscoelasticity, medium porosity, pressure,
dielectric constant, Darcy velocity vector, acceleration due to gravity, temperature,
thermal diffusivity, ratio of heat capacity and the root-mean-square value of electric
field. The equations of conservation of mass, momentum and thermal energy for Rivlin-
Ericksen elastico-viscous fluid (Chandrasekhar [15], Rivlin-Ericksen [21], Takashima
and Ghosh [13], Rana and Sharma [27], Shivakumara [29] and Rana et al. [30]) are

V.q=0, (1)
p dq , 1 : 6} 1
EA = VP+pg+iViq-—| u+pu — lq-=(E-EVK, 2
5 d pguqkl(u W= ja-7(E-E) 2)
A%+(q-V)T=W2T, (3)
d o0 1 . o
where —=—+—(q-V) stands for convection derivative
€
and P:p—ﬁa—K(E-E) (4)
2 op

is the modified pressure.
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The Coulomb force term p, E, where p, is the free charge density, is of negligible order

as compared with the dielectrophoretic force term for most dielectric fluids in a 60Hz AC
electric field. Thus, we retain only the dielectrophoretic term, i. e. last term in equation
(2) and neglect the Coulomb force term. Furthermore, the electrical relaxation times of
most dielectric liquids appear to be sufficient long to prevent the build up of free charge
at standard power line frequencies. At the same time, dielectric loss at these frequencies
is very low that it makes no significant contribution to the temperature field. It is also
seen that the dielectrophoretic force term depends on (E-E)rather than E. As the

variation of E is so speedy, the root-mean-square value of E is used as effective value in
determining the motion of fluids. So we can consider the AC electric field as the Dc
electric field whose strength is equal to the root mean square value of the AC electric
field.

A charged body in an electric field tends to along the electric field lines and
impart momentum to the surrounding fluid. The Maxwell equations are

VxE=0, (5)
V-(KE)=0. (6)
In view of Eq. (5), E can be expressed as
E=-V/JV, (7)

where V is the root mean square value of electric potential. The dielectric constant is
assumed to be linear function of temperature and is of the form

K=K,(1-y(T-T,), ®)
where y > 0, is the thermal coefficient of expansion of dielectric constant and is assumed
to be small.
The equation of state is

p=pll-a(l-T,)] )

where a is coefficient of thermal expansion and the suffix zero refers to values at the
reference level z = 0.

2.2 Basic State

The basic state of the system is taken to be quiescent layer (no settling) and is given by
q=q,(2),P=F(2),T=T,(2),E=E,(2),K =K,(2),p = p,(2), (10)
where the subscript b denotes the basic state.

Substituting equations given in (10) in Egs. (1) — (9), we obtain
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P(z) p2) 1
0=-V- 22400 g E’ VK, (11)
Po Po 2/00( )V

dszZ”fZ) =0, (12)
K, (2) = K,[1-AT, - T,)] (13)
py(2)= pyll-a(r, -1, (14)
V(K,E,)=0. (15)
Solving Eq. (12) by using the following boundary conditions

T,(z)=T,atz=0and 7,(z) =1, atz= 1 (16)
we obtain

T,=T,-ATz/d. (17)

In view of Eq. (15) and noting that E, =E, =0. It follows that

K,E, =K E, =constant (say). (18)
Then
E
E—E,(z)=— 2o (19)
1+yATz/d
E.d
Hence V, (z) = ——log(1 + jATz/d), (20)
yAT
where E, = —M 21
log(1+ yAT)

is the root-mean-square value of the electric field at z = 0.

2.3 Perturbation Solutions

To study the stability of the system, we superimposed infinitesimal perturbations on the
basic state, so that

q=q.T=T,+T,E=E, +E,p=p, + p,. K=K, +K',P=P, +P' (22)

where
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q,T,E, p",K', P' be the perturbations in q,7, E', p,K', P' respectively. Substituting
Eq. (10) in Egs. (1) — (9), linearizing the equations by neglecting the product of primed
quantities, eliminating the pressure from the momentum Eq. (2) by operating curl twice
and retaining the vertical component and non-dimensionalising the resulting equations by

introducing the dimensionless variables as follows:

d K 1 1
yhz)=| 2Pt g =gt =t T'=—T, V=—-—V
Oyh2n) ( d j’q P AT JE,ATd
Neglecting the primes for simplicity, we obtain the linear stability equations in the form
i§+i(1+Fﬁj—5av2 Vzw:RatVZT+RaeVZ[T—a—Vj, (23)
Prot  Da ot 0z
{ﬁ ~-V? }T =w, (24)
ot
Vi = a—T, (25)
0z
where we have used dimensionless parameters as:
Pr = %
K b
Pt
U
Da = %,
~ Lk
Da:/i’d;, 26a, b, ¢, d)
3
Ra, = M’ (27)
VK
*KEL(AT) d?
Ra — 7 00 ( ) d , (28)
UK
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The parameter Pr is the Prandtl number, F is the viscoelasticity parameter, Da is the
Darcy number, Ra, is the familiar thermal Rayleigh number and Ra, is the AC electric
Rayleigh number.

Now we assume that the temperature at the boundaries is kept fixed, the fluid layer is
confined between two boundaries. The boundary conditions appropriate (Chandrasekhar
[15], Takashima and Ghosh [13], Rana and Sharma [27] and Rana et al. [30]) to the
problem are

2
_9 ZV:G—V:O,Tzo or DT =0.
0z 0z
(29)
2. Linear stability analysis

Using normal mode analysis method, we assume that the perturbation quantities have x, y
and t dependence of the form

[w, T, V]=[W(z), 0(z), ®(2)|exp(ilx + imy + et ), (30)
where [ and m are the wave numbers in the x and y direction, respectively, and @ is the
complex growth rate of the disturbances.

Substituting Eq. (30) in Egs. (23) — (25) and (29), we get

{Pﬁ-’_ DL(1+Fa))—5a(D2 —az)}(D2 —az)W = —Rataz®+ Raea2(®—D<D), 1)
r Da

|40 - (D> -a* o =W, (32)

(D> - a0 = Do, (33)

W =DW =Dd=0,0=0 or DO =0, (34)
d

where a’ =1> +m*,D =—.
dz

Egs. (31) — (33) form an eigenvalue problem for Ra, or Ra,and o with respect to the
boundary conditions (34).

We assume the solution to W, ®, @ and Z of the form
W=W,sinnz, ®=0,sinmz, ® =0, cos nz, (35)
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which satisfy the boundary conditions of Eq. (34). Substituting Eq. (35) into Egs. (31) —
(33), we obtain the following matrix equation

2JrL(1+coF)+5aJ2 J*> —a*(Ra,+Ra,) —Ra,a’z W, 0
Pr  Da © 0
-1 Ao+J? 0 o=,
0 r J? ®q 0
(36)
where J* =7° +a’ is the total wave number.
The linear system (36) has a non-trivial solution if and only if
—2+—L@+wFﬁihﬂ}ﬂ ~a’(Ra, +Ra,) —Ra,a’n
| Pr Da
-1 Aw+J’ 0 =0,

0 I J?

which yields

Ra, = >

J%F+Aw{w 1
a

2
& o (1+wF)+Da? |-<_Ra,.
Pr  Da J

(37)

Eq. (37) is the dispersion relation accounting for the effect of Prandtl number,
electric Rayleigh number, Darcy number, Brinkman-Darcy number and kinematic
viscoelasticity parameter in a layer of Rivlin-Ericksen viscoelastic dielectric fluid in
porous medium.

3. Stationary convection

For stationary convection, putting ® = 0 in equation (37) reduces it to
3 ~ 2 _

_ (7[2 +a2) Da+(7z2 +a2) Da™ 3 a’

2 2 2
a 7o +a

Ra, Ra,.

(38)

Eq. (38) expresses the thermal Rayleigh number as a function of the dimensionless
resultant wave number a, the parameters electric Rayleigh number Ra, and Darcy number

Da. 1t is found that the kinematic viscoelasticity parameter F vanishes with ® and the
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Rivlin-Ericksen viscoelastic dielectric fluid behaves like an ordinary Newtonian
dielectric fluid. Eq. (38) is in good agreement with the equation obtained by Roberts [3].

In the absence of AC electric field (i. e., when Ra, = 0), Eq. (38) reduces to
(7[2 +a’ )35a + (7[2 + az)zDa_l

2
a

Ra, =

(39)

To study the effect of AC electric field on electrohydrodynamic stationary convection,

. . OR ORa, OR . .
we examine the behaviour of ot , i , d analytically and numerically.

ORa oDa = 0Da

e

From Eq. (38), we obtain

ORa, a’
ORa h 2t ta?’ (40)

e

which is negative implying thereby AC electric field has destabilizing effect on the
system which is in an agreement with the results derived by Takashima and Ghosh [24],
Shivakumara et al. [29] and Rana et al. [30].

Also Eq. (38) yields
ORa, (7:2 + az)zDa_2
oDa a’

which is negative implying thereby Darcy number has destabilizing effect on the system
which is in good agreement with the results derived by Rana and Sharma [27], Rana and
Thakur [25], Shivakumara et al. [29] and Rana et al. [30].

; (41)

From Eq. (38), we get

ORa, (72'2 +az)3
dDa a’ ’
which is positive implying thereby Brinkman-Darcy number has stabilizing effect on the

system which is in good agreement with the results derived by Chand and Rana [26],
Shivakumara et al. [29].

(42)

The dispersion relation (38) is analysed numerically. Graphs have been plotted by giving
some numerical values to the parameters, to depict the stability characteristics.
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Fig. 2: Variation of thermal Rayleigh number (Ra,) with wave number (a) for different
values of electric Rayleigh number (Ra,).

In fig.2, the thermal Rayleigh number Ra, is plotted against dimensionless wave
number a for different values of electric Rayleigh number Ra,as shown. This shows that
as (Ra,)increases the thermal Rayleigh number Ra, decreases. Thus, AC electric field

has destabilizing effect on stationary convection which is in good agreement with the
result obtained analytically in Eq. (40).
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Fig. 3: Variation of thermal Rayleigh number (Ra,) with wave number (a) for different
values of Darcy number (Da)
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In fig.3, the thermal Rayleigh number Ra, is plotted against dimensionless wave

number a for different values of Darcy number Da as shown. This figure depicts that as
Darcy number Da increases the thermal Rayleigh number Ra, decreases. Therefore,

Darcy number has destabilizing effect on the stationary convection which is in good
agreement with the result obtained analytically in Eq. (41).
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Fig. 4: Variation of thermal Rayleigh number (Ra;) with wave number (a) for different
values of Brinkman-Darcy Number (5a )

In fig.4, the thermal Rayleigh number Ra, is plotted against dimensionless wave

number a for different values of Brinkman-Darcy number (5a) as shown. This figure
depicts that as Darcy number (Da) increases the thermal Rayleigh number Ra, also

increases. Therefore, Brinkman-Darcy number has stabilizing effect on the stationary
convection which is in good agreement with the result obtained analytically in Eq. (42).

4. Conclusions

Thermal instability in a Darcy-Brinkman porous medium layer saturated by a Rivlin-
Ericksen viscoelastic fluid layer heated from below in electrohydrodynamics has been
investigated for the case of free-free boundaries by using perturbation theory and linear
stability analysis. For the case of stationary convection, the non-Newtonian
electrohydrodynamic Rivlin-Ericksen viscoelastic fluid behaves like an ordinary
Newtonian fluid. AC electric field and Darcy number both have destabilizing influence
while Brinkman-Darcy number has stabilizing influence on the onset of stationary
convection.
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List of Symbols

q Velocity vector

a Wave number

d Thickness of the horizontal layer

E Root-mean-square value of the electric field

E, Root-mean-square value of the electric field at z= 0
g Acceleration due to gravity

k; Medium permeability

K Dielectric constant

K, Reference dielectric constant at T

I, m Wave numbers in x and y directions

P Modified pressure, defined by Eq. 4

Pr Prandtl number, defined by Eq. 26a

F Viscoelasticity parameter, defined by Eq. 26b
Da Darcy number, defined by Eq. 26¢

Da Brinkman-Darcy number, defined by Eq. 26d
Thermal Rayleigh number, defined by Eq. 27

Ra, AC electric Rayleigh number, defined by Eq. 28

t Time

T Temperature

Ty Temperature at the lower boundary

T, Temperature at the upper boundary

\% Root-mean-square value of the electric potential

W Amplitude of vertical component of perturbed velocity
k Thermal conductivity

(x,y,z) space co-ordinates
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Greek symbols

Viscosity of fluid

Viscoelastisity of fluid

Coefficient of thermal expansion

Coefficient of thermal expansion of dielectric constant
Thermal diffusivity of the fluid

Medium porosity

Density of fluid

Free charge density

Electrical conductivity of fluid

Growth rate of disturbances

V2 =0?/ox* +0*/dy* Horizontal Laplacian operator

V =V?+8/6y* Laplacian operator

() Amplitude of perturbed dielectric potential V
0 Amplitude of perturbed temperature T
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Abstract

The effect of heat and mass transfer on free convective flow of a visco-elastic
incompressible and electrically conducting fluid past a vertical porous plate through a
porous medium with time dependent oscillatory permeability and suction in presence of a
uniform transverse magnetic field, radiation, chemical reaction and Soret effect in slip
flow regime have been analysed.The coupled nonlinear partial differential equations are
turned to ordinary by super imposing a solution with steady and time dependent transient
component. Numerical value of velocity, temperature, skin friction, Nusselt number and
Sherwood number for different value of the parameters involved in the problem are
expressed through the graphs and table and discussed.

