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An elliptic curve cryptosystem over finite fields 
 

P. L. Sharma* and Kiran Devi 
Department of Mathematics and Statistics 

Himachal Pradesh University, Shimla 171005, India 
*email: plsharma1964@gmail.com 

Abstract: Matrices and elliptic curves play an important role in cryptography to provide 
the confidentiality of the message, integrity of data and authentication to the 
communicating parties. We propose a cryptosystem using specific triangular matrices and 
elliptic curves over prime finite fields. 
Keywords: Triangular matrices, Elliptic curves, Finite field, Cryptography. 
Mathematics Subject Classification: 94A60, 11T71, 14G50, 68P25, 01A80. 
  
1 INTRODUCTION 
      In the present era of information, all types of data travel over the insecure channels. 
Therefore, the security of data has become an important issue in the rapidly growing use of 
internet. Cryptographic techniques provide security to the data which is transmitted on the 
insecure channels. Finite fields are widely used in cryptography, see [6, 11]. Some public 
key cryptosystems are based on the techniques of number theory which provides high 
stability against attacks but they use a large key space, see [9, 12, 23, 24]. Such 
cryptosystems are not preferred where memory space is limited and computational power 
is required high. The elliptic curves provide the alternative to cope up with such practical 
problems. The elliptic curve cryptosystems occupy less memory space, much efficient in 
computations and fast in encrypting and decrypting process. Due to the complexity of these 
cryptosystems, hackers face more difficulty to crack. Therefore elliptic curve 
cryptosystems are highly preferred in practical. 

Koblitz [5] introduces the elliptic curves for the use in cryptography and proposed 
an elliptic curve cryptosystem. Also, Miller [10] proposes an independent cryptosystem 
using elliptic curves. Various researchers have shown their interest for the use of elliptic 
curves in cryptography. They have further added that how these cryptosystems are useful 
in bandwidth savings, smart cards, wireless devices, faster implementations and increase 
high computational efficiency, see [24]. Consequently elliptic curves have attracted many 
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researchers to contribute in the field of cryptography. 
Non singular matrices are invertible. Therefore, such matrices have gain 

importance in cryptography. Hill [3, 4] uses matrices and linear transformations to develop 
cryptosystems. There are many cryptographic algorithms which are based on matrices, see 
[21]. Climent et al. [2] give a non linear elliptic curve cryptosystem based on matrices. 
Like matrices, there are some structures in the literature known as rhotrices. These 
structures are used in the field of cryptography to enhance the security of the existing 
cryptosystems, see [13-20].  

The difficulty of solving discrete logarithmic problem provides the security to 
some cryptosystems. Elgamal cryptosystem is secure due to this difficulty, see [22]. 
Mahalanobis [8] discuss the Elgamal cryptosystem over circulant matrices. Amounas et 
al.[1] uses circulant matrices  and elliptic curves for encryption and decryption process. 
Multiplication and squaring process of elements is fast in triangular matrices which is 
important in various cryptosystems. We develop a cryptosystem using triangular matrices 
and the elliptic curves over finite fields. We also show the encryption and decryption 
process with the help of an illustration. 
2 ALGORITHM OF PROPOSED CRYPTOSYSTEM 
 Consider the lower triangular matrix  

,
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where ܽ௜௝  ߳ ॲ௣ and p is prime, in the proposed cryptosystem. This matrix should satisfy 
the following conditions: 
(i) The lower triangular matrix A should have determinant ‘1’. 
(ii) The matrix ܣ should have each row-sum ‘1’. 
(iii) The order m of matrix should be prime and it should be primitive modulo ݌. 
(iv) The characteristic polynomial xA  of matrix A  after division by (ݔ − 1) gives 
irreducible polynomial. 
2.1 Generation of data matrix of the message: The data matrix using elliptic 
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curve over finite field ॲ௣ is obtained as follows: 
(i) Initially choose an elliptic curve equation over finite field ॲ௣ . 
(ii) Obtain all the points of elliptic curve over finite field ॲ 楜 . 
(iii) Further, convert the elliptic curve points into binary form. 
(iv) Now, construct a matrix B of order m  . 
(v) Further, use the spiral traversal form (discussed below) over the matrix B  and obtain 
the traversing data matrix C of the plaintext message M . 
2.1.1 Spiral traversal form: In this form arrows shows that first entry of the first 
column goes to first entry of second column, first entry of second column goes to second 
entry of first column of the matrix, second entry of first column goes to third entry of first 
column, third entry of first column goes to second entry of second column. Likewise, all 
the entries are traversed. 

 

 
Spiral traversal form for ݉ = 5. 

2.1.2 Reverse spiral traversal form: The reverse spiral traversal form is as follows. 
The first entry of first column goes to second entry of first column, second entry of first 
column goes to first entry of second column which further goes to first entry of third 
column. Likewise all the entries are traversed. 



4  

                          
Reverse spiral traversal form for ݉ = 5. 

2.2 Encryption: To encrypt the message M sender does the following: 
(i) He chooses a random integer r and publishes .rA   
(ii) Sender chooses one more integer randomly s (say) and keep it secret, then finds sA
and  .rsA   
(iii) The ciphertext of the message M which is in the form of data matrix ,C  is thus 
obtained as ),(),( 21

rsCAkTT  , where k  is the transpose of the first row of .sA   
(iv) Sender sends this cipher text to the receiver. 
2.3 Decryption: To decrypt the message M receiver does the following: 
(i) He extracts the first part k  of the cipher text and form the lower triangular matrix with 
first row k  which is same as the first row of sA  matrix. 
(ii) Further, he finds rsA  from the matrix obtained in the previous step and compute   
   .).( CACA rsrs    
(iii) He reverses all the operations which have been done during encryption process and 
finds the data matrix B . 
(iv) Further, receiver converts the data sequence (digits) of matrix B to binary form such 
as 0 → 00, 1 → 01, 2 → 10, 3 → 11. 
(v) Now, receiver converts the sequence which is obtained in previous step to obtained 
elliptic curve points and then gets the original message back. 
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3 ILLUSTRATION OF PROPOSED ALGORITHM  
Now we give illustration of the proposed algorithm to describe the process of encryption 
and decryption. Let us consider the message be INDIA. 
3.1 Generation of data matrix of the message: 
(i) Let us consider an elliptic curve equation  

.17mod)22(: 32  xxyE p  
Using the Hasse theorem, see [ pp. 174, 14] the order of elliptic curve is given by  

หܧ௣ห = 1 + ݌ + ߳ = 1 + ݌ + ෍ ଷݔ + ݔܽ + ܾ
௫∈ॲ೛݌

 

                              = 1 + ݌ + ∑ ௫యାଶ௫ାଶ
ଵ଻௫∈ॲభళ . 