Keywords: MHD, Viscoelastic, Radiation, Soret effect, Variable permeability, Suction,
Slip flow regime.

Introduction

An important study of two dimensional time dependent flow problem dealing with the
response of boundary layer to external unsteady fluctuations of the free stream velocity
about a mean value attracted the attention of many researchers Mishra et al. [10]. MHD
flow with heat and mass transfer has been a subject of interest of many researchers
because of its varied application in science and technology. Such phenomena are
observed in buoyancy induced motions in the atmosphere, in water bodies, quasi-solid
bodies such as earth, etc. In natural processes and industrial applications many
transportation processes exist where transfer of heat and mass takes place simultaneously
as a result of thermal diffusion and diffusion of chemical species. Several researchers
have analyzed the free convective and mass transfer flow of a viscous fluid through
porous medium. The permeability of the porous medium is assumed to be constant while
the porosity of the medium may not be necessarily constant. Kim [8] studied the unsteady
MHD convective heat past a semi infinite vertical porous moving plate with variable
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suction. The problem of three dimensional free convective flow and heat transfer through
porous medium with periodic permeability has been discussed by Singh and Sharma [19].
Singh and Singh [18] have analyzed the heat and mass transfer in MHD flow of a viscous
fluid past a vertical plate under oscillatory suction velocity. The study of viscoelastic
fluids through porous medium has become the basis of many scientific and engineering
applications. This type of flow is of great importance in the petroleum engineering
concerned with the movement of oil, gas and water through reserviour of oil and gas field
and to the hydrologist in the study of the migration of underground water, to the chemical
engineers for the purification and filteration process and in the case of drug permeation
through human skin.The principle of this subject are very useful in recovering the water
for drinking and irrigation purpose. Gorla et al. [5] studied mixed convection effect on
melting from a vertical plate in a porous medium. Narayana and Sibanda [13] presented
influence of the Soret effect and double dispersion on MHD mixed convection along a
vertical flat plate in non-darcy porous medium. Unsteady MHD flow of a visco-elastic
fluid along vertical porous surface with chemical reaction was investigated by Nayak et
al. [14]. Jha and Choudhary [7] studied influence of Soret effect on MHD mixed
convection flow of viscoelastic fluid past a vertical surface with Hall current. Radiative
convective flows are frequently encountered in many scientific and enviromental process,
such as astrophysical flows, water evaporation from open reservoirs, heating and cooling
of chambers and solar power technology. Several researchers have investigated radiative
effects on heat transfer in non porous and porous medium utilizing the radiative heat flux
model. Garg [6] studied magneto hydrodynamics and radiation effects on the flow due to
moving vertical porous plate with variable temperature. Effects of chemical reaction and
radiation on an unsteady MHD flow past an accelerated infinite vertical plate with
variable temperature and mass transfer is presented by Ahmed et al. [1]. Rana [15]
studied free convection effects on the oscillatory flow past a vertical porous plate in the
presence of radiation for an optically thin fluid. Lavanya and Kesavaiah [9] presented
radiation and Soret effects to MHD flow in vertical surface with chemical reaction and
heat generation through a porous medium. Reddy [16] investigated unsteady heat and
mass transfer MHD flow of a chemically reacting fluid past an impulsively started
vertical plate with radiation. Visco-elastic MHD free convective flow through porous
media in presence of radiation and chemical reaction with heat and mass transfer
analysed by Choudhury and Das [2]. The problem of slip flow regime is very important
in the era of modern science, technology and vast ranging industrialization. Rao et al.
[17] analysed MHD transient free convection and chemically reactive flow past a porous
vertical plate with radiation and temperature gradient dependent heat source in slip flow
regime. Mukhopadhyay et al. [11] studied MHD mixed convection slip flow and heat
transfer over a vertical porous plate. The objective of the present study is to analyze the
variable permeability and Sorret effect on MHD radiative and reacting flow of
viscoelastic fluid past an infinite porous plate in slip flow regime.
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Mathematical formulation and analysis

The unsteady free convective flow of a visco-elastic (Walters B') fluid past an infinite
vertical porous plate in a porous medium with time dependent oscillatory suction as well
as permeability in presence of a transverse magnetic field is considered. Let x’' — axis is
assumed to be oriented vertically upwards along the plate and y’ — axis is taken normal
to the plane of the plate. It is assumed that plate is electrically non-conducting and a
uniform magnetic field of strength By is applied normal to the plane of the plate.

The plate is subjected to a variable suction
v =-1(1+ eei“"t') (1)
and the permeability of the porous medium is asssumed to be of the form
k'=ky(1+eel@t) )
Under usual Boussinesq's approximation, the governing equations and boundary
conditions relevant to the physical model is given by
Equation of continuity

v’

=0 3)

Equation of motion

ou’ ou _ 19p a%u’ 9%’ : ' : : v o+ oBE

etV 5= e TV kg FRENER BT =T.) + gBc(C — () —-u U
4

Equation of energy

aT’ 9Tk 92T 1 aq

at’ T ay'  pcp dy” B pcp 0y’ )

Equation of mass transfer

ac’ ac’ azc’ / / 92T’

F-}_va_y:Dw_’z_Kl(C_Cw)-l_Dlm (6)

Boundary conditions relevant to problem are:

’ ’ vau' ’ ’ ’ ’ T ’ ' ' ' T
y =0u =L a—y,,T =T, +&(T, —T.)et C' =C., + &(C,, — C.)et 0

y »>ou - 0T ->T,C - C,
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1

Where L' = (2;—f1) L, with f; Maxwell reflexion coefficient L = u (%)Z is mean free
1

path and is a constant for an incompressible fluid, L is the characterstics length of the
plate.

Following Cogley ef al. [3] the radiative heat flux is taken be of the form

0

aq
3y =4a'(T' - T,) (8)
Outside the boundary layer, the pressure term is assumed to be constant i.e.

10p

—~® 9 )

pOx

Using equation (9), then equation (4) becomes,

0%u GESTE ' ' ' ' v o O'Bg '
+ p vﬁ—komtgﬁ(T —T) 4 9B(C — (o) —pu ——Fu (10)
Introducmg the following non-dimensional quantities,
W W ¥ g T g s )
v 4v Tw—Tyo v
_ 2av __ ovB} Uep koVE kao e
N_VON/E’ N PVZ’PT K P v2 k vz ' 2 | b
_ Vo_t _V _ Q Dl(Tw Too) gﬂc(cw Coo)
h=225 =2 K = S, = (Coc) , G, V3 )

Using above non-dimensional quantities in equations (5), (6) and (9) the governing
equations in non dimensional form,

iz_z_(lﬂeiwt)g_;zgiy’;_%a(aw ;) + 6,6+ G.C - mu—Mu (12)
—Pra—(1+£ei“’t)Pr%=2272—N29 (13)
%%—(1+geiwf)2—;=slc327§—xlc+sr2Z (14)
The non-dimensional boundary conditions are

y=0,u=hg—;,0=1+£eiwt,C=1+£eiwt (15)

y—->ou—>06->0C-0
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Method of solution

In view of periodic suction and permeability at the plate, following Das et al. [4] and
Mishra et al. [12] and the velocity temperature concentration in the neighbourhood of the
plate is assumed to be of the form:

u@.t) = up(y) + e 'us ()
0(y.t) = 6o(y) + e’ 0,(y) (16)
CO.t) = Co(y) + ee'*C,(¥)
Using equation (16) in equations (12) to (14) and equating the harmonic and non-
harmonic terms on both sides of equations, we get the following set of equations,

Uy + Uy — (M + é) Uy = —G,0, — G,C, (17)

(1 — 0—’(;(1))) u:/ll + ui - (M + ki + i(l))ul = —2u6 — u(')' + MU.O — GTHO _ GCCO _ Grel _

p

G.C, (18)
6, + P.8y — N?6, = 0 (19)
0, + P60, — [N2 + (%) Pr] 0, = —P.0, (20)
Co + S.Co — K,Co = —S5.5,.0, (21)
C. +S.C, — S, [Kl + (%)] C, = —S,5,0, — S.Cq (22)

The transform boundary conditions are,

Ouo

a
0wy = hS2,00=1,0, = 1,6 =1,C; = 1}

y—->xou,—0u —>06,-06-0C_C—-0C—-0

y=0,up=nh (23)

Solving differential equations (17) to (22) under the boundary conditions (23), we get the
following expression for velocity, temperature and concentration profile,

X8€_A5y + X6€_A1y - X7€_A3y

u(y, t) = +£eiwt [ Xge_Aly + Xloe_Azy + Xlle_A3y ] (24)
_Xlze_A4y + X13€_A5y + X146_A6y
O(y,t) = e~ 41V + gel@t[(1 — X,)e 42Y + X e 41Y] (25)
(14 X,)e Y — X,e 41y
C(y, t) = +geiwt [—X5€_A1y — X3e—Azy + X46_A3y] (26)
+(1+ X3 — Xy + Xs)e ™4+
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Some important characteristics of the flow field
From the velocity profile the skin friction at the plate in terms of amplitude and phase
angle in non dimensional form is given by,

I = (%)FO + gelwt (66_1;1)3,:0 = (66_1;))3_0 + &|D|cos(wt + ) (27)

where ,|D| = [D? + D?, ¢ = tan™! (%)
From the velocity profile the rate of heat transfer in terms of amplitude and phase in non-
dimensional form is given by,
690 i t 691 690
N, = |— + ge'®t (— =|(— + £|G|cos(wt + 28
= (50 (5), = (G) _, +elGleos(or +p) (28)

9y /y=0 9y /y=o dy

where, |G| = /Grz +Gf, y = tan™ (%)

From the velocity profile the mass transfer coefficient, i.e, the Sherwood number at the
plate in terms of amplitude and phase in non-dimensional form is given by,

no() e ) ) s e

where, |H| = ’HTZ + H?, 6§ = tan™? (%)

Results and discussion

The problem of MHD free convection flow under the effect of thermal radiation and
Soret number through porous medium with infinite vertical porous plate in the presence
of chemical reaction is analysed.The closed form solutions for the velocity, temperature
and concentration profile are obtained analytically and then evaluated numerically for
different value of governing parameters. To have better insight of physical problem the
variations of physical quantities with flow parameters are shown graphically. To be
realistic the value of Prandtl number (B.) are chosen to be 0.71 and 7 which correspond
to air and water respectively. The values of Schmidt number (S,) are chosen to represent
hydrogen (S, = 0.66).The value of Grashoff number (G, > 0) are taken for cooling the
plates. The values of Soret number, Hartmann number and radiation parameter are chosen

arbitrary with € = 0.0001, wt = g . It is clear from figure 1 that Grashoff number (G,)

and modified Grashoff number(G,) enhance the fluid velocity. This figure also reveals
that fluid velocity reduces with the increase of Hartmann number (M) and Prandtl
number(B,.). From figure 2 we observed that fluid velocity increases with slip parameter
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(h), Soret number(S,.), porosity parameter (kp) and dimnishes with the increase of visco-
elastic parameter (o). Figure 3 illustrate that fluid temperature decreases with the increase
of Prandtl number (B.) and radiation parameter (N). It is clear from figure 4 that with
increase in Schmidt number and chemical reaction parameter the concentration profile
decreases. Figure 4 also illustrate that fluid concentration increases with increase in Soret
number (S,). Table 1 present the variations in skin friction coefficient (1), its amplitude

and phase angle with wt = g and € = 0.0001. It observed from this table that an increase

in Grashoff number modified Grashoff number, permeability of porous medium and
Soret number lead to an increase in the value of amplitude and coefficient of skin friction,
while an increase in Hartmann number, viscoelastic parameter, slip parameter and Prandtl
number leads to decrease the amplitude and coefficient of skin friction. The value of
phase angle increases due to increase in Hartmann number and Grashoff number, while
decreases with increase in modified Grashoff number, viscoelastic parameter,
permeability of porous medium, slip parameter, Soret number and Prandtl number. The
variation in Nusselt number, its amplitude and phase angle with wt = g and € = 0.0001

is listed in Table 2. It is noticed from this table that with the increase in radiation
parameter and frequency of oscillation amplitude of Nusselt number increases. The rate
of heat transfer and phase angle is small but amplitude is very large in case of water
(P, = 7.0) than in case of air (P. = 7.0). The values in the table clearly show that rate of
heat transfer decreases and phase angle increase with the increase in radiation parameter.
It is interesting to note that the amplitude, phase angle and rate of heat transfer all
decreases with the increase in the frequency of oscillation. The numerical values of

Sherwood number, its amplitude and phase angle with wt = % and € = 0.0001 are listed

in table 3. From the table it is clear that amplitude and Sherwood number enhances with
increase of Schmidt number, chemical reaction parameter and Soret number, while phase
angle decreases with increase in these parameters.

Conclusion

The main conclusion of this study is:
1. The Soret number and permeability of porous medium enhance the fluid velocity.
2. Slip parameter has a tendency to increase the velocity of fluid.

3. Viscoelastic parameter reduces the fluid velocity. This is due to the fact that, elastic
property in visco-elastic fluid reduces the frictional drag.

4. Hartmann number retards the flow due to the magnetic pull of Lorentz force.

5. Combined effect of increasing values of Prandtl number and radiation parameter is
to reduce the temperature.

6. Skin friction is diminished with enhancement in Hartmann number.
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7. The rate of heat transfer is more in case of air than in water.
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G. | G « k, h 5 P, D] U T

5 0.05 0.5 0.2 0.8 0.71 3.8029 -0.17202 3.7669

5 0.05 0.5 0.2 0.8 0.71 2.8338 -0.12719 2.7708

L RR B R

10 0.05 0.5 0.2 0.8 0.71 5.1071 -0.16424 5.0442

10 | 0.05 0.5 0.2 0.8 0.71 6.6018 -0.17804 6.2566

0.2 0.5 0.2 0.8 0.71 3.847 -0.20115 3.8675

0.05 1 0.2 0.8 0.71 4.1609 -0.20839 4.5421

0.05 0.5 0.4 0.8 0.71 2.8928 -0.18732 2.8534

0.05 0.5 0.2 1.6 0.71 4.1745 -0.17575 3.9805

NINININ G o v R0 =

viunfuvniunjui (L
umuonuu|un

0.05 0.5 0.2 0.8 7 2.9602 -0.17392 2.9935

Table 1. Variation of skin friction(t), its amplitude|D| and phase angle.
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N | B @ 1G] 4 N,

1 | 071 | 5 [1.9559 |.00076213 |-1.4176
4 [ 071 | 5 4.7596 | .00078657 | -4.3745
1|7 5 13.865 | .00071537 | -7.1500
1 |071 | 10 | 1.1027 | .00043080 | -1.517

Table 2. Variations in Nusselt number (N,,), its amplitude |G| and phase angle.

S, K, g |H| 5 5,

0.22 0.02 0.8 0.13657 0.67528 -0.7779
0.66 | 0.02 0.2 | 0.28089 | 0.19153 | 0.004703
0.22 0.08 0.8 0.16496 0.52523 -0.12632
022 | 0.02 1.6 | 0.24225 | -0.3742 0.34218

Table 3. Variations in Sherwood number(S},), its amplitude [H| and phase angle.
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Appendix
Pr+ /P2+4N2 Jpr +4(N2+(“")Pr) S+ /5§+4SCK1
Al i — AZ 2 9 A3 = 2 5
- 1 a(iw)( 1. )
1+ [1+4(M+— 1+ [1+4(1-—=2)( M+—+
Sct [SE+asc(Ki+77) / ( kp) J (-2 i T
Ay = 2 , As = 2 , Ag = 2
A1 Pr SrScAf SrScA5(1-X4)
Xl = (iw)P XZ =z 9X3 = iw
A2-A P [N24+225T) A§—A1Sc.~ScKq AZ-A,5.~5.(K1+7)
_ SCA3(1+X2) _ ScAl(AlsrX1+X2) _ XGc—Gyr
Xy = 5 6=

2 iw)® 2 iw)® 1)°
As‘A35c‘5c(K1+T) A1—A1SC—SC(K1+T) A%—Al—(M+g)
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A SUFFICIENT CONDITION FOR THE VALIDITY OF THE
EXCHANGE PRINCIPLE IN TRIPLY DIFFUSIVE
CONVECTION IN POROUS MEDIUM

Jyoti Prakash’, Virender Singh and Shweta Manan
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Abstract: Condition for characterizing nonoscillatory motions, which may be neutral or
unstable, for triply diffusive convection in a porous medium is derived. It is analytically
proved that the principle of the exchange of stabilities, in triply diffusive convection in a

R,E; 0 RyE,o
1 222- < 1, where R; and R, are the

orous medium, is valid in the regime
p > g 212t 21wt

concentration Raleigh numbers, and t; and t, are the Lewis numbers for the two
concentration components respectively, ¢ is the Prandtl number, E; and E, are constants.
It is further proved that this result is uniformly valid for all combinations of rigid and
dynamically free boundaries.

Keywords: Triply diffusive convection, Porous medium, Darcy-Brinkman model, The
principle of the exchange of stabilities, Concentration Rayleigh number.

1. INTRODUCTION

Research on convective fluid motion in porous media under the simultaneous action of a
uniform vertical temperature gradient and a gravitationally opposite uniform vertical
concentration gradient (known as double diffusive convection) has been an area of great
activity due to its importance in the predication of ground water movement in aquifers, in
assessing the effectiveness of fibrous materials, in engineering geology and in nuclear
engineering. Double diffusive convection is now well known. For a broad view of the
subject one may be referred to Nield and Bezan (2006), Murray and Chen (1989), Nield
(1968), Taunton et al. (1972), Kuznetsov and Nield (2008), Lombardo and Mulone
(2002), Basu and Layek (2013).

All these researchers have considered double diffusive convection. However, it
has been recognized later that there are many fluid systems, in which more than two
components are present. For example, Degens et al (1973) reported that the saline waters
of geothermally heated Lake kivu are strongly stratified by heat and a salinity which is
the sum of comparable concentrations of many salts. Similarly the oceans contain many
salts having concentrations less than a few percent of the sodium chloride concentration.
Multi-component concentrations can also be found in magmas and substratum of water
reservoirs. The subject with more than two components (in porous and non porous
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medium) has attached the attention of many researchers Grifiths (1979a, 1979b),
Poulikakos (1985), Pearlstein et al. (1989), Terrones and Pearlstein (1989), Rudraiah and
Vortmeyer (1982), Lopez et al (1990), Tracey (1996, 1998), Rionero (2010), Straughan
and Tracey (1999). The essence of the works of these researchers is that small salinity of
a third component with a smaller mass diffusivity can have a significant effect upon the
nature of convection; and ‘oscillatory’ and direct ‘salt finger’ modes are simultaneous
possible under a wide range of conditions, when the density gradients due to components
with greatest and smallest diffusivity are of same signs. Terrones (1993) studied the
effects of cross-diffusion on the onset of convective instability in a horizontally infinite
triply diffusive and triply stratified fluid layer. Ryzhkov and Shevtsova (2009)
investigated the long-wave instability of a vertical multicomponent fluid layer induced by
the Soret effect. Rionero (2013a) investigated a triply convective diffusive fluid mixture
saturating a porous layer and derived sufficient conditions for inhibiting the onset of
convection. Rionero (2013b) further studied the multicomponent diffusive convection in
porous layer salted by m salts partly from above and partly from below.

The wvalidity of the principle of the exchange of stabilities (PES) (i.e.
nonoccurence of oscillatory motions) in stability problems removes the unsteady terms
from the linear perturbation equations which results in notable mathematical simplicity
since the transition from stability to instability occurs via a marginal state which is
defined by the vanishing of both real and imaginary parts of the complex time eigenvalue
associated with the perturbation. Pellew and southwell (1940) proved the validity of PES
for Rayleigh-Benard problem. However no such result exists for other more complex
hydrodynamic configurations. Banerjee et al (1985) derived a sufficient condition for the
validity of PES for hydromagnetic Rayleigh-Benard problem. Gupta et al (1986)
extended Banerjee et al’s (1985) criterion to rotatory hydromagnetic thermohaline
convection problem. To the author’s knowledge no such result exists for triply diffusive
convection in porous medium. Thus the present paper which provides a sufficient
condition for the validity of PES in triply diffusive convection in porous medium may be
regarded as a first step in this scheme of extended investigations. The following result is
obtained in this direction:

R1E10'

RyEzo
— + 2, <1, then an
2tim 2t5m

For triply diffusive convection in porous medium, if
arbitrary neutral or unstable mode of system is definitely nonoscillatory in character and
in particular PES is valid where R; and R, are the concentration Raleigh numbers, and
and 1, are the Lewis numbers for two concentration components respectively, ¢ is the
Prandtl number, E; and E, are constants. It is further proved that this result is uniformly
valid for all combinations of rigid and dynamically free boundaries and the results for
Rayleigh-Benard convection in porous medium and double diffusive convection in

porous medium follow as a consequence
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2. MATHEMATICAL FORMULATION AND ANALYSIS

A viscous finitely heat conducting Boussinesq fluid layer, saturating a porous medium, of
infinite horizontal extension is statically confined between two horizontal boundaries
z = 0 and z = d which are respectively maintained at uniform temperatures Ty and T; (<
Ty) and uniform concentrations S;g, Syo and S;11(< S1), S21(< Szp)(as shown in Fig.1).
It is assumed that the saturating fluid and the porous layer are incompressible and that the
porous medium is a constant porosity medium. It is further assumed that the cross-
diffusion effects of the stratifying agencies can be neglected. The Brinkman extended
Darcy model has been used to investigate the triple diffusive convection in porous
medium.

Tl Sll SZl

2(0,0,—g) l porous medium

d
/ To(>T)  Sp(>S11) S20(> S21)
Y

Fig.1

The governing equations of triply diffusive convection in porous medium (Darcy-
Brinkman model), in the non-dimensional form are given by ( Vafai (2006))

A(D? —a?)2w — (p + D;1)(D? — a®)w = Ra?0 — Rya’dp; — Ryad,, (1)
(D? —a%? —Eop)d = —w, (2)

Eiocp _ w
(0= 210 = — ®
(DZ—aZ—Ech)q)z: -z “4)

T2 T2

The equations (1) — (4) are to be solved by using the following boundary conditions:

w=0=d¢; =¢,=Dw=0atz=0 and at z = 1,(when both the boundaries are rigid) (5)
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or w=0=0¢;=d,= D?w =0 at z =0 and at z = 1,(when both the boundaries are free)

(6)
or w=0=¢;=¢,=Dw = 0atz = 0, (whenlower boundary is rigid)}
and w = 0 = ¢; =P, = D?w= 0atz = 1, (when upper boundary is free)

(7)

or w=0=d¢; =¢,=D?w = 0atz = 0, (whenlower boundary is free)}
and w =06 = ¢, =¢, =Dw= 0atz = 1, (when upper boundary is rigid)

(8)

where z is the real independent such that 0 < z <1, D is the differentiation w.r.t. z, a’ is
square of the wave number, o > 0 the Prandtl number, T > 0 is the Lewis number, R > 0
is the Rayleigh number, R; > 0 and R, > 0 are the two concentration Rayleigh numbers,
p = pr + ip; is the complex growth rate where p, and p; are the real constants, w is the
vertical velocity, 0, is the temperature, ¢; and ¢, are the two concentrations. It may
further be noted that in Egs. (1)-(4) together with the boundary conditions (5) or (6) or (7)
or (8) describe an eigenvalue problem for p and govern triply diffusive convection in
porous medium for any combination of dynamically free and rigid boundaries.

Now we prove the following theorem

Theorem. If (w, 0, &1, d2, p), p = pr + ipi, pr = 0 is a solution of Egs. (1) — (8) with
R >0, R1 >0, RZ > 0 and m_FRZEZG

2.4 2.4
21im 21T5m

pi=0,if (S27+5220) < 1.

24 24
2Tim 215m

< 1 then p; = 0.In particular p, = 0 implies

Proof: Multiplying equation (1) by w* (the superscript * henceforth denotes complex
conjugation) on both sides and integrating over vertical range of z, we obtain

Afol w* (D? —a?)?wdz — (p + D3Y) fol w* (D? —a?)wdz =
R a2 f01 w* 0 dz — R;a? f01 w* ¢, dz — R,a? fol w d,dz.  (9)
Making use of Egs. (2) — (4) and the fact that w (0) =0 =w (1), we can write

R a2 folw* 0 dz = —Ra? fole(D2 —a?— Eop")6*dz (10)
1 % 1 E * *

Rya? f) w* ¢ydz = —Ryalty f) ¢y (D? — a? - o ) bidz, (11)
1, 1 E * *

R,a® [} w* dpdz = —Rya’1, [, b, (D2 —a? — %Zp) d3dz. (12)
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Combining Egs. (9) — (12), we obtain

Afol w* (D? —a?)?wdz — (p+D3Y) fol w* (D? —a?)wdz =

—Ra? fol 0(D? —a? — Eop*)0*dz + Rja’t, fol oY) (D2 —a?%— El: p*) ¢idz +
1
1 Ey0 p*\ , »
R,a%T, [ ¢, (D? —a? — o ) dadz. (13)

Integrating various terms of equation (13) by parts for an appropriate number of times and
making use of either of the boundary conditions (5) — (8), it follows that

A [ (ID?w|? + 2a%|Dw|? + a*|w|?) dz + (p + DY) f, (IDw|? + a?|w|?) dz =
1 . 1
Ra? [ (IDB|? + a2|8|2 + Eop*|8|2) dz— Rya’ty f, (IDs 2 + %[y |2 +
E * 1 E *
22|, |2) dz — Rpa?r, f, (IDG,I? + a2l,|? + 22724, 12) dz (14)

T1
Equating imaginary parts on both sides of equation (14) and cancelling p;(# 0)
throughout, we have

T2

1 1 1
J, (IDW|? + a?|w|?) dz = — Ra’Eo [ |6]°dz + Rya’E;0 [ |dy]?dz +
R,a%E, [, 1, |2dz.. (15)
Now, multiplying equation (3) by its complex conjugate and integrating the resulting

equation for a suitable number of times and use the boundary condition on ¢, namely,
$1(0) = 0 = $1(1), we obtain

1 Eiopr 1
Jo (D24 |? + 22%|Dp, |* + a*[dy[?) dz + Zi_fpfo (D11 + a%|dpq|*)dz +
EZ0?|p|? (1 1,1
AP 19lPdz = S ) IwlPdz. (16)
Since p, = 0, it follows from equation (16), that
2a2 [| Dy |2dz < = [ Iwl?dz, (17)
1
Now, since ¢, ¢, and w satisfy the boundary conditions ¢4(0) =0 = Pp4(1), $,(0) =0 =
$,(1) and w(0) = 0 = w(1) respectively, we have by Rayleigh-Ritz inequality (Schultz
(1973))
1 1
foqu)lldeZT[Z folq)llzdza (18)
1 1
J, IDd[2dz = 2 [ |9, |2dz, (19)
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f01|DW|2dZ > 2 follwlzdz. (20)

Utilizing inequalities (18) and (20) in inequality (17), we get
a [y 1112dz <
In the same manner, by using inequalities (19) and (20), we obtain from Eq. (4), that
a? [y 1ol2dz <

Utilizing inequalities (21) and (22) in Eq. (15), we obtain

1

2.4
27T

J, IDw|?dz, 1)

1
212mt

f, IDw|?dz. (22)

[1 - (w +M)] fol |Dw|?dz + a? fol |w|?dz + Ra’Ec fol [0]2dz < 0. (23)

212t 21wt
which, clearly implies that

R1E10' R2E20'

2.4 2.4
2Tqm 2T5T

> 1. (24)

.~ RiE;o0 | R3Ejo
Hence if 5 + 52
2Tim

< .=
Pt = 1, then we must have p; = 0.