 
Since ॲ௣∗  is a cyclic group. Therefore, by inspection we find ܲ = (5, 1) is a generator 
point on ܧ(ॲଵ଻) and generate other points of ܧ(ॲଵ଻) from this point. Doubling of the 
point ܲ is as follows: 
Let P ,( 1x (ଵݕ = (5, 1) be the point then the new point 2ܲ = ,ଶݔ)  :ଶ) is calculated asݕ

ଶݔ = ቀଷ௫భమା௔
ଶ௬భ ቁଶ − ଵ = ቀଷ×ଶହାଶݕ2

ଶ×ଵ ቁଶ − 2 = 6, 
ଶ=ቀଷ௫భమା௔ݕ

ଶ௬భ ቁଶ(ݔଵ − (ଶݔ − ଵݕ = 3. 
Thus, we obtained the point (6, 3). Likewise, other points of are ܧ(ॲଵ଻) as follows: 
(7, 6), (3, 1), (0, 6), (9, 1), (5, 16) (6, 14), (7, 11), (9, 10) (10, 11), (10, 11), (13, 10), (16, 
13), (13, 7), (0, 0), (10, 6) (16, 4), (0, 11), (3, 10).    
The different alphabets used in the message INDIA are I, N, D, A. We shall randomly 
assign elliptic curve points to these four alphabets. For the remaining points, other 
alphabets and symbols are assigned to cover 19 points as follows: 
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EC points  Corresponding 
alphabets 

EC points Corresponding 
alphabet 

(5, 1) Y (5, 16) R 
(6, 3) S (6, 14) P 
(7, 6) A (7, 11) N 
(3, 1) B (9, 10) M 
(0, 6) T (10, 11) U 
(9, 1) E (13, 10) O 

(10, 6) C (16, 13) I 
(16, 4) ( ) (13, 7) D 
(0, 11) @ (0, 0) Space 
(3, 10) # - - 

 
Elliptic curve points and corresponding alphabets 

 
Therefore, the elliptic curve points of the message are as follows: 

 
I (16, 13) 
N (7, 11) 
D (13, 7) 
I (16, 13) 
A (7, 6) 

 
Now, conversion of elliptic curve points in binary form is as follows: 

I (16, 13) (10000, 1101) 
N (7, 11) (0111, 1011) 
D (13, 7) (1101, 0111) 
I (16, 13) (10000, 1101) 
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Padding zero to the extreme left in each tuple of the binary form points to obtain five bits 
tuples, we obtain  
 

I (16, 13) (10000, 1101) (10000, 01101) 
N (7, 11) (0111, 1011) (00111, 01011) 
D (13, 7) (1101, 0111) (01101, 00111) 
I (16, 13) (10000, 1101) (10000, 01101) 
A (7, 6) (0111, 0110) (00111, 00110) 

 
The resulting padding tuples are clubbed in single string as follows: 
 

I (16, 13) (10000, 1101) (10000, 01101) (1000001101) 
N (7, 11) (0111, 1011) (00111, 01011) (0011101011) 
D (13, 7) (1101, 0111) (01101, 00111) (0110100111) 
I (16, 13) (10000, 1101) (10000, 01101) (1000001101) 
A (7, 6) (0111, 0110) (00111, 00110) (0011100110) 

 
The obtained string of 10 bits is then converted into decimal form by taking a sum of two, 
we obtain  

I (16, 13) (10000, 1101) (10000, 01101) (1000001101) (20031) 
N (7, 11) (0111, 1011) (00111, 01011) (0011101011) (03223) 
D (13, 7) (1101, 0111) (01101, 00111) (0110100111) (12213) 
I (16, 13) (10000, 1101) (10000, 01101) (1000001101) (20031) 

A (7, 6) (0111, 0110) 
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A (7, 6) (0111, 0110) (00111, 00110) (0011100110) (03212) 
 
The last column gives the following data matrix of order 5 as follows: 

ܤ =  
ێۏ
ێێ
2ۍ 0 0 3 10 3 2 2 31 2 2 1 32 0 0 3 10 3 2 1 ۑے2

ۑۑ
ې
. 

 
Using the spiral traversal form discussed in 2.1.1, we get 
 
2 → 0 → 0 → 1 → 3 → 0 → 3 → 2 → 2 → 2 → 0 → 0 → 2 → 2 → 1 → 3 → 1 → 0 → 3

→ 2 → 3 → 3 → 1 → 1 → 2. 
 
Thus the matrix B  is traversed into matrix C  as follows: 
 

ܥ  =  
ێۏ
ێێ
2ۍ 2 3 0 20 1 3 2 10 2 0 3 32 0 1 2 32 0 3 1 ۑے1

ۑۑ
ې
 

 
3.2 Encryption: The encryption process is as follows:  
(i) Now we choose a lower triangular matrix over ॲଶ which satisfies the properties 
discussed in 2 as follows: 

ܣ =
ێۏ
ێێ
1ۍ 0 0 0 00 1 0 0 00 0 1 0 01 1 0 1 00 0 1 1 ۑے1

ۑۑ
ې
 .       

 
(ii) Let us choose randomly an integer 13r (say) and obtain  
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௥ܣ = ଵଷܣ =
ێۏ
ێێ
1ۍ 0 0 0 00 1 0 0 00 0 1 0 01 1 0 1 00 0 1 1 ۑے1

ۑۑ
ې
. 

    This matrix will be made open in the public domain. 
(iii) Again, the sender chooses one more integer randomly 7s (say), which will be kept 
secret and computes  

௥௦ܣ = ଽଵܣ =
ێۏ
ێێ
1ۍ 0 0 0 00 1 0 0 00 0 1 0 01 1 0 1 01 1 1 1 ۑے1

ۑۑ
ې
. 

(iv) Using this matrix as key matrix and the data matrix (obtained from the message ܯ), 
we obtain the cipher text ( ଵܶ, ଶܶ) = (݇,  ௥௦) , where the column matrix ݇ is theܣܥ
transpose of the first row of ܣ௦.  

                              ( ଵܶ,  ଶܶ) =
ۉ
ۇۈ

ێۏ
ێێ
ۑے10000ۍ

ۑۑ
ې

,
ێۏ
ێێ
0ۍ 0 1 0 01 0 0 1 10 0 1 0 11 1 0 1 10 0 0 0 ۑے1

ۑۑ
ې

ی
  .ۊۋ

These two matrices represent the encrypted message that will travel over the insecure 
channels and received by the receiver. 
 
3.3 Decryption: To decrypt the message receiver does the following process. 
(i) He separates the first part 1T  of the encrypted message and write ݇ = (1, 0, 0, 0, 0) 
which is the first row of lower triangular matrix A.   
(ii) Now, receiver finds srA and further computes C as follows:   
 

.ܥ) .(௥௦ܣ ௦௥ିܣ = ܥ =
ێۏ
ێێ
2ۍ 2 3 0 20 1 3 2 10 2 0 3 32 0 1 2 32 0 3 1 ۑے1

ۑۑ
ې
. 
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(iii) Now, using the reverse spiral traversing from 2.1.2 on the matrix C  to obtain  

ܤ =  
ێۏ
ێێ
2ۍ 0 0 3 10 3 2 2 31 2 2 1 32 0 0 3 10 3 2 1 ۑے2

ۑۑ
ې
. 

(iv) Converting each entry of matrix B  in binary form as follows: 

ܤ =  
ێۏ
ێێ
10ۍ 00 00 11 0100 11 10 10 1101 10 10 01 1110 00 00 11 0100 11 10 01 ۑے10

ۑۑ
ې
. 

This matrix gives the string of 10 bits as follows: 

ܤ =  
ێۏ
ێێ
10ۍ 00 00 11 0100 11 10 10 1101 10 10 01 1110 00 00 11 0100 11 10 01 ۑے10

ۑۑ
ې

≈
ێۏ
ێێ
ۑے10000011010011101011011010011110000011010011100110ۍ

ۑۑ
ې
. 

(vi) Now convert the string of 10 bits into two tuples each of 5 bits.  

ܤ =  
ێۏ
ێێ
10ۍ 00 00 11 0100 11 10 10 1101 10 10 01 1110 00 00 11 0100 11 10 01 ۑے10

ۑۑ
ې

≈
ێۏ
ێێ
ۍ 10000011010011101 011011010011110000011010011100110 ۑے

ۑۑ
ې

≈ 
ێۏ
ێێ
10000ۍ 0110100111 0101101101 0011110000 0110100111 ۑے00110

ۑۑ
ې
. 

The corresponding points to these tuples of binary bits are now converted to the tuples in 
digits form as follows: 

(10000, 1101) (16, 13) 
(0111, 1011) (7, 11) 
(1101, 0111) (13, 7) 

(10000, 1101) (16, 13) 
(0111, 0110) (7, 6) 

 (vii) The corresponding alphabets to these points are as follows:  
(16, 13) → ,ܫ (7, 11) → ܰ, (13, 7) → ,ܦ (7, 6) →  .ܣ

Arranging these alphabets, we obtain the message INDIA which is the original message. 
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On Strong Connes Subgroup 
Ram Parkash Sharma1 and Madhu2 

 
1. Department of Mathematics, Himachal Pradesh University Summer Hill, Shimla 171 005, India 

2. Department of Mathematics, R.K.M.V., Shimla, Himachal Pradesh, 171 001, India. 
 
Abstract: Let K be a commutative semiring, R a G –graded K –semialgebra and R # K [G]* its smash 
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1. Introduction 
This paper is in continuation of [7] in which the validity of results proved by S. 

Montgomery and D. S. Passman [5] regarding a connection between the Connes subgroup of 
a group G (which is a purely analogue of the Connes spectrum introduced by A. Connes [3] in 
the context of action of locally compact groups on Von Neumann algebras) and the ideal 
structure of a G -graded ring R, its smash product R # K [G]* is established .  In this paper, R is 
an additively cancellative semiring. So, R is isomorphic to a subsemiring of the ring of 
differences R∆ such that every element of R∆ is the difference between two elements in the 
image of R [4]. It is evident from ([4], Proposition 9.42) that there are plenty of such semirings. 
In R∆, we have a – b = c – d if and only if there exist R such that a + r = c + r' and b + r = d + r'. 
The set R∆ becomes a ring under componentwise addition and multiplication given by      
(a – b)(c – d) = (ac + bd) – (ad + bc). The zero element of R∆ is a – a, denoted by 0  and 
multiplicative identity is 1. Clearly, R∆ contains R by way of embedding a a – 0 (simply 
written as a). Another weak version of the condition of having additive inverses, i.e. R being 
yoked (for R there exists an element r of R such that a + r = b or b + r = a) is also required for 
some results. The ring theoretic results of [8] are studied for such semirings in [10]. 

We started this paper with the aim to define the strong Connes subgroup for a graded 
semiring R and relate it with the simplicity of R and its smash product R # K [G]*. Thus 
throughout this paper, K be an additively cancellative commutative semiring and R an 
additively cancellative K–semialgebra graded by a finite group G. If R is a G–graded semiring, 
then there exists an extension semiring (known as smash product), with same1,  which 
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comes from the study of semi-Hopf algebras. This smash product is denoted by R # K [G]*, 
where R is a K–semialgebra. This semiring is a free left R –semimodule with basis {px | x  G}  
such that 1 xGx

p is decomposition of 1R into orthogonal idempotents. Since R and K are 
additively cancellative, so their rings of differences R∆ and K∆ exist. Moreover, if a semiring R 
is graded by G, then R∆ becomes a ring graded by G, where 

}. , | {=}',)'({=)(       g
'
gg

'
gggg RaaaaRaaaapR   

Therefore, for x R∆,  ), = ,=( =  
  

 
  

Rbbaabax g
Gg

g
Gg

  
 

we have the unique representation  
  

)(= g
Gg

baba  


, where    =)( ggg baba  .  
Thus we also have the smash product R∆# K∆ [G] * which is isomorphic to (R # K [G] *)∆ (c.f.[5]) 
and hence R # K [G] * embeds in R∆ # K∆[G] *, whereas R embeds in R∆.  These embeddings 
are useful to prove the main results of this paper. 
2. Some Basic Definitions and Results 
 The following definitions and results from [4,6-7] are felt to be inseparable part of this paper. 
Definition 2.1. 

A semiring is a non-empty set R on which operations of addition and multiplication have 
been defined such that the following conditions are satisfied: 
(i) (R, +) is a commutative monoid with identity element 0; 
(ii) (R, .) is a monoid with identity element 1; 
(iii) Multiplication distributes over addition from either side; 
(iv) 0r = 0 = r0, for all r  R; 
(v) 1≠0. 

Definition 2.2. 
   A nonempty subset (ideal) A of a semiring R is subtractive if and only if a  A and a+b A 

implies that b  A.   
Definition 2.3. 

A semiring (semialgebra) R is graded by a finite group G if R =
Gg  Rg, where Rg are 

additive submonoids of R and if RgRh  Rgh for all g, h  G. 
Definition 2.4. 

For any subset (ideal) I of R, define IG =
Gg  (IRg). I is graded if I = IG Moreover, IG is the 

largest graded (ideal) subset of R contained in I. 
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The following results from [6, 9] of an additively cancellative semiring R will be utilised in 
subsequent sections: 
 
Lemma 2.5. 