This proves the theorem.

The essential content of the theorem from the physical point of view is that for the
problem of triply diffusive convection in porous medium, an arbitrary neutral or unstable
mode of the system is definitely nonoscillatory in character and in particular the

R1Ej0 | RzEzo . .
—L + 42 < 1. Further this result is
2Tqm 2T5T

uniformly valid for any combination of rigid and / or free boundaries.

principle of the exchange of stabilities is valid if

Special Cases: It follows from theorem1 that an arbitrary neutral or unstable mode is non
oscillatory in character and in particular PES is valid for:

1. Rayleigh-Benard convection in porous medium (R; = R, = 0)

R1E10' < 1.

2. Thermohaline convection in porous medium (R, = 0) if Py
1

3. CONCLUSION

Linear stability theory is used to derive a sufficient condition for the validity of
‘the PES’ in triply diffusive convection in porous medium. It is further proved that this
result is uniformly valid for any combination of rigid and / or free boundaries.
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ABSTRACT: In this paper, we study primary fuzzy ideals and the effect of group action
on primary fuzzy ideals of a semiring R with finite group action on it and show that the
results derived in [12] and [13] concerning these ideals is of wider generality.
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1. INTRODUCTION

In [12], we generalized the primary ideals from commutative rings to non
commutative rings by replacing the role of elements by ideals. This definition of primary
ideals coincides with the definition of primary ideals given in [14] through their
associated primes under the assumption that the ring is Noetherian. In [13] we consider
the group action of a finite group G on a semiring R and define G-primary ideals of R.
Then results proved for primary ideals in [12] are carried over to G-primary ideals in
[13]. The theory of fuzzy sets developed by Lotfi A. Zadeh [15] some 40 years ago has
useful and important applications. Since the pioneering paper of Zadeh, research on the
theory of fuzzy sets has been growing steadily. Many mathematicians have applied the
concept of fuzzy subsets to the theory of groups and rings in algebra [3-7].

In this paper, after introducing the notions for primary ideals in [12] and G-
primary ideals in [13] of a non commutative semiring, we achieve their fuzzyfication by
proving a theorem that characterizes primary fuzzy ideals in terms of primary ideals of
non commutative semirings.

Since the presentation in this paper is general towards the non commutative case,
the results we obtain here are also valid for the commutative case.

2. PRELIMINARIES

Throughout this paper, (R, +, .) represents a semiring. First we recall some
definitions of the basic concepts of semirings that we need in sequel.

Definition 2.1. A semiring is a nonempty set R on which operations of addition and
multiplication have been defined such that the following conditions are satisfied:
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(1) (R, +)is a commutative monoid with identity element 0.
(i1)) (R, .)is amonoid with identity element 1.

(ii1)) Multiplication distributes over addition from either side.
(iv) 0r=0=r.0 forall reR

(v) 1=#0.

Definition 2.2. A nonempty subset (ideal) A of a semiring R is subtractive if and only if
a € Aand a+b € A implies that b € 4

Example 2.3. The set 2N of all nonnegative even integers is a subtractive ideal of the
semiring (N, +, -), where N is a set of all non negative integers.

Definition 2.4. An ideal P of a semiring R is prime if and only if whenever AB < P ,
for ideals A and B of R, we must have either A P or BC P

Definition 2.5. A G-invariant ideal I of a semiring R is said to be G-maximal if 7/ # Rand
for any G-invariant ideal J of R, / < J < Rimplies that either J =7or J =R

Definition 2.6. A G -invariant ideal 4 of a semiring R is a G -prime ideal if and only if
for G -invariant ideals 4,4, of a semiring R, 4,4, c A implies that either
A cAord, c 4.

Definition 2.7. Let X be a nonempty set. A functionA: X — [0,1] is called a fuzzy set of
X.

Example2.8. Let Z be the set of integers and A function from set Z into [0,1] defined by

A(x) =

21 2,er Then A is a fuzzy set of Z.
X"+

Definition 2.9. Let A be a fuzzy set of X. Then forz € [O,l], the set 4, = {x eX |/1(x) > t}
is called a t-level set of A.

Definition 2.10. Let I be a nonempty index set and let(4,),_, be a family of fuzzy sets of

iel
X. Then the union U/Il. and the intersectionﬂ/ii of the family (4,),_, is defined by

iel iel
4 (x) =supi4, (x) i e I} and [)4,(x) =inf{4,(x) i e I} forall xe X. Here sup and
iel iel
inf denote the suprimum and the infimum respectively.
Definition 2.11. Let (R, +, .) be a semiring. If 4 and g are two fuzzy subsets of R,
then the product Ao u is defined by
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(Ao pu)z)= sup{min(/i(x), 1( y))} for allz € R . The sum of two fuzzy subsets is defined

z=Xxy

analogously.

The fuzzy ideals and prime fuzzy ideals are defined in semirings as follows:

Definition 2.12. Let S be a semi group (monoid) and A a fuzzy subset of S then A is
called a fuzzy subsemigroup (fuzzy submonoid) of S if and only

if A(xy) > min(A(x), A(1)).

Definition 2.13. Let R be a semiring. A fuzzy subset Aof R is called fuzzy right (left)
ideal of R if

) Alx=y) 2 min(A(x), A(y))
(i) A(xy) = A(x),(A(xp) 2 A(p)) -
A 1s said to be fuzzy ideal of R if it is both a left and a right fuzzy ideal of R .

Definition 2.14. A fuzzy ideal P of R is called a prime fuzzy ideal if either P = y, or
P is a nonconstant function and for any two fuzzy ideals 4 and 4 in R, (lou)c P
implies that either A c P oruc P.

3. PRIMARY FUZZY IDEALS
We define the fuzzy analogue of a primary ideal in a semiring as follows:

Definition 3.1. Let R be a semiring and P a fuzzy ideal of R. Then P is said to be primary
fuzzy ideal if either P = y, or P is a nonconstant function and for any two fuzzy ideals

A and 4 inR, (Ao u) < P implies that either A < P or,ug\/ﬁ.

Definition 3.2. Let A be a fuzzy ideal of a semiring R. The fuzzy radical of A, denoted
by\/z , 1s defined by Vi = ﬂ{P |P Ep z} where p, denotes the family of all prime fuzzy

ideals P of R such that A< Pand A, c Pwhere 2, ={xeR |i(x)=A(0)] and
P, ={xeR |P(x) = P(0)}.

Note that (i) p, #¢ as y, € p,.

(i1) If 4(0) =1, then every prime fuzzy ideal P containing A is in p, .
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The following theorem describes primary fuzzy ideals of a semiring R in terms of
primary ideals of R.

Theorem 3.3. Let R be a semiring and P a nonconstant fuzzy ideal of R. Then P is a
primary fuzzy ideal of R if and only if P. € {ﬂ,R}, for all r e [0,1], where 7z(¢ R)is a
primary ideal of R.

Proof. Let /(R) consist of the empty set ¢ together with all the ideals of R. Since P is
nonconstant, the decreasing function y :[0,1] = I(R)given by y(r) = P.takes on at least
one nonempty set other than R.

In fact, we show that it takes on exactly two values P, #¢andP, =R, for all
r €[0,1]wheret = P(0) > u = P(1). If this is not the case, then there exists s €[0,1] with
t > ssuch that P < P, © R . Define two fuzzy ideals A and p of R by

As in (c.f. [10], Proposition 3.3), (louy)c P and A is not contained in P,
since 4, = P. ¢ P.. We here show that 4 & VP, which will contradict the fact that P is

primary. Since P, # R, there exist m, 0<m<s such that P, # R.

For if P =R for all O<m<s, then for anyxeR, we have
P(x) = sup{i e[0,1] |x eP }2 sup{m e[0,1] |O <m< s}: s, implying that xe P . This
contradicts the fact that P, # R. Moreover m < simplies that P < P, so that P # ¢ as
P #¢ . Since ¢ P, cRand P, is an ideal of R, therefore there exists a prime
ideal/(#R)) of R such thatP <. Define a fuzzy ideal P’ of R

1
byP, = {R < . The characterization Theorem (c.f. [10], Theorem 3.4)
.................. r<m

for prime fuzzy ideals implies that P’ is a prime fuzzy ideal of R, since I is a prime ideal
of R. Moreover > mimplies that P. ¢ P, < I =P and r < mimplies that P’ = R, so
that P cP'.ThusPcP'. Also sinceP, #¢, we haveP,cP,clI=P/ .
Further P = I # R, since » > m . Now the fact that P’ is a prime fuzzy ideal of R, P o P’
P/ > Pand Ps/ # R, coupled with the fact that for any family (/11. )l.E , of fuzzy ideals of
R, we have (N4,) =N(4), rel0]l], it follows that(\/;)s # R. However u, = R.
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Therefore u, < (\/F )and consequently ¢ & (\/F ) .Thus there exist an ideal
7r(¢ crc R)With P e {ﬁ,R}fOI‘ all» €[0,1]. It remains to prove that 7 is primary. Let
o and B be two ideals of R withaff < 7. Then the characteristic functions y, and y,

satisfy;(a OZﬂ c Zaﬂ X, gPabecause (Z/r)r :{

Now the primary character of P yields that either y, < Pory, cvP. Ify, cP ,
thena c 7. Suppose y, « P, theny, g\/ﬁ. Let 7' be any prime ideal of R

containing r . Since P e {ﬁ,R}fOI‘ all» €[0,1], we have
TE ettt r>n
P :{ , forsome n€[0,1). (1)
R r<n
/
Define a prime leZZY ideal P’ of R by P,/ _ {ﬂ' ................................... l;> n (2)
.................................. r<nm

Sincez c 7/, it is clear from (1) and (2) that P’ > PandP’ o P.. Therefore
X S~ Pimplies that y, < P'. This gives S = (Zﬁ)l c (P/)I =z, which by virtue of
the fact that 7' is any prime ideal of R containing 7 yields that B < 7 This completes
the proof that 7 is primary. Now for the converse, assume that P e {ﬁ,R}fOI‘

all» €[0,1],where 7 is a primary ideal of R. Suppose that P is not primary .Then there
exist fuzzy ideals 4 and g of R with Aocpuc P, but A Pand u & P.The later
statements imply that A, ¢ P and u, < (\/;)for some r,s €[0,1].Since every ideal is
contained in R, A, & P, implies that P, = = . Further, u, & (\/; )implies that there exists
a prime fuzzy ideal P’ of R with P’ o Pand P o P, = such that u, ¢ P, this again
implies that P/ = P/ Thus there exists a prime ideal P/ containing =z such that
U & P*/Consequently , M, & Jr . Let m= (s,t) . Then s>mand ¢>m implies that
A, Ccmandu, & Jz . But Ao uc r implies that P(ab) > min(A(a), u(b)) .Thus for
any z= le. y,in A u where x, givesAd u <z, which contradicts the primary

character of 7 . Hence P is primary.

We now, use the Characterization Theorem 3.3 to derive the fuzzy analogous of various
results proved in [12].
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Theorem 3.4. (i) Let P,P,,P,,........... P ,be primary fuzzy ideals of a semiring R such

that /P = u (i=1, 2,...,n). Then P:ﬂE is primary and \/F:,u .
i=1

(i) Let R and R’ be two semirings and 7 : R — R’ is an onto homomorphism. Let 1be
a fuzzy ideal of R such that both A ,and /A, are subtractive and K < A, where

K = {x €R |x =a+b,T(a)= T(b)}. If A is primary, then7'(1)) is primary. Moreover, if
range A is finite and 7' (1) is primary, then A is primary.

Proof.(i) By the characterization of primary fuzzy ideals P, P,, P;,........... P ,, there exist

primary ideals 7,,7,,7;,.cccc.... 7, ,of semiring R and m,,m,,m;,........... m, €[0,1) such
Tl r>m, _

that (P, )r = . It is to be noted that
R r<m,

JE:\/Ez\/E.: ........ =\/Fnimpliesthatm1:m2=m3= ........... =m,=m.