Let R be an additively cancellative semiring and R∆ its ring of differences. Let A, B be two 
nonempty ideals of R and I, J two ideals of R∆ Then: 
(i) A∆B∆ = (AB)∆ 
(ii) A  B, then A∆  B∆. Further, if A is subtractive and A  B, then A∆   B∆. 
(iii) If I  J, then I  R  J  R. Further, if R is a yoked semiring and I  J, then I  R  J  R. 
(iv) A  A∆  R. Equality holds if A is subtractive; 
(v) I  R is subtractive. 
(vi) (I  J)  R = (I  R)  (J  R); 
(vii) (I  R) (J  R)  (IJ)  R; 
(viii) (I  R)∆  I. Equality holds if R is a yoked semiring. 

Lemma 2.6. 
Let R be a semiring graded by G. 
(i) If A is a graded ideal of R, then A∆ is a graded ideal of R∆. The converse follows if A is 
subtractive.  
(ii) If I is a graded ideal of R∆, then I  R is a graded ideal of R. The converse follows if R is 
yoked. 

Lemma 2.7. 
Let R be a semiring graded by a finite group G and A any subset of R. Then for g  G, 

(i) Each Rg is subtractive; 
(ii) (a) Each Ag is subtractive, if A is a subtractive subset of R; 
(b) AG is subtractive, if A is a subtractive submonoid of (R, +); 
(iii) (Rg)∆ = (R∆)g;  
(iv) Rg = (R∆)g  R; 
(v) (Ag)∆  (A∆)g. Equality holds if R is yoked and A is a subtractive submonoid of R; 
(vi) (AG) ∆   (A∆)G. Equality holds if R is yoked and A is a subtractive submonoid of R; 
(vii) Let I be an ideal of R∆ Then (a) (I  R)g = Ig  R;  
(b) (I  R)G = IG  R.  
(viii) If R is a yoked semiring, then R1 is a yoked subsemiring of R. 
Definition 2.8. 

Let P be a graded ideal of R. Then P is graded prime if whenever A B  P,  where A, B are 
graded ideals of R, then A  P or B  P.  

We denote the set of all graded left ideals of R by GrL and the set of all graded right ideals 
by GrR. 
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Definition 2.9. 
A subsemiring B of R is said to be graded hereditary if B = AL for some A  GrR, L  GrL and 

B is a nonnilpotent graded subsemiring of R. The set of all such B is denoted by GrH.   
Definition 2.10. 

Let R be a G -graded semiring with G finite. We define   GrHBBRGx=Γ xxR    allfor nt nonnilpote is| 1  
and   GrHBBBGx=Γ xxR    allfor nt nonnilpote is| 10 . 
Definition 2.11. 

The graded semiring R is said to be strongly graded if Rg Rh = Rgh for all g, h  G. 
Definition 2.12. 

The group G acts on the smash product R # K [G] * by (rph)g = rphg and hence it permutes 
the ideals of the semiring. We define  

Λ = {xG| for all nonnilpotent ideals of I of R # K[G] * we have Ix I nonnilpotent}; 
and for each g  G,  

Λg = {x  G| for all of I of R # K [G] *, if IpgI is nonnilpotent, then IxI nonnilpotent}. 
Definition 2.13. 

The semiring R will be called ideal-simple (or simple), if I = R, whenever I is an ideal of R 
such that I ≠ 0. Similarly, we define graded simple by taking I to be a graded ideal of R. 

The correspondence between the ideals of R and R # K [G] * is based on the following 
definitions: 
Definition 2.14. 

If I is an ideal of R and x  G we define Ix = 1xR I Rx  R. 
Since Rx is an (R, R1) –bisemimodule we see that Ix is an ideal of R1. Furthermore I1 = I, (Ix)y 

 Ixy and (IxJx)  (IJ)x. 
Remark. Let R be strongly graded semiring and I, J two ideals of R1 Then (Ix)y = Ixy, I1 = I  

and (IJ)x = Ix Jx for x, y  G. 
Definition 2.15. 

If J is an ideal of R1, we set  
(J) = RJp1R R # K [G]* 

and if I is an ideal of R R # K [G]*, we set  
(I) = {a  R1 | ap1  p1Ip1}. 

Lemma 2.16. 
With the above notation we have 
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(i) (J) = (R # K [G] *)Jp1(R # K [G] *) is an ideal of R # K [G] *; 
(ii) (I) is an ideal of R1 and (I)p1 = p1Ip1; 
(iii) (J) = J so  is one-one and  is onto the set of ideals of R1; 
(iv) If x  G with Rx 1R x  = 1R x Rx = R1, then (Jx) = (J)x. 
Proof.     First we prove that (R # K [G] *)p1 = Rp1. Now, let aph R # K [G] *, then aphp1 = 

ap1 (since pi’s are orthogonal idempotents), hence (R # K [G] *)p1Rp1 and Rp1(R # K [G] * 
)p1 is obvious. Similarly, p1(R # K [G]*) = p1R. Thus, since Jp1 = p1J = p1 Jp1, because p1 
centralizes R1, so we have 

(J) = Rp1 Jp1R = (R # K [G] * )Jp1(R # K [G] *) 
is an ideal of R # K [G] *, furthermore 

p1(R # K [G]*)p1 = p1Rp1 = R1p1  R1. 
Thus p1I p1 is an ideal of R1p1. so it follows that (I)  is an ideal of R and  

p1Ip1 = (I)p1. 
This proves parts (i) and (ii) For part third, we have  

.===)(=)( 11111111111 JppJRpRRpJpRpppJpJ   
So (J) = J. Finally, let x  G with 

Rx 1R x = 1R x  R x = R 1. 
Then for any y  G 

1yxR = 1yxR R1 = 1yxR Rx 1R x  Rx 1R x  1yxR  

So R y 1R x = 1yxR and hence 1RR x = R. Similarly, we obtain 

R x R = Rpx R = R 1R x = R. 
Now,  using px Rx = Rx p1 we have  

(Jx) =( 1R x Jx Rx) = R 1R x J Rx p1 R= (R 1R x )J px(Rx R) = RJp1R. 
But J  R1  R yields 

(J)x = [RJ p1 R]x = RJpxR = (Jx) 
Hence (iv) is proved. 

Proposition 2.17. 
Let R be a strongly G–graded semiring, then the maps  and  yield a one to one 

correspondence between the ideals of R1 and the ideals of R # K [G] * . This correspondence 
preserves inclusion, products and the action of G. 
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Proof.   We know by previous lemma that  and  are appropriate maps and that (J)=J 
for all ideals J of R1. Conversely, if I is an ideal of R # K [G] *, then  

(I) = (R # K [G] *)(I)p1(R # K [G] * )= (R # K [G] *)p1Ip1(R # K [G]*) 
and by ([7], Lemma 4.7),  

(R # K [G] *)p1Ip1(R # K [G] * )= (R # K [G] * )I(R # K [G] * )= I 
Thus  and  determines a one to one correspondence between the ideals of R1 and the 

ideals of R # K [G] *, and this correspondence is certainly inclusion preserving. Furthermore if 
I, I' are two ideals of R # K [G] *, then  

(I)(I')p1 = (I)p1I'p1 = p1Ip1I'p1 = p1I I'p1 = (II') 
by ([7], Lemma 4.7). Thus  preserves products and hence so must . Finally by above 

Lemma, the action of G is preserved. 
3. The Strong Connes Subgroup 

In order to define the strong Connes subgroup R~  of G corresponding to the semiring R 
first we define: 
Definition 3.1.  

Let R be a semiring graded by a finite group G. We define 
 .,|==~ GrLLGrRAALBHGr   

Thus the nonnilpotent members of HGr ~ are precisely the graded hereditary of R. Clearly, 
HGrGrH ~ . The following definitions and results are same as in ring theory and can be 

proved in the same way.   GyxGrLLGrRAALALGg= yxygxgR   ,and, allfor =|~
1  

and  ., nd~, allfor  =|~
10 GyxaHGrCBCBCBGg yxygxgR    

Also, we define 
 ,,|==~

  GrLLGrRAALBHGr  
 GyxGrLLGrRAALALGg= yxygxg   , and, allfor  =|~

1  
and  ., and~, allfor  =|~

10 GyxHGrCBCBCBGg= yxygxg    
Lemma 3.2. 
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R~ is a subgroup of G and .~=~
0 RRR   

Definition 3.3.  
We define 

 G geach for  and * [G]K  # R of ideal I allfor ~  IIGx= x  
and 

 * G][K  # R of ideal I' and * [G]K  # R of I idealleft  allfor )(~ '' IIpIIpGx g
x

gg   
 
 
Lemma 3.4. 

~ is a normal subgroup, each g~ is a subgroup of G and .~~ gGg    
Theorem 3.5 . 

Let R be a semiring graded by a finite group G. Then for all g  G we have gg  ~~ and 

hence .~~
gGg    

Proof.    Let g  G and ,GrRA  .GrLL Then by ([7], Lemma 4.13), gLpI = is a left 

ideal of R # K [G] * and ApI g' = is a right ideal of R # K [G] * and we have  

    .== ALpAppLpIIp gggg
'

g  
Conversely, let I be a left ideal of R # K [G] * and I’ a right ideal of R # K [G] *. Then by ([7], 
Lemma 4.13), there exist GrRA and GrLL with 

gg LpIp =  and .= ApIp g
'

g  
Thus 

ALpIxpIpIIp g
'

gg
'

g ==  

or we can say that the ideals of R # K [G] * are of the form ALpIIp g
'

g = , 

where ,GrRA .GrLL Now, if l, h, ,Gx then  
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  gmmlgmmggggmglg pALpALpALpp 1111lg1 ==   
and   .= 11111 gmmgxgggxlgmgxlg pALpALpp     
Thus by letting l, m vary we see that  

gmgxlggmglg pALpppALpp 11 )(=)(   
iff   

gmmgxgggxlgmml pALpAL 1)1()11(1 =   
implies when we vary l over G, we get      gmgxgmg pALppALp 11 =   
iff 

.= 11111 gmmgxgggxlgmml pALpAL     

This implies ALpALp gxg = , iff mgxgggxlml ALAL    111= for all ., Gml   

Since ,=)( ALpALp gx
x

g it follows from the above that gx  ~ iff  ~1gxg and hence iff 

.~
gx  Thus gg  ~=~ and Lemma 3.4, yields the result. 

Note 3.6. 
We know by Lemma 2.16, that if J is an ideal of R1, then (J)x = RJp1R is an ideal of R#K [G] * 
Furthermore  is one - one on the set of these ideals and if g  G with Rx 1R x = 1R x Rx = R1, 
then (Jx) = (J)x. 
Proposition 3.7. 

Let R~  be the strong Connes subgroup of G.  
(i) g

g
RR

R
R  ~~ = is strongly R~ –graded; 

(ii) JJ g = for all Rg ~ and all J ideal of R1; 



 

21 
 

(iii) II g = for all Rg ~ and all I ideal of R # K [G] * of the form  JI = for some J an ideal of 
R1. 
Proof.   Let Rg ~ Since ,GrHR  we have 

1.
2

1111 === RRRRRR gggggg   

It then follows that ghhg RRR = for all Rhg ~, , so (i) is proved. 

Let ,~
Rg  GrRA and .GrLL  Since L, A and R are all contained in HGr ~ , so by 

Lemma 3.2, we have 
1111111 ===  gggggg LLRLRLR and  1.111 === RRARARA ggggg   

Furthermore, 
.== 11111 ALALAL gggggg   

Thus, 
.===)( 11111111 ALALRALRAL gggg

g   

Since any ideal J of R1 is of the form L1A1, it follows that Jg = J  for all Rg ~ . Thus (ii) and 
Lemma 2.16 (iv) yields (iii). 
 
Corollary 3.8. 

Let R be a semiring graded by a finite group G with R~ the strong Connes subgroup of G. 
(i) If R is strongly graded, then 

R ~~ = {g  G|Jg = J for all J ideal of R1} 

(ii) G=~
R if and only if R is strongly G–graded and all ideals of R1 are G–stable. 

Proof.  If R is strongly graded, then by Proposition 2.17, all ideals of R # K [G] *are of the form 
(J) for some J ideal of R1. Then by Proposition 3.7(iii), we see that .~ R Now by Theorem 

3.5, gg  ~=~  Finally by [7], Lemma 4.8, we conclude that~ is the stabilizer of all ideals of R 
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since it is defined to be the stabilizer of all ideals of R # K [G] *. Thus (i) is proved. Part (ii), 
follows immediately from this and Proposition 3.7 (ii).   
Lemma 3.9.  
Let R be a semiring graded by a finite group G and R∆ its ring of differences. 

(i) If R∆ is graded simple, then R is graded simple; 
(ii) If R is graded simple and yoked, then R∆ is graded simple. 
Proof. (i) Suppose R is not graded simple and 0 ≠ I is a graded ideal of R, then there exist 0 

≠ I∆ a graded ideal of R∆ by Lemma 2.6, which is a contradiction to the fact that R∆ is graded 
simple. Hence R is graded simple. 

(ii) Suppose R∆ is not graded simple and there exist a nonzero graded ideal I ≠ 0 in R∆, then 
by Lemma 2.6, I  R is a graded ideal of R. Also by, Lemma 2.5(viii), if R is yoked, then 

(I  R)∆ = I ≠ 0 
implies I  R ≠ 0. Thus our supposition is wrong and hence R∆ is graded simple. 
Lemma 3.10. 