For if m, <m  for somei # j, then choose a prime ideal 7 o 7, and define a prime fuzzy

ideal Q by O :{” ‘. Clearly, Qep,. But
R r<m, ’

J

that QO(x)<P;(x)and the former implies that (\/F, )(x) <0(x) so that
(\/Fl Xx) <SO(x)<P(x) < (\/F/ Xx), contradicting that \/Fl = \/F/ . Therefore we

haveR _ Qﬂ' .................................. r>m . Also’ using (\/Fl)* _ m  we get

Roooiiiiiiiis r<m
Jr o =m = m = =7z . Now, using (c.f.[12],Theorem3.19(i)(a)) and
consequently by Theorem 3.3, P is primary. Moreover, using (c.f. [12], Proposition 3.9

(iv)) and the fact (ﬁ]’l] :ﬁ(Pl.)r and (}ﬁ}f] = ﬁ(Pi)r, we have
VP = OB (WP = .

form, <r<m,, Q, =7, R= (P. )r & m. The later implies that there exists x € R such
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(i) Let 7:R R’' be an onto homomorphism and A: R+ [0,1]be a fuzzy ideal of R.

If A is primary, then obviously by Theorem 3.3 range A is finite. We first show that
(T (l))r =T (ﬂr)for all» €[0,1]] if range A is finite. For this, let yeT (ir). Then there

exists xeA such that7(x)=y. Now, xeA, implies A(x)=rand therefore
(T (/1))( y) = sup {ﬂ(x)} >r. Thusye (T (/1)), . Hence T (ﬂr ) c (T (/1)), . To show
T(x)=y

that(7'(1)), < T(4,), lety e(T(2)),. Then T(A)(y)>r, that is sup A(z)=y. Since

T(z)=y

range of A is finite, therefore A possesses the sup property, that is sup A(x) = A(x,),
xekE

where E is any subset of R and x, € E .Thus, there exists z, € Rsuch that 7(z,) = yand
A(z,)= sup A(z) 2r. Hence y e T(A,)and therefore (T (/1)), cT(4,). Thus we have
T(z)=y

shown that (T (l))r =T(A,). Now if A is a primary fuzzy ideal of R, it follows by

e

. Tl r>m ,
Characterization Theorem 3.3 that A :{ , where 7 1is a
R r<m
primary ideal of R and m= sup{i € [O,l] |/11. = R}. Thus
T(7T) oo r>m ) )
(T(2)), =T7(1,) = ) . Since A, =7 2K, by assumption
R r<m

both 7 and vz are subtractive. Thus it follows from (c.f.[12], Theorem 3.21) that
T'(r)is primary and conversely, if 7(x)is primary then 7 is primary. Hence repeal to
the characterization Theorem 3.3 yields the required result.

Definition 3.5. Let R be a semiring. A fuzzy ideal 4 of R is said to be a maximal fuzzy
ideal of R if

(i) A is not constant.

(i1) For any fuzzy ideal u of R, if A — pthen either A, = y,or y, = y,, where

A ={xe R [Ax) = 20)f, . ={x € R |u(x) = p(0)}

Theorem 3.6. Let R be a semiring and P a nonconstant fuzzy ideal of R. Then P is a
maximal fuzzy ideal of R if and only if there exists a maximal ideal 7 of R such that

P e {ﬂ,R}, for all r e [0,1].
Proof. Let P be a maximal fuzzy ideal of R. Let I(R) consist of the empty set ¢ together

with all the ideals of R. We first note that since P is nonconstant, the decreasing function
v [0,1] > I(R)) given by w(r) = P. takes on at least one nonempty level set other than
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R. In fact, we show that it takes exactly two values P, # ¢ and P, = Rfor all r€[0.1],
where ¢ = P(0)>u = P(1). If this is not the case, then there exists s e (0,1)such that

L r<t
Pc Asince P c A for allr €[0,1], P, =P, # P, = A,and A # y,.This contradicts the

maximal character of P. Thus there exists an ideal 7(# R) of R such that P, e {z, R}, for

P
P < P, c R. Define a fuzzy ideal 1 of Rby 4, = { ’ . Then

all € [0,1]. It now remains to prove that 7 is maximal ideal of R .Let M be an ideal of R
such  that ncMcR. Define a fuzzy ideal p of R by

R, 0<r<s

Pcu,u, =M #7=P, and u# y,. This again contradicts the maximal character of P.

Moo, s<r<l1
U = , Where 1>s= sup{r e[0,1] |Pr = R}. Clearly,

Thus 7 is a maximal ideal of R. Conversely assume that P. {ﬂ,R} for allr e [0,1],
where 7is a maximal ideal of R. Suppose that u is a fuzzy ideal of R such that
P < p.Then 1(0) > P(0) =1, so that £(0) =1. It now follows thatz = P, < u,, which by
virtue of the maximal character of 7 implies that either x, = P, or u, = R. The later
alternative yields that = y,, since #(0) =1. Hence P is a maximal fuzzy ideal of R.
This completes the proof of the theorem.

Lemma 3.7. Let R be a semiring and P a fuzzy ideal of R such that

Th et r>a L
P = . Then for any positive integer n,
R, r<a
n T e r>a )
(P), = , where P" = PoPoPo.... oP.
R, r<a

Proof. This follows easily by induction on n using (c.f. [10], Lemma 3.1).

Theorem 3.8. Let R be a Noetherian semiring and P any primary fuzzy ideal of R. Then
JP isa prime fuzzy ideal of R.

T
Proof: Let P be a primary fuzzy ideal of R. Then P. = {R - , where
....................... r<m

0<m<landz(# R) is a primary ideal of R. Now, 7 being primary and R being

Noetherian, it follows that Jz s the smallest prime ideal containing 7 (c.f. [12] ,

Theorem 3.20(iii)). Define a fuzzy ideal Q of R by O, = {
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Q is prime (c.f. [10], Theorem 3.4). In fact Q is the smallest prime fuzzy ideal containing
P and P, c Q, .Hence JP = Qis prime.

3. CHARACTERIZATION OF G-PRIMARY/G-MAXIMAL FUZZY IDEALS
OF A SEMIRING

In this section, we characterize G-primary/G-maximal fuzzy ideals of R in terms of
G-primary/G-maximal ideals of R and derive the fuzzy analogous of the results proved in
[13].

Throughout this section, R is a semiring and G a finite group acting on R. For
any ge G the action of geGon reRis denoted byr+> r®. For any subset

AcCc Randg e G, A% = {ag |a eA}. Any ideal A of a semiring R is said to be G-

invariant if 4° = 4, where A = ﬂAg . More generally, A4is the largest G -invariant
geG

1deal contained in 4.

Definition 4.1. A G-invariant fuzzy ideal A is said to be a G-prime fuzzy ideal of R if
either 4 = y,or A is nonconstant and for any two G-invariant fuzzy ideals x and 7 of
R, yo7 < A implies that either uc Aorr < 4.

Lemma 4.2. Let 4 and g be two G-invariant fuzzy ideals of a semiring R. Then

() )¢ =N{P |PeG(p,)}, where G(p,) is the family of all G-prime fuzzy ideals
of R such that A c Pand A, c P,

(i) (V). =([2)°.
(i) (VZ) (x)=1, forall x e ((ﬁ)G] .

w (AT | =

) Aclu) }ifandonlyif 4cx.

Proof. Results (ii) - (v) are easy consequences of result (i) and result (i) follows in a
manner analogous to the proof of (c.f.[13] , Lemma 3.2) upon using (c.f. [10], Theorem
3.4).
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In order to define G-primary fuzzy ideal, we first state a Lemma which is a direct
consequence of ( c.f. [13], Lemma 3.2(vi)) and Lemma 4.2 (v).

Lemma 4.3. Let R be a semiring and G finite group acting on R. Then for any G-
invariant fuzzy ideal P, the following conditions are equivalent:

(i) For any two G-invariant fuzzy ideals 4 and g of a semiring R, Ao g < Pimplies
. G
that either A < Por uc (\/F )

(i) For any two G-invariant fuzzy ideals 4 and x4 of R, Ao u < Pimplies that either
AcPor uc (\/F )

Definition 4.4. A G-invariant fuzzy ideal A is called G-primary if either A = y,or A is
nonconstant fuzzy ideal of R satisfying either of the equivalent conditions of Lemma 5.3.

Obviously, if P is a primary fuzzy ideal of R, then P is a G-primary fuzzy ideal of R.

Theorem 4.5. Let R be a semiring and P a nonconstant fuzzy ideal of R. Then P is a G-
primary fuzzy ideal of R if and only if P. € {ﬂ,R}, for all re [0,1] ., where 7(#R) is a
G-primary ideal of R.

Proof. This follows exactly making necessary changes in Theorem 3.3 as (c.f. [10],
Theorem 4.3) follows from (c.f. [10], Theorem 3.4).

We now, use the characterization Theorem 4.5 to derive the fuzzy analogous of various
results proved in above section 4. We append these results as

Theorem 4.6. (i) Let P,P,,P,,........... P ,be G-primary fuzzy ideals of a semiring R such

that (\/FI)G =u (i=1,2,..,n). Then P= ﬁR. is G-primary and(\/F)G =u.
i=1

(i) Let R and R’ be two semirings and 7 : R — R’ is an onto homomorphism. Let 1be
a G- invariant fuzzy ideal of R such that both A, and ,/A, are subtractive and K < A,

where K = {xe R |x=a+b,T(a)=T(b)}. If A is G-primary, then T(1)) is G-primary.
Moreover, if range A is finite and 7'(4)is G-primary, then 4 G-is primary.

(iii) Let R be a Noetherian semiring and P a G-primary fuzzy ideal of R. Then (\/ﬁ )G is
a G-prime fuzzy ideal of R.
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Proof. A slight change in the proof of Theorem 3.4( (i) and (ii) ) and Theorem 3.8
provide us the proof of the results (i)---(iii).

Definition 4.7. Let 1 be a G-invariant fuzzy ideal of R. Then A is called a G-maximal
fuzzy ideal of R if A nonconstant and for any G-invariant fuzzy ideal x4 of R, if

A c ptheneither A, ¢ p,or = y,.

Finally, making necessary changes in Theorem 3.6, we get

Theorem 4.8. Let R be a semiring. Let P be a G-invariant fuzzy ideal of R. Then P is a
G-maximal fuzzy ideal of R if and only if there exists a G-maximal ideal 7 of R such
that P. e {ﬂ,R}, forall » € [0,1].

Corollary 4.9. Let M be a G-maximal fuzzy ideal of R. Then any positive power of M
G
is G-primary and (\/M ! ) =M.

Proof. Let M be a G-maximal fuzzy ideal of R. Then by characterization of G-maximal

Theeeeveiieiennenens r>m
fuzzy ideals, we have M, = , where 7 is a G-maximal ideal of
R r<m
R. Thus, by Lemma 3.7 for any positive power n of M,
e > , . ,
(M ! )r =17 "7 Now znis G-primary and 7 is the smallest
R, r<m

G-prime ideal of R containing 7™ (c.f. [13], Corollary 3.8). Hence M " is G-primary and
G
M is the smallest G-prime fuzzy ideal R containing M *, that is (\/M " ) =M.
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Abstract

An unsteady MHD slip flow of incompressible electrically conducting viscoelastic fluid
through an inclined vertical porous channel with thermal diffusion is studied. The plates
of the channel are taken to be non-conducting, porous subjected to constant
injection/suction velocity. A uniform magnetic field is applied perpendicular to plates of
the channel. Taking Hall effect and heat source into account a closed form analytical
solutions of the governing equations for velocity, temperature and the concentration
fields are obtained. The effects of different parameters entering into the problem are
shown graphically.

Keywords: Slip boundary condition, Viscoelastic fluid, Inclined channel, Heat source,
Soret effect.

Introduction

The science of magnetohydrodynamics (MHD) was concerned with geophysical and
astrophysical problems for a number of years. In recent years, the possible use of MHD is
to affect a flow stream of an electrically conducting fluid for the purpose of thermal
protection, breaking, propulsion control etc. MHD plays an important role in many
engineering and industrial problems such as liquid metal cooling, in nuclear reactors,
plasma confinement, control of molten iron flow and many others. It continues to attract
the attention of applied mathematical researchers owing to extensive applications in
contest of ionized aerodynamics. During the past few decades, there has been a growing
interest in non-Newtonian fluids. The flow of non-Newtonian fluids are found in a variety
of applications: from drilling oil and gas well and well completion operations to
industrial process involving waste fluid, synthetic fibres foodstuffs and extrusion of
molten plastic as well as in same flows of some polymer solutions. The large variety of
fluids and industrial applications has been a major motivation for research in non-
Newtonian flows. Moreover, the flows of non-Newtonian fluid in the absence as well as
in the presence of magnetic field have applications in many areas such as the handling of
biological fluids, alloys, plasma, mercury amalgams, blood and electromagnetic
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propulsion. Sarpankaya [11] was the first who has studied the MHD flow of non-
Newtonian fluids. Walter [13] has studied the non-Newtonian effects in some elastic-
viscous liquid whose behaviour at small rate of shear is characterized by a general linear
equation of state. Hayat et al. [5] worked on three dimensional flow over a stretching
surface in a viscoelastic fluid. Attia [2] studied the Hall current effect on transient
Hydromagnetic Couette-Poiseuillle flow of a viscoelastic fluid with heat transfer. Attia
and Ewis [1] investigated unsteady MHD Couette flow with heat transfer of viscoelastic
fluid under exponential decaying pressure gradient.

Recently slip condition has become much more compelling and it now reasonably
certain that the viscous fluid can slip against solid surfaces if the surface is very smooth.
The slip boundary has significant applications in lubrication, extrusion, medical science
and many others. Muhammad and Alam [7] have studied the slip effect on fractional
viscoelastic fluid. Chand and Kumar [3] studied Hall effect on heat and mass transfer in
the flow of oscillating viscoelastic fluid through porous medium with wall slip condition.
Kumar and Chand [6] have investigated the effect of slip condition and hall currents on
unsteady MHD flow of viscoelastic fluid past an infinite vertical porous plate through
porous medium. Recently Kumar et al. [4] worked on oscillatory free convective flow of
viscoelastic fluid through porous medium in rotating vertical channel.