Let R be a graded, yoked and additively cancellative semiring and R∆ its ring of differences. 
(i) If A is an additive subgroup of R∆, then (I  R)∆ = I 
(ii)  ~~

R . 
Proof. (i)  The inclusion (I  R)∆  I is obvious. Conversely, let a – b  I. Let R be a yoked 

semiring and note that for an additively cancellative yoked semiring, either a–bR or b–a  R, 
for all a – b  R∆. Thus, either a – b  I  R or b – a  I  R. In any case a – b  (I  R)∆ 
implying I  (I  R)∆. 

(ii) Let Rg  ~  and J be an ideal of R∆. Then by Lemma 2.6, J  R is an ideal of R.  

Since A  R Gr R, L  R GrL, by definition of R~ , we get 
       yxygxg RARLRARL   =1  for all x, y  G 

By Lemma 2.7(viii)(a) we get      .=1 RARLRARL yxygxg    
Now by using Lemma 2.7(viii)(a) & (i), we have    

    .==
= 11

yxyx

ygxgygxg

ALRARL
RARLAL










  

Hence  ~~
R . 
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Theorem 3.11. 
Let R be graded semiring. Then the following are equivalent: 
(i) R # K [G] *is simple; 
(ii) R is graded simple and GR =~ ;  

(iii) R is graded simple and GR =   ;  
(iv) R is strongly G graded and 1R  is simple .  
Proof. (i)  (ii) We know if R # K [G]* is simple, then R # K [G]* is prime, so 

obviously G=~ and hence .=~ GR  Furthermore, if J ≠ 0 is a graded ideal of R, then by ([7], 
Lemma 4.13(ii)), J.(R # K [G] *) is an ideal of R # K [G] *. Thus J.(R # K [G] *)= R # K [G] *, so  

Rp1 = (R # K [G] *)p1 = J.(R # K [G] *)p1 = Jp1  and J = R. 
(ii)  (i) Since R is graded simple implies R∆ is graded simple. Also by above Lemma, we 

have R
~  GR =~  implies .=~ G Now, R∆ is graded simple implies  ][# GKR is simple 

and hence 
R ∆ ≠ K[G]∆    (R # K [G] *)∆ 

is simple. So, by Lemma 3.9, R # K [G] *is simple. 
(ii)  (iii)   By Lemma 3.9, if R is graded simple and yoked, then R∆ is graded simple. Also 

GR  ~~ implies ,=~ G  so by Corollary 3.6,[5], ∆ = G. Now, R∆ is graded simple 
implies R∆ is graded prime and ∆ = G.  This implies  

R∆ ≠ K [G]∆   (R # K [G] *)∆ 
is prime. So by Lemma 3.9, R # K [G]* is prime implies R is graded simple and R = G.   

(iii)  (iv) By Lemma 3.9, if R is graded simple and yoked, then R∆ is graded simple. Also 
by above Lemma, we have GR  ~~ implies ∆ = G, so by corollary 3.6[5] ∆ = G. Thus 
by corollary 3.6. [5] R∆ is strongly graded and (R∆)1 is simple implies(R∆)1  (R1)∆ is simple. 
Hence by Lemma R1 is simple. 

(iv)  (ii) follows in the similar manner as (ii)  (iii). 
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ABSTRACT 
Maximum distance separable (MDS) matrices play an important role in the 

designing of block ciphers and hash functions in cryptography. Circulant matrices have 
wide applications in control theory, graph theory and in solution of linear equations. We 
introduce a special type of circulant rhotrices. Using these rhotrices, we construct MDS 
rhotrices over finite fields. 
AMS classification:  15A09, 20H30, 11T71. 
Keywords: Circulant rhotrix, Irreducible polynomial, MDS rhotrix, Finite field.   
1. INTRODUCTION 

Maximum Distance separable matrices have wide range of applications in 
different areas of mathematical sciences, computer sciences and other sciences. MDS 
matrix has diffusion properties that are used in block ciphers and cryptographic hash 
functions. Several researchers have designed block ciphers such as AES[4, 6], AES-
MDS[17] and some hash functions Maelstrom[7], Grostl [8] using MDS matrices. MDS 
matrices provide security against different cryptanalysis [5, 14-16]. There are several 
methods to construct MDS matrices. Sajadieh et al.[9] and Lacan and Fimes[10] used 
Vandermonde matrices for the construction of MDS matrices while Youssef et al.[35] 
used Cauchy matrices.Guo et al. [9], Gupta and Ray [10] used companion matrices for 
the construction of MDS matrices. Sajadieh et al.[18, 19] and Wu et al. [34] proposed 
new ݀ × ݀ MDS matrices based on companion matrices for smaller values of ݀. Circulant 
matrices are also used for the construction of MDS matrices. Junod et al. [12] constructed  
new class of MDS matrices whose submatrices were circulant matrices. Gupta and Ray 
[11] constructed MDS matrices from circulant-like matrices.   

Rhotrix is a mathematical object which is in some way between 22 - 
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dimensional and 33  - dimensional matrices introduced in 2003 by Ajibade [2]. A 
rhotrix of dimension 3 is defined as 
 

              
,

5
432

1
3

a
aaa

a
R           (1.1)                                                                                                       

where 1 2 3 4 5, , , ,a a a a a are real numbers. Algebra and analysis of rhotrices is discussed in 
the literature, see [1, 3, 13, 20-33]. Sharma and Kumar [25] introduced companion rhotrix 
to construct MDS rhotrices. In the present paper, we introduce circulant rhotrix and 
special type of circulant rhotrix. Further, weconstruct MDS rhotrices using special type of 
circulant rhotrix over GF 8(2 ) . 
 
2. MAIN RESULTS 
Definition 2.1: A circulant rhotrix nR  is defined as 

                       

0
0 1

1 1 0 1
0

1 1 1
2 2 2 1

2

0
0

.
. . . . .

. . . . . . . . .
. . . . . . .

. . . . .
. . . . . .

. . . . .
. .

d
d d

d

n d d
d d
d

a
a b a

a b a b
a b

R a b b a
a b b a

a

b
a

 


 




 

(2.1) 

where , ; 1,.., ; 1,.., 1i ja b i d j d   are real numbers. It is also denoted as
0 0 1(( ,............, ),( ,............, ))d dCir a a b b  . 

For example: Circulant rhotrix of order seven can be presented as 
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0
3 0 1

2 2 0 1 2
7 1 1 3 0 1 2 3

2 2 0 1 2
3 0 1

0

.

a
a b a

a b a b a
R a b a b a b a

a b a b a
a b a

a



 

(2.2) 

 
Definition 2.2: A special type of circulant rhotrix nC  is defined as 
 

                   

0
1 0 1
1 0

0
1 1
1 2 2 1

2

0
0

1 1
1 1

. . . . .
. . . . . . . .