The process involving coupled heat and mass transfer occurs frequently in nature.
In different geophysical cases, it occurs not only due to the temperature difference but
also due to concentration difference or the combination of the two. Also natural, mixed
and forced convection in inclined channels has been accumulated in previous works in
literature because of its practical applications including electronic system, high
performance heat exchangers, chemical process equipments, combustion chambers,
environmental control system and so forth.

Motivated by above researches and their applications, in the present problem an
attempt has been made to extend the recent study of Manglesh et al. [9] to formulate and
analyse the effect of slip condition on MHD flow of viscoelastic fluid through an inclined
vertical channel.

Formulation of the Problem
The geometry of the system under consideration is shown schematically in Fig. 1. It
consists of an inclined channel whose inclination is §,(0 < & < g) A Cartesian co-

ordinate system is introduced such that x*-axis lies vertically upward along the centreline
of the channel and y*-axis is perpendicular to the walls of the channel. The
injection/suction velocity and permeability of the porous medium is considered to be

constant. The vertical plates of the channel are situated at y* = _?dand y = g. A constant
magnetic field is applied perpendicular to the axis of the channel and the effect of
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induced magnetic field is neglected, which is a valid assumption on laboratory scale
under the assumption of small magnetic Reynolds number. Since the plates are infinite in
extent in x* and z* directions, so all the physical quantities depend only on y*and t*.

The velocity components in x*,y* and z* direction are u*,v* and w” respectively. The

equation of continuity V. V=0, on integration gives v* = v,. Also when the strength of
magnetic field is strong one cannot neglect the effect of Hall current. The components of

electric current density T are given by (jx, Jy, jz), then equation of conservation of electric

charge V.T = 0, gives j; = constant. Since the plates are electrically non-conducting,
jy =0 and is zero everywhere in the flow. When the magnetic field is large, the
generalized Ohm’s law, in the absence of electric field, neglecting the ion slips and
thermo electric effect (Meyer [10]) yields:

Jx — WeTejz = —OpHeW? (D
jz + WeTejyx = OpeHou” (2)
The solution of equations (1) and (2) are:

ko O-p—eHO * *

= e (mu” — w) 3)
ok oueHp * *

j =2l (u* + mw") )

Following Skelland [12] the governing equations of viscoelastic flow are obtained as
follow

du” du” o%u* o3u* opZH32

=0—— ——2 (u* + mw* T* cos § *C*cos & —
9
0 5)
KP
ow* ow* %w* a3u* ougH3 9

\% =9 -k mu* —w*) ——w"

o T Vo ay* ay*2 0 gt gy*2 p(1+m2)( ) K (6)
The heat conduction equation is
aT* aT* k 9%T*

Vo = ——— 7
at* 0 ay* pcp ay*z QO ( )
The mass diffusion equation is
ac* ac* a22c* 02T*

Vo— =D, — —
at* + 0 ay* m ay*z + T ay*z (8)

where “*’ represents dimensional quantities, 9 is kinematic viscosity, t*is time, p is
density, Hy is intensity of magnetic field, T* is temperature, C,, is specific heat at constant
pressure, k is thermal conductivity, gis acceleration due to gravity, § is volumetric
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coefficient of thermal expansion, C* is concentration, 3* is volumetric coefficient of
thermal expansion with concentration, D,, is chemical molecular diffusivity, Dt is
thermal diffusivity.

The initial boundary conditions are

CTr=C" =0ty =-2 )

* __ 1% ow
=L ay 2
} 9)

% * * * gk * * gk * d
u:O: W,T :TOCOSQ)t,C =C0C08wtaty25)

Jou
u =L
dy

Introducing the following non-dimensional quantities

u* w* y* T* c* t*9 w*d? Kf,
VO 2 VO ) y d ) TO’ CO’ dz ) '8 ) p dzl
vod T *Cod? ouZH3d? HC 9 DrT
A L' G _gﬁo ,GmZgB 0 M= Helo ) Pr:_p:SC:_aSO Tlo
9 Vo\() Vo\() U8 k Dm BCO
h = L ko S — Qpd?
“ YT 9

where w is frequency parameter, A is suction parameter, G, is Grashoff number, G, is
modified Grashoff number, M is Hartmann number, P, is Prandtl number, N is radiation
parameter, S; is Schmidt number, h is slip parameter, and a is viscoelastic parameter, S,
is Soret number and S is heat source parameter, equations (5)-(8) become

du au 62 03u
T2 T a2 " Yaaz 1+m2 —— (u+ mw) + G, 6cos 8 + G, CcoséS—K—p (10)
ow ow  9*w 3w w
E a—y—a—yz—aatayz+1+m2(mu—w)—K—p (11)
1 9260

+Aay—P—ra—2+SG (12)
ac ac a%C 220
SHAT =2 (13)

ot " Tay " scay? " 0oy?

The relevant boundary conditions in non-dimensional form are given by
du ow
u—ha—y,W—hg,e—C—O aty=-—-

(14)
u=w=0,0 =coswt,C=coswt aty=§
Introducing the complex velocity F = u + iw, we find that equations (10) and (11) can
be combined into a single equation of the form

dF _ 0°F d%u
+ A =5«
dy  dy? ot dy? 1+m2

(1 —im)F + G0 cos 6 + Gy CcosS—— (15)
p
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The corresponding boundary conditions reduce to
OF 1
F= ha—y,e =C= O,aty— _E
(16)
F=0,0=C=coswtat y=%
Solution of the Problem

In order to solve Egs. (12), (13) and (15), under the boundary condition (16), we assume
the solution of these equations as follows

F(y,©) = Fo(y)e'*

8(y,t) = Bo(y)el* (17)
C(y, ) = Co(y)e'*

Substituting these expressions in equations (12), (13), (15) and (16), we obtain

(1 —iA)F{ —AFy — cFy = —G.0( cos 6 — G,,C, cos § (18)
8y — AP0}, — P.(iw — $)8p = 0 (19)
Cl = AS.Ch — iwS.Cy = —SoS.OL (20)

Corresponding boundary condition becomes:

oF 1
FO :ha_;,eo = CO = O,aty: _E

21)
Fo=068,=Co=1at y=1
The solution of equation (18), (19) and (20) under boundary condition (21) is
F(y,t) = (Age™Y + Ajpe%2Y — Age™ — AgeSY — AjeY — AgeSiy)el®t (22)
B(y,t) = (Age™ + ByesY)el®t (23)
C(y,t) = (Aze™Y + A ey + Aje™Y + AyesY)el®t (24)

Note: The validity and correctness of the present solution is verified by taking a = h =
6 =0and g—i = 0, the above problem reduces to MHD flow in vertical channel and the
result becomes the same as given by Manglesh et al. [8]

The shear stress, Nusselt number and Sherwood number can now be obtained easily from
equations (22), (23) and (24).

Skin friction coefficient Ty, at the left plate in terms of its amplitude and phase is:
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= QE — QEQ iot
T = (6y)y=_l = (ay )y=_le = |D| cos(wt + a4) (25)
2 2

with|D| = /D + D? and a; = tan™?! (%)

r

_Iz _S2 _r _s _nn _51
whereD, + iD; = rpAge 2 +5,A 06 2 —rAze 2 —sAge 2—r;A,e 2 —s;Age 2
Heat transfer coefficient Nu (Nusselt number) at the left plate in terms of its amplitude
and phase is:

Nu = (@) L= (%) . el®t = |H| cos(wt + B) (26)

y==3 24 y=73

with|H| = /HZ + H?and B = tan™? (2—)

r S
whereH, + iH; = rAge 2 + sBye 2

Mass transfer coefficient Sh (Sherwood number) at the left plate in term of amplitude and
phase is:

— 29 — QEQ iot _
Sh = (6y)y=_l = (ay )y=_le |G| cos(wt +v) (27)
2 2

with|G| = \/G? + G? and y = tan™! (%)

I _S1 _r _s
whereG, + iG; = r{Aze 2 +s;A,e 2 +rAje 2 +sAj,e 2

Results and Discussions

The problem of MHD free convective flow of viscoelastic fluid under the effect of
thermal diffusion and heat source through an inclined porous vertical channel in the
presence of Hall current is analysed. The analytical expressions for velocity, temperature
and concentration are obtained and evaluated numerically for different values of
parameter appeared in the solution. To have better insight of the physical problem the
variations of the physical quantities with flow parameters are shown graphically.

Velocity Profile: Variation of velocity with different parameters is shown in Figs. 2 and
3. From these figures it is observed that the velocity distribution is parabolic in nature.
Fig.2 shows the variation of velocity with Grashoff number, suction parameter,
permeability of porous medium, slip parameter, viscoelastic parameter and inclination
angle. We find that Velocity increases with increasing Grashoff number and modified
Grashoff number as increase in these two parameters significantly increases the buoyancy
forces which resulted into rapid enhancement of fluid velocity and this is shown in Fig.2
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and Fig.3. It is clear from Fig.2 that velocity decreases with increase of suction parameter
indicating the usual fact that suction stabilize the boundary layer growth. Further it is
observed that velocity increases with increasing permeability of porous medium as it act
against the porosity of the porous medium. Also with the increase in slip parameter the
frictional forces reduces and increase the fluid velocity. From the same figure we
observed that with increase in viscoelastic parameter the velocity decreases. With the
increase in inclination angle, the magnitude of driving forces decreases, hence velocity
decreases.

Fig.3 shows the variation of velocity profile with Hartmann number, Hall current
parameter, Prandtl number and heat source parameter. From the figure we find that as
Hartmann number increases the resistive type of force called Lorentz force increases
which slows down the motion of fluid. Further we find that increasing Hall current
parameter reduces the effective conductivity and which in turn reduces the magnetic
damping force on velocity and consequently velocity increases. Fig. 3 also depict that by
increasing Prandtl number viscosity of the fluid increases which makes the fluid thick
and causes a decrease in velocity. Further it is noticed that with the increase in heat
source parameter velocity increases.

Temperature profile: The temperature profile is shown in Fig. 4 for various parameters
involved in the solution. It is clear from Fig.4 that as Prandtl number increases, the
temperature profile decreases. Also temperature profile decreases with increasing
frequency of oscillation and suction parameter and shown in the same figure

Concentration profile:Fig. 5 illustrates that fluid concentration increases with an
increase in Soret number it is because of the reason that a rise in Soret number causes a
greater chemical thermal diffusivity. It is also clear from the same figure that with an
increase in Schmidt number concentration decreases. This is attributed to the fact that
higher values of S, amounts to fall in the chemical molecular diffusivity i.e. less
diffusion therefore takes place by species transfer causing a reduction in concentration.

Variation of Skin friction with Grashoff number at left plate is shown in Fig.6. From the
figure we observed that skin friction coefficient increases with increasing viscoelastic and
Hall current parameter whereas it decreases with increasing inclination angle, slip
parameter, Hartmann number and Schmidt number. Variation of heat transfer coefficient
at left plate with suction parameter is shown in Fig.7. This figure clearly shows that the
Nusselt number increases with increasing heat source parameter but it decreases with an
increase in Prandtl number and frequency of oscillation. Variation of mass transfer
coefficient at left plate with suction parameter is given in Fig.8. The figure depicts that
Sherwood number increases with increasing Soret number and decreases with Schmidt
number.
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Conclusions

1. It is concluded that in an inclined vertical channel velocity decreases as angle of
inclination increases.

Viscoelastic parameter reduces the velocity of the fluid.

Slip parameter and heat source parameter increase the velocity of the fluid.

4. Velocity and temperature both increases with an increase in heat source

N

parameter.
Appendix
M 1 APr+JAZP12.—4SPr+4imPr
A=aw c= s(1—im) +iw+— r=
1+m Kp 2
— |A2PZ—4SP, +4iwP ScA+ /SZA2+4in
S — r J r r r rl — C [of C
2 2
. - ScA- [SEAZ+4iwS, o o A=) _ A—{3Z+ac(i-iA)
1= 2 27 2(1-iA) 27 2(1-iA)
-s -r
A _ —67 B _ e? A _ —SOSCAOI'Z _ —SOSCBOSZ
® sinh (E) ® " sinh (ﬂ) 'Tr2—SAr—imSe T2 s2 —ScAs — i0Sg
2 2
=s1
_ -1 e 2 . S1—T . S1—S (GrAg+GmA;) cos b
A3 N sinh(ﬂ){ 2 +A151nh( 2 )+A2 Slnh( 2 )} A5 B (1-iA)r2—Ar—c
= ( )
_ 1 e 2 r{—r . ri—s GrBo+GmA3) co
A, = Sinh(¥){ . + A, smh( > ) +A, smh( . )} Ag = FETyEE
_ GmAsz cosd _ GmA4cosd
7 (1—iA)r12—Xr1—c 8~ (1-iA)s 2-2As;—c
-r) —(sp-r)
{(1 — hr)e - (1 —hsy)e 2 }
—-s) —(sp-s)
1 +Aq {(1 hs)e T - (1 —hsy)e 2 }
Ag = 2-T2 —(s2—T2) 2-T1 —(sp-r1)
{(1 — hrz)e 2z —(1—hsye 2 } +A, {(1 — hrl)e 2 —(1—hsye 2z }
(sp—s —(sp—s1)
+Ag {(1 —hs;)e 4 Y (1 —hsy)e P }
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{(1 hr)e T - 1- hrz)e_( é_r)}

—=(rz-s)
-1 +A6{(1 hs)e B —(1 hr,)e” 2 . }

(sp—-rp) —(sp-13) 2-T1 —(rp-rq)
{(1—hr2)e 2 —(1—hsy)e 2 }+A7{(1 hrl)e 2 —(1 hr,)e 2 }

10.