1 . . . . . . . 1
. . . . .

. . . . . .
. . . . .

. .

d
d

n d
d d
d

a
b

b a b
a b

a
C b b

a b b a
a

b
a





 




 (2.3) 

            
where , , ; , 1,2,.., 1i ja a b i j d   are real numbers. It is also denoted as

0 1 0 1[( , ( ,....., )), ( ,...., )]d da cir a a cir b b  . 
 

Theorem 2.3 Let ܴ଻ be a special type of circulant rhotrix and 1R  1 1( , (1, , ))a cir a a  and
2R  1(1,1 , )cir a a be defined over GF 8(2 ) , where a  is the root of irreducible 

polynomial 8 4 3 2 1a a a a    . Then  3
1R and  3

2R   form MDS rhotrix 3
7R  of order 7. 
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Proof: Let  
3
1

3 3 3
1 2 1

3 3 3 3 3
1 2 1 2 1

3 3 3 3 3 3 3 37 1 2 1 2 1 2 1
3 3 3 3 3
1 2 1 2 1

3
1

[1][1]
[2][1] [1][1] [1][2]

[3][1] [2][1] [2][2] [1][2] [1][3]
[4][1] [3][1] [3][2] [2][2] [2][3] [1][3] [1][4]

[4][2] [3][2] [3][3] [2][3] [2][4]
[4][

R
R R R

R R R R R
R R R R R R R R

R R R R R
R


3 3
2 1
3
1

3] [3][3] [3][4]
[4][4]

R R
R

 (2.4) 

 We consider 1R  1 1( , (1, , ))a cir a a   in (2.4), therefore we have 
1 1 1

1 1 1
3

1 1 1 1

1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

a a a
a a a a a aR a a a a a a

a a a a a a

  

  

  

  

                   
3 1 2 2 1 2 2 1 2 2 1

2 2 1 3 3 1 2 1 2 1

2 2 1 2 1 3 3 1 2 1

2 2 1 2 1 2 1 3 3 1

1 1 1 1
1 1
1 1
1 1

a a a a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a a
a a a a a a a a a a

       

      

      

      

                                       
 

 (2.5) 
Here,a is the root of 8 4 3 2 1a a a a    . Therefore, 1 7 3 2a a a a a     , 

2 6 2 1a a a a      and 3 7 5 3 2 1.a a a a a       This gives, 
 

3 3 1 5
1 [1][1] 1 0R a a a a       , 
3 3 3 2 2 1

1 1 1[1][2] [1][3] [1][4] 1R R R a a a       7 6 3 2 0a a a a      
3 3 3 2 2 1

1 1 1[2][1] [3][1] [4][1] 1R R R a a a       7 6 3 2 0a a a a      
3 3 3 3 3 1

1 1 1[2][2] [3][3] [4][4] 1R R R a a a       5 3 1 0a a a      
3 3 3 2 1 7 3

1 1 1[2][3] [3][4] [4][2] 0R R R a a a a a         
3 3 3 2 1 7 6 3

1 1 1[2][4] [3][2] [4][3] 1 0.R R R a a a a a           
Hence, 3

1R  is MDS. Now, 
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1 1 1

3 1 1 1
2

1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

a a a a a a
R a a a a a a

a a a a a a

  

  

  

                      
 

                 

3 3 2 2 1 2 1
2 1 3 3 2 2 1
2 1 2 1 3 3 2

1 1
1 1 .
1 1

a a a a a a a a
a a a a a a a a
a a a a a a a a

   
   

   

                        
 (2.6) 

The matrix (2.6) gives, 
3 3 3 3 3 2
2 2 2[1][1] [2][2] [3][3] 1R R R a a a      7 5 1 0a a a      
3 3 3 2 1
2 2 2[1][2] [2][3] [3][1] 1R R R a a      7 6 3 0a a a     
3 3 3 2 2
2 2 2[1][3] [3][2] [2][1] 1R R R a a     6 0.a a    

Therefore, 3
2R  is MDS. 

From (2.4)-(2.6), we obtain 
5

7 6 3 2 7 5 7 6 3 2
7 6 3 2 6 5 3 7 6 3 7 6 3 2

3 7 6 3 2 7 6 3 7 6 3 7 5 7 3 6 7 6 3 27
7 3 6 5 3 7 6 3 7 6 3

7 6 3 7 5 7

1
1

1 1
1 1

1 1

a
a a a a a a a a a a a

a a a a a a a a a a a a a a a a
R a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a
a a a a a a a

        
           

                 
          

       3
5 3

,

1
a a

a a a


  
 

which shows that 3
7R  is MDS. 

  
Theorem2.4 Let ܴ଻ be a special type of circulant rhotrix and 1R  1( , (1,1 ,1 ))a cir a a 
and 2R  1 1(1, , )cir a a a   be defined over GF 8(2 ) , where a  is the root of irreducible 
polynomial 8 4 3 2 1a a a a    . Then  3

1R   and  3
2R   form MDS rhotrix 3

7R  of order 7. 
Proof: Let 3

7R  be defined as in (2.4) and 1R  1( , (1,1 ,1 ))a cir a a   in (2.4), therefore we 
have 



30  

1 1 1
3
1 1 1 1

1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

a a a
a a a a a aR a a a a a a

a a a a a a

  

  

  

                                      
3 1 2 2 2 2 2 2

2 2 3 2 3 2 1 2 2 2 2 1

2 2 2 2 1 3 2 3 2 1 2 2

2 2 2 2 2 2 1 3 2 3 2 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

a a a a a a a a a a a a
a a a a a a a a a a a a a a
a a a a a a a a a a a a a a
a a a a a a a a a a a a a a

   

      

      

      

                                                     

 

 (2.7) 

This gives, 
 

3 3 1 7 2
1 [1][1] 1 1 0R a a a a a        , 
3 3 3 2 2

1 1 1[1][2] [1][3] [1][4] 1R R R a a a      6 0a   
3 3 3 2 2

1 1 1[2][1] [3][1] [4][1] 1R R R a a a      6 0a   
3 3 3 3 2 3 2 1

1 1 1[2][2] [3][3] [4][4] 1R R R a a a a a         
6 5 3 1 0a a a      

3 3 3 2 2 6
1 1 1[2][3] [3][4] [4][2] 1 0R R R a a a a         
3 3 3 2 1 2 7 6 3 2

1 1 1[2][4] [3][2] [4][3] 1 0.R R R a a a a a a a a a               
Hence, 3

1R  is MDS. Now, 
1 1 1 1 1 1

3 1 1 1 1 1 1
2

1 1 1 1 1 1

1 1 1
1 1 1

1 1 1

a a a a a a a a a
R a a a a a a a a a

a a a a a a a a a

     

     

     

                      
 

3 1 3 2 2 3 2 1
3 2 1 3 1 3 2 2
3 2 2 3 2 1 3 1

1
1 .