—(rz-sq)

_+A8 {(1 —hs;)e - zS —(1—hrye 2z }
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Abstract

In the present paper, the effects of finite Larmor radius and suspended particles on the onset of
Jeans instability of a self-gravitating viscoelastic medium permeated with uniform magnetic field is studied
mathematically using Generalized Hydrodynamic model. A general dispersion relation for the problem is
derived using the normal mode analysis method and particular dispersion relations for the transverse and
longitudinal modes of wave propagation under both strongly and weakly coupling limits are deduced,
which describe the growth rate of instability in terms of various parameters of the problem. The effects of
coupling parameter (viscoelasticity), magnetic viscosity (finite Larmor radius), shear viscosity and number
density of particle on the growth rate of the gravitational instability are studied numerically and the
obtained results are depicted graphically. It is found that the coupling parameter modifies the Jeans
Instability criterion, whereas the magnetic viscosity and suspended particles have no effect on this criterion.
Further, the coupling parameter, magnetic viscosity and shear viscosity decreases the growth rate and hence
have the stabilizing effect on the gravitational instability.

Keywords: Jeans instability; viscoelastic medium; Generalized Hydrodynamic model;
magnetic field; finite Larmor radius; suspended particles; strongly/weakly coupling limits.

1. Introduction

In astrophysical scenarios, the simplest theory that describes the aggregation of masses in
space is the Jeans instability. The system comprises of particles that can aggregate together
depending on the relative magnitude of the gravitational force to pressure force. Whenever
the internal pressure of a gas is too weak to balance the self-gravitational force of a mass
density perturbation, a collapse occurs. Such a mechanism was first studied by Jeans (1929).
In terms of the wavelengths of a fluctuation, the Jeans criterion says that instability follows

. .\ ’ G .
for all perturbations of wave number less than a critical value k., where k.= 4Zr—z,where pis
S

the density, c, is the velocity of sound in the gas and G is the gravitational constant. This
criterion is now known as the Jeans criterion of gravitational instability. Chandrasekhar
(1961) studied the Jeans instability problem of a self - gravitating homogeneous medium to
investigate the effects of rotation and magnetic field on the onset of gravitational instability
in a comprehensive manner and concluded that the Jeans criterion remains unaffected by the
individual or simultaneous presence of uniform rotation and magnetic field.

In recent years, the researchers have shown keen interest in the matter present in the
cosmological objects like white dwarf, interior of heavy planets, atmosphere of neutron star
and ultra cold neutral plasma. Studies have shown that these objects are composed of
strongly coupled plasma (SCP) or viscoelasticfluid which shows both viscous and elastic
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behavior. This behavior of viscoelastic fluid have been discussed by Kaw and Sen (1998)
using the Generalized Hydrodynamic (GH) model. The GH model describes the effects of
strong correlations through the introduction of viscoelastic coefficients. These viscoelastic
coefficients are the functions of coupling parameter [}, which characterizes the ratio of the
electrostatic Coulomb interaction between neighboring plasma particles to the thermal
zfe2

(kinetic) energy of the particles and is given by [} = ; where the subscripts j( = e, i)

1/3
denotes respectively, electrons and ions; a = (3/ 4n-) is the average spacing between
j

particles with density n; and z; is the charge state of species j. They used the GH model, to
study the dynamics of strongly coupled plasma (SCP) and suggested that the viscoelastic
properties of the medium are characterized by the relaxation time t which provides a
characteristic timescale to distinguish two classes of low frequency modes; one when the
frequency ¢ <1/t (known as hydrodynamic limit) and the other for frequencies o >1/t
(known as kinetic limit); where,o is the wave frequency and 7 is the viscoelastic relaxation
time. For more details and recent views on the subject, one may refer to Janaki and
Chakrabarti (2010), Banerjee et al (2010 a,b), Rosenberg and Shukla (2011), Janaki et al
(2011) and Prajapati and Chhajlani (2013).

Sharma and Chhajlani (2013) reported that the presence of magnetic field in plasma
introduces some additional scales both spatially and temporarily, such as Larmor radius and
Larmor frequency. In this connection, the MHD set of equations is derived from two fluid
theories with electron and ions with some limitations to describe low frequency phenomena.
For the description of plasma along with two fluid theories, the single MHD set of equations
is also used to describe the magnetized plasma system. These MHD works are derived by
considering the zero Larmor radius of electron and ion and the frequency is generally
assumed much smaller than the electron-ion gyration frequency. However, there are a
number of interesting situations both in laboratory, space and astrophysical plasmas where
the above spatial and temporal ordering does not hold. Sharma and Chhajlani (2013) also
reported that in this type of situations, the behavior of considered plasma system is described
by assuming finite Larmor radius (FLR) of ion and the correction in this regard is called as
FLR corrections.

The effect of FLR on the Jeans instability of self-gravitating classical plasma is reported
by many investigators. Rosenbluth et al (1962) and Roberts and Taylor (1962) have pointed
out the importance of finite ion Larmor radius effects on the various plasma instabilities.
They showed that FLR effect works as a type of viscosity called magnetic viscosity, in which
the Larmor radius takes the place of the usual mean free path. Hans (1966) has studied the
gravitational instability with Hall current and FLR effects. Bhatia (1969) has discussed the
Jeans instability, including Larmor radius corrections and collisional effects. Herrnegger
(1972) has studied the effects of collision and gyro viscosity on gravitational instability in
two-component plasma. Bhatia and Gupta (1973) have investigated the FLR effects on the
gravitational instability of composite plasma. Sharma (1974) has studied the gravitational
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instability of rotating plasma with FLR effects. Bhatia and Chhonkar (1985) investigated the
stabilizing effect of FLR on the instability of rotating layer of self-gravitating plasma. Thus,
using MHD set of equations with modification of FLR, various instability problems have
been investigated by many authors using magnetic viscosity. Sharma and Chhajlani (2013)
studied the effect of finite Larmor radius corrections on the Jeans instability of quantum
plasma and concluded that in the transverse mode of wave propagation the instability
criterion gets modified due to the presence of both FLR and quantum corrections.

The problem of fluid dynamics by considering the effect of suspended particles on the
onset of Bénard convection, gravitational and magneto gravitational instabilities of an infinite
homogeneous medium has been studied many authors including Scanlon and Segel (1973).
They studied the effects of suspended particles on the onset of Bénard convection and
concluded that the particles decrease the critical temperature difference for the onset of
convection by increasing the heat capacity of the fluid. In astrophysical context, the problem
of gravitational instability of a gas in the presence of suspended particles is more realistic and
important. Sharma (1975) studied the effect of suspended particle on the Jeans instability and
concluded that Jean’s criterion is a sufficient condition for the instability of an infinite,
homogeneous magnetized self-gravitational gas particle medium. Raghavachar (1979) and
Chhajlani and Sanghvi (1985) also studied the problem in the presence of suspended particle
and rotation and found that the Jeans criterion determines the instability criterion. Chhajlani
and vyas (1988) studied the effect of thermal conductivity on the gravitational instability
of magnetized rotating plasma through a porous medium in the presence of suspended
particles and found that the concentration of the suspended particles reduces the rotational
effect. Pensia et al. (2012) also studied the role of Coriolis force and suspended particle in the
fragmentation of matter in the central region of galaxy.

Motivated by the above discussed importance of the finite Larmor radius corrections and
suspended particle in certain astrophysical situations and the effect on the Jeans instability
problems, we in the present paper have studied the onset of gravitational instability of a self-
gravitating infinitely electrically conducting strongly coupled plasma permeated with
uniform magnetic field in the presence of finite Larmor radius and suspended particles. Our
objective here is to study the effects of finite Larmor radius and suspended particles on the
onset of gravitational instability in a self-gravitating strongly coupled viscoelastic medium,
mathematically. The present paper thus extends the analysis of Dhiman and Sharma (2014) to
include the effects of finite Larmor radius corrections and suspended particles on the
gravitational instability of a viscoelastic medium.

2. Mathematical Formulation of the Problem
Consider an infinite homogeneous, finitely electrically conducting, self-gravitating

viscoelastic fluid permeated with a uniform magnetic field ﬁo) = (0,0, H,) in the presence of
suspended particles and finite Larmor radius. We have used the GH model to describe the
viscoelastic properties of the medium. Following the analysis of Janaki et al (2011), under
these assumptions, the generalized basic hydrodynamical equations of continuity, motion,
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magnetic induction and Poisson equation governing this physical problem (cf. Janaki et al
2011, and Prajapati and Chhajlani 2013) are given by;

2 4+v.(pi)) =0 1)
(1+22)[p(B+ @.7)9) - =((v x Hy) x Hy) — pVe + c2Vp — KN(ii — %) + VP| =
U + (f + g) v(V. %) )
aa—? =V x (17 X Fo)) 3)
V.Hy=0 (4)
V2¢ = —4nGp (5)
D, ‘;—f + @ V)i = KN@ — i) (6)
o = —7.(N) (7)

In the above equations;V, u, Fo),f’ and P are respectively represents the medium velocity,
the particle velocity, magnetic field, position vectors and pressure tensor;
7,p,K,N, p; and ¢, respectively denotes the viscoelastic relaxation time, density of fluid,
the constant in the Stokes drag formula, the number density of particle, suspended particle
density and gravitational potential;u, G andc, respectively denote the coefficient of viscosity,
the universal gravitational constant and the speed of sound in isothermal medium.

Further,é (= 4 + 2 w) is coefficient of bulk viscosity.

The components of pressure tensor, considering the finite ion gyration radius, as given by
Roberts and Taylor (1962) with magnetic field, in the z direction are given by

ov. 0vy _ ov 0vy _ _ _ 0vy
P, = —pu, (a_x“r@)' P,, = pu, (a_nyrE)'Pzz =0,y = Py = pvg (52—
ov ov v, _ _ 0v, | 0vy
a—yy),PxZ =P, = —2pv, (a—zy + E),Pyz =P, = 2pu, (g+ E) (8)

QLR? . . . . . . . .
Vg = L4 L is the magnetic viscosity. Here R, is the ion Larmor radius and £2,, is the ion

gyration frequency.
3. Linearized perturbation equations and dispersion relation

To investigate the instability of the self-gravitating system governed by basic
equations (1)-(8), let the initial stationary (steady) solution be slightly perturbed by giving
infinitesimal small perturbations

ép, 69, E(hx,hy,hz), 5P, V(vx, vy,vz) and ﬁ(ux, Uy, uz) in the density p,, gravitational

potential ¢,, magnetic field FO), pressure tensor F, fluid velocity ¥ and particle velocity U
respectively.

Thus, the perturbations are represented by

250



p=po+8p, ¢=cdo+6p P=P, +6P, H=Hy+h,(0+hy,0+h, H,+h,), o=
I7(0+vx,0+vy,0+vz), u= l_f(0+ux,0+uy,0+uz). 9)
Using these perturbed quantities given in (9) in equations (1)-(8) and then linearizing the
resulting equations by neglecting the second and higher order perturbed quantities, we get the

following linearized perturbed equations of continuity, motion, magnetic induction and
Poisson equation for viscoelastic medium respectively;

22 1+7.(poV) =0 (10)
(1+72) [po‘;—‘f— PV — - (V x k) x Hy + c2Vép + V.6P — KN(V — U)| = w2V +

(¢+5)r(v.7) (11)
%:Vx(l?xﬁo) (12)
V25¢p = —4nGép (13)
(n+1)0=V (14)
V.h=0 (15)

To solve equations (10)-(15), which are linear and homogeneous equations, let us assume the
solution of the perturbed quantities of the form;
eL(kxx+kzZ)+O't (16)

where, o is the wave frequency and k,, k, are the wave numbers in transverse and
longitudinal directions. Using this exponential solution in equations (10)-(15) and
simplifying the resulting equations, we get the following equations in the velocity
components as;

21.2

wi'kg
(1 + to) {<02+c52k§+k2v§ - - AO'( A ))vx + ovg(ky” + 2kZ2)vy} + 0(

oT,+1

(2,
Po

W) v = 0 a7
(1 + to0) {(02—kZ2Vaz — Ao (%)) vy — 200pkyk,v, — ovg(ky” + ZkZZ)VX} +ovk?vy, = 0
(18)

212 +28) 2
(1 + 7o) ({02 +c2k,’ — W,](z — Ao (U(:il)} v, + 20v0kxkzvy> +0 {(E p30) + vk?} v, =0
(19)

Equations (17)-(19) can be put in the following matrix notations;
[B][C] =0 (20)
where, [B] is the coefficient matrix and [C] is the velocity components matrix.
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The necessary condition for the non-trivial solution of system (20) is that the determinant
of the coefficient matrix [B]must vanish, which yields the following characteristic equation

?kZ 4l
(1 + to0) <02+c52k,2(+k2Va2 Sy (&)> +0 <@ + k2> [{(1 +

k2 oT,+1 o

2 ot 2 wikj ot
10) <02—kz V2 — Ao (0"171-!1-1)> + GVkZ} {(1 + 10) <02 + ¢k, — o — Ao (Grli1)> +

o <—(E+ ) + k2>} +(1+ TG)240'2U021(X21(Z2] +(1+ rc)zozvoz(kxz + ZkZZ)2 ((1 +

Po

wi Z ot = kZ
10) {02 + cszkz2 - 1’; — Ao (—1 )} + 0{—(&;) + vk%}) =0 (21)

oT,+1 0

where, w; = /4nGp, is the Jeans frequency, k? = ki + kZ is the wave number and
2
V2= M2 s the Alfvén velocity.
4mpg

4. Jeans Criterion of Instability

We shall now obtain the dispersion relations for each transverse and longitudinal modes
of wave propagation from the characteristic equation (21) and investigate the instability
criterion for the onset of gravitational instability in viscoelastic fluid for the strongly and
weakly coupled plasmas, individually.

4a. Transverse mode of wave propagation

In the case of transverse mode of wave propagation, let us take k, = kand k, = 0. In
view of this, equation (21) yields the following dispersion relation

{(1 + 10) (0 —A (ﬁ)) + sz} X

G(Eiﬁ} X {(1 + 10) <0 —A (£)> + vkz} +(1+ T0)20U02k4] =0

{(1 + 10) (02+c52k2+k2V§ —w?— Ao (£)> +

J oT,+1

oT,+1
(22)
Further, equation (22) above clearly yields the following pair of equations

— A= 2 —

(1 + 10) (0 A (GHH)) +Vk2 =0 (23)

2 21,2 272 9.2 ot ot 21,2 2y72 2
(1 + o) {0 +cs°k“o0+k“Vio — w oc—20 A(Mlﬂ) +A(—CT1+1){ Cs“k*+KVE + wi +
kZ
214 0Ty 212 4 1 2y 2

Acs((7T1+ )} + ov,°k }+ (1+ o) [—(0—A(m)> + {0 +c“k“+k=V; w] —
1 2 o(E+3)w? 2 _

Ac(ctlﬂ)}vk ]+ o vk* =0 (24)

Now, we shall derive the instability criteria for both SCP and WCP.
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(i). Criterion for strongly coupled plasma (SCP)

For SCP case, in view of kinetic limit (ot > 1), equation (23) yields the non-
gravitating mode. Also under this limit, equation (24) reduces to the following dispersion
relation

2
o + g5 (Ti - ZA) + gt {Tiz — 22k HK2VZ — W + KPVE 45+ upPkt + AZ} +
1 1 1

Kk? k?
o3 {i {e2K2+K202 — w? + k2v2 + 7=+ vo?kt + A {e2KPHKPVZE — wf + k2vE + —}} +

kZ
o2 {Tliz {cszk2+k2Va2 —wf +k*v¢ + VT + U02k4} + %{cszk2+k2Va2 - w? + k*vZ} +

VK2 22 22 _ 2 4 A KPVE VK2 av2 12172 _ 2 2.,2

T{csk+kVa wj+T1+Tl} +om{csk+kVa w? + k?vE} +

LS {c?k2+K2V2 —w? + k2v2} =0 (25)
T, US a Jj cf—

The constant term of (25) yields the following instability criterion;
k* < w?/(c® +vE+V2) (26)
(ii). Criterion for weakly coupled plasma (WCP)

For WCP case, in view of hydrodynamic limit(ot < 1), equation (24) reduces to the
following dispersion relation

o+ ot {%—2A+vk2}+03 {cszk2+k2Va2 —wf + k*§ +———+ { (§+
)+ =+ e+ 4")}} + 02 {Tz—l{c52k2+k2va2 —wf k) + AleRHRVE —wi + S
k2 4u 2k?2 4p
g(f + ) — 4+ vk? {2k +k2VE - w) Fom = (g4 )}} +

a{% {2(c2h2+k772 —wP) + 5 (6 +2)} 4+ 2 {—cszkz+sz2 +wi+ (e 2R k2
w? + k%g}} + ‘;T"Zz{cszk%kzvaz -wi}=0 (27)

The constant term of (27) yields the following instability criterion;
K? < w?/(c2+V2) (28)

If the effects of suspended particle and viscoelastic fluid are ignored, then the dispersion
relation (24) reduces to

0 +ck*+k?VE — wi + vkt = 0 (29)
and the constant term of (29) yields the following instability criterion;
k? < w}/(cs?+VE +vo%k?) (30)
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Thus, from inequality (28) and (30) it is clear that the finite Larmor radius modifies the
Jeans criterion of instability, if the medium is non viscous and the effect of suspended
particles is ignored.

4b. Longitudinal mode of wave propagation
In the case longitudinal mode; let k,=k and k, = 0. In view of this equation (21) yields
the following dispersion relation

[(1 + 10) {02+cszk2 —w?— O'A( ke )} + % (E + 4?”)] X [(1 + 10) {02+k2Va2 -

J oT,+1

2
oA (ﬁ)} + kzva] + 4(1 + 10)%0%,2k* = 0 31)
From (31) it is clear that either
210212 _ w2 — oA (2 )) 4 KOO (p 4 A
(1 + 7o) {a +¢7K2 — W] oA(M1+1)}+ - (§+ 3) =0 (32)
[(1 + 10) {0'2+k2V2 — oA (ﬂ)} + kzva]z +4(1 + 10)%0%v,%k* = 0 (33)
a ot,+1 0 -

Now, we shall derive the instability criteria for both SCP and WCP.
(i). Criterion for strongly coupled plasma (SCP)
For SCP case, in view of kinetic limit(ot > 1), equation (32) reduces to the
following equation

1 1
o3 + o2 {T_1 - A} + ofcs2k? — wf + k*v2} + Z{cszk2 - wf + k*v2} =0 (34)
The constant term of (34) yields the following instability criterion;
k? < w}/(cs® +v¢) (35)
(ii). Criterion for weakly coupled plasma (WCP)
For WCP case, in view of hydrodynamic limit(ot « 1), equation (32) reduces to the
following dispersion relation
3 21 k 4u 21,2 _ .02 k? 4u ¢ 272 21 _
o3 +o Ll A+ (g+ ) +o{c2k? —wP + (§+3)}+H@5k w?}=0

2
E T1Po
(36)

The constant term of (36) yields the following instability criterion;
k? < a)jz/cs2 (37)
5. Growth rate of instability

We shall now analyze the effects of various physical parameters viz; viscoelastic
parameter, magnetic viscosity, number density of particle and shear viscosity on the growth
rate of magneto-gravitational instability of viscoelastic medium for the case of transverse and
longitudinal mode of propagation under both the strongly and weakly coupling limits.

In order to study the effect of growth rate on SCP and WCP, writing equations (25), (27),
(34) and (36) respectively in the following dimensionless forms;
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T1

* 2
Y6 + 2y5 {——A} y < %+C;2k*2+k*2 1+&k2 + Vo' +A*>+

.)/3 {%{C;Zk*z +k*2 1 +€ k*z - k*2v0*4}+A* {C*Zk*z k*z -1 +f*k*2 +

T*

*2
vk }}+y {*Z{C*Zk*z k*z 1+§- k*z - k*z *4}+ {C*Zk*z k*z _1 +

$2042 12 A &kt VR (2042 | g e2 £ %2
{Cs K2k -1+ o+ }}+ (G R -1+ R+
1 1
14 k {C*Zk*z k*2_1+§*k*2}= O (38)

‘L'

ey { 2A*+v*k*2}+y ( 12 r’{*+C;2k*2+k*2—1+k*2v0*4)+v*k*2 {r_l;;§+

1
#2 %27 %2 2 «2. x4 w27 %2 %2 A * %2
E+k g}+y2{E{CS K2+ k2 — 1+ kv + A {C k% + k _1}+E_A + k% +
«px2) 1 A" %27 %2 *2 %2 V*k*z %27 %2 %2 x2
vk {T;_Z_r_;J“CS k*“ +k*°—1+2k g}}+y{T{2(CS K+ k™ — 1)+ k**¢} +

ket 4t - 1}=0
* 2 S -

A" * * * * * * * *
et vk 2—1}+T;2{Cszk 24k =1+ kP, 4}}+"

39)
Py (G ar) +y (ke ke 1)+—(1+5 =0 (40)
*2_
r v (m-at+ k*zc)+y(k*2+—f—1)+—(" *1)=o (41)
T1 T1
where the dimensionless parameters used are
k*zkv * Uw]f__g *zﬁv*z_ﬁ
w] ) VZ ) az Va' Va
_ak*_kcs . VW *_vCZA*_A _a)j(+4> . .
V—wj. = a)j'v —Csz,f arxl —wj,g—CSzpo & FH)T =Tw;T;" =T 0;

The values of growth rate of magnetogravitational instability for different values of wave
numbers have been calculated from equations (38), (39), (40) and (41) in the transverse
and longitudinal mode of wave propagation under the strongly and weakly coupled
plasma limits. The obtained values and the variation in the growth rate with wave
numbers is depicted graphically in Figures land 2, respectively.

Further the effect of magnetic viscosity on the growth rate of
magnetogravitational instability has been observed from the non-dimensional equation
(38).The obtained values and the variation in the growth rate with wave numbers is
depicted graphically in Figure 3 for some constant values of magnetic viscosity vy* =
0.5,1.5.
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Figure 1.Variation of normalized growth rate
against the normalized wave number (k*) under
the strongly and weakly coupling limits in the
longitudinal mode of wave propagation.

Re(+y)

024

0.1 T

Figure 3.Variation of normalized growth rate
against the normalized wave number (k™) under
the strongly coupling limit in the transverse
mode of wave propagation for some fixed values
of magnetic viscosity vy = 0.5, 1.5.
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Figure 2.Variation of normalized growth rate
against the normalized wave number (k*) under
the strongly and weakly coupling limits in the
transverse mode of wave propagation.
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Figure 4.Variation of normalized growth rate
against the normalized wave number (k™) under
the strongly in the transverse mode of wave
propagation for some fixed values of number
density of particle A* = 0.0,0.3.
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Figure 6.Variation of normalized growth rate
against the normalized wave number
(k*)underthe strongly coupling limits in the
longitudinal mode of wave propagation for
various values of shear viscosityé*=0.5,1.0.

Figure S.variation of normalized growth rate
against the normalized wave number (k*) under
weakly coupling limits in the transverse mode of wave
propagation for some fixed values of number density
of particleA* = 0.0, 0.3
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The effect of number density of particles A* has been calculated in the transverse mode of
wave propagation under the strongly and weakly coupling limits from the non-dimensional
equations (38) and (39). The different values of the number density of particle A*=0, 0.3 have
been chosen to investigate the effect on the growth rate of magnetogravitational instability.
The obtained values and the variation in the growth rate with wave numbers are depicted
graphically in Figures 4 and 5, respectively for the strongly and weakly plasma. The shear
viscosity effect on the growth rate of magnetogravitational instability has been studied in the
longitudinal mode of wave propagation under the strongly coupling limit for the different
values of shear viscosity;é* = 0.5, 1.0 from the non-dimensional equation (40). The obtained
values and the variation in the growth rate with wave numbers for the different values of
shear viscosity & =0.5,1.0are depicted graphically in Figure 6.
6. Results and Discussions

In the present paper, we have studied the effects of finite Larmor radius and suspended
particles on the onset of gravitational instability of a self-gravitating viscoelastic medium
permeated with uniform magnetic field, mathematically using Generalized Hydrodynamic
model. A general dispersion relation for the problem is derived using the normal mode
analysis method and particular dispersion relations for the transverse and longitudinal modes
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of wave propagation under both strongly and weakly coupling limits are obtained, which
describe the growth rate of instability in terms of various parameters of the problem. The
effects of finite Larmor radius and suspended particles have been investigated on both the
longitudinal and transverse mode of wave propagation under the strongly and weakly
coupling limits.

Form the above analysis, we found that the coupling parameter modifies the Jeans
instability criterion, whereas the magnetic viscosity and suspended particles have no effect on
this criterion. The effects of coupling parameter (viscoelasticity), magnetic viscosity (finite
Larmor radius), shear viscosity and number density of particle on the growth rate of the
gravitational instability are studied numerically and the results are depicted graphically. The
variation of the growth rate under both the strongly and weakly coupled limits (coupling
parameter) with normalized wave number has been calculated and the results have been
depicted graphically in Figures 1 and 2. From the obtained results, it is observed that the
growth rate is higher in the weakly coupled plasma to that of the strongly coupled plasma in
both the transverse and longitudinal modes of wave propagation. It may be due to the fact
that the decay of growth rate of unstable Jeans modes is faster in the case of strongly rather
than the weakly coupling limits (Sharma 2014). Also, the effect of magnetic viscosity on the
growth rate of magnetogravitational instability under the strongly coupling limit in the
transverse mode of wave propagation for some fixed values of magnetic viscosity V(=
0.5, 1.5) has been investigated and the variation has been depicted in Figure 3. It is observed
that as the values of magnetic viscosity increases the growth rate of instability decreases and
hence has a stabilizing effect on the growth rate of gravitational instability. The effect of
number density of particle for some fixed values of A*(= 0.0, 0.3) in the transverse mode of
wave propagation has been studied and the results are depicted in Figures 4 and 5,
respectively under the strongly and weakly coupling limits. It is observed that for the
increasing values of the number density of particle, the growth rate decreases and hence have
stabilizing effect on the gravitational instability. In Figure 6, the variation of normalized
growth rate against the normalized wave number (k*) under the strongly coupling limit in the
longitudinal mode of wave propagation for various values of shear viscosity &* ( =0.5, 1.0)
has been depicted. It is observed that the shear viscosity have same effect on the growth rate
as that of the number density of the particle.
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