1

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

     
     
     

                        
 (2.8) 
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The matrix (2.8) gives, 
3 3 3 3 1
2 2 2[1][1] [2][2] [3][3] 1R R R a a a      7 2 1 0a a     
3 3 3 3 2 2
2 2 2[1][2] [2][3] [3][1]R R R a a a      7 6 5 3 2 0a a a a a a        
3 3 3 3 2 1
2 2 2[1][3] [3][2] [2][1]R R R a a a       6 5 2 0.a a a     

Therefore, 3
2R  is MDS. 

From (2.7) and (2.8), we obtain 
7 2

6 7 2 6
6 7 6 5 3 2 6 5 3 7 6 5 3 2 6

3 6 6 5 2 7 6 3 2 7 2 6 6 5 2 67
6 7 6 5 3 2 6 5 3 7 6 3 7 6 3 2

7 6 3 2 7 2 6
6 5 3

1
1

1
,1

1
1

1

a a
a a a a

a a a a a a a a a a a a a a a a a
R a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a
a a a a a a a a a

a a a

 
 

            
           

              
      

  

 

which shows that 3
7R  is MDS. 

 
  

Theorem 2.5 Let ܴ଻ be a special type of circulant rhotrix and 1R 
1( 1, (1, ,1 ))a cir a a a   and 2R  1(1, ,1 )cir a a  be defined over GF 8(2 ) , where a  is 

the root of irreducible polynomial 8 4 3 2 1a a a a    . Then  3
1R   and  3

2R   form MDS 
rhotrix 3

7R  of order 7. 
Proof:  Let 3

7R  be defined as in (2.4) and 1R  1( 1, (1, ,1 ))a cir a a a    in (2.4), 
therefore we have 

1 1 1
3
1 1 1 1

1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

a a a
a a a a a a a a aR a a a a a a a a a

a a a a a a a a a

  

  

  

                                   
2 3 1 2 2 1 2 2 1 2 2 1

2 2 1 2 3 1 3 2 3 2 2 1

2 2 1 3 2 2 1 2 3 1 3 2

2 2 1 3 2 3 2 2 1 2 3 1

1 1 1 1
1 1
1 1
1 1

a a a a a a a a a a a a a
a a a a a a a a a a a a a
a a a a a a a a a a a a a
a a a a a a a a a a a a a

      

      

      

      

                                                 
 (2.9) 



32  

This gives, 
 

3 2 3 1 7
1 [1][1] 1 1 0R a a a a a        , 
3 3 3 2 2 1 7 6 3 2

1 1 1[1][2] [1][3] [1][4] 1 0,R R R a a a a a a a             
3 3 3 2 2 1 7 6 3 2

1 1 1[2][1] [3][1] [4][1] 1 0,R R R a a a a a a a             
3 3 3 2 3 1 5 2

1 1 1[2][2] [3][3] [4][4] 1 0,R R R a a a a a a            
3 3 3 3 2 6 3 2

1 1 1[2][3] [3][4] [4][2] 1 0,R R R a a a a a a           
3 3 3 2 1 3 2 7 6 2

1 1 1[2][4] [3][2] [4][3] 1 0.R R R a a a a a a a             
Hence, 3

1R  is MDS. Now, 
1 1 1

3 1 1 1
2

1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

a a a a a a
R a a a a a a

a a a a a a

  

  

  

                      
 

3 3 2 1 2 2 2
2 3 3 2 1 2 2

2 2 2 3 3 2 1

1 1
1 1 .
1 1

a a a a a a a a
a a a a a a a a
a a a a a a a a

   
   

   

                        
 

 (2.10)
The matrix (2.10) gives, 

3 3 3 3 3 2 7 5
2 2 2[1][1] [2][2] [3][3] 1 0R R R a a a a a a a            
3 3 3 2 1 7 6 3
2 2 2[1][2] [2][3] [3][1] 1 0R R R a a a a a           
3 3 3 2 2 6
2 2 2[1][3] [3][2] [2][1] 1 0.R R R a a a a          

Therefore, 3
2R  is MDS. From (2.9) and (2.10), we obtain 

7
7 6 3 2 6 5 3 2 7 6 3 2

7 6 3 2 2 5 2 6 7 6 3 2
3 7 6 3 2 6 7 6 2 6 5 3 2 6 3 2 2 7 6 3 27

6 3 2 2 5 2 6 7 6 2
7 6 2 6 5 3

1

1
1 1 1

1 1 1
1

a
a a a a a a a a a a a a

a a a a a a a a a a a a a a
R a a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a
a a a a a a a


        

         
                   

          
      2 6 3 2

5 2

,

1a a a a
a a

   

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which shows that 3
7R  is MDS. 

  
Theorem 2.6 Let ܴ଻ be a special type of circulant rhotrix and 1R  2( 1, (1, , ))a cir a a a 
and 2R  2(1, ,1 )cir a a  be defined over GF 8(2 ) , where a  is the root of irreducible 
polynomial 8 4 3 2 1a a a a    . Then  3

1R   and  3
2R   form MDS rhotrix 3

7R  of order 7. 
Proof:  Let 3

7R  be defined as in (2.4) and 1R  2( 1, (1, , ))a cir a a a   in (2.4), therefore 
we have 

2 2 2
3
1 2 2 2

2 2 2

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

a a a
a a a a a a a a aR a a a a a a a a a

a a a a a a a a a

                                 

     

3 4 3 4 3 4 3

4 3 6 5 4 3 2 5 3

4 3 5 3 6 5 4 3 2

4 3 3 2 5 3 6 5 4

1 1
1 1
1 1

a a a a a a a a a a a
a a a a a a a a a a a
a a a a a a a a a a a
a a a a a a a a a a a

                                     
, (2.11) 

which clearly shows that all the entries in the matrix are non-zero.  Hence, 3
1R  is MDS. 

Now, 
2 2 2

3 2 2 2
2

2 2 2

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

a a a a a a
R a a a a a a

a a a a a a

                      
 

      

5 4 3 2 5
5 5 4 3 2
2 5 5 4 3

1 1
1 1 .
1 1

a a a a a a a a
a a a a a a a a
a a a a a a a a

                        
   (2.12)                

which clearly shows that all the entries in the matrix are non-zero. Therefore, 3
2R  is 

MDS. 
From (2.11) and (2.12), we obtain 
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3 2
4 3 5 4 3 4 3

4 3 5 6 5 4 2 4 3
3 4 3 2 5 3 5 4 3 3 2 5 4 37

3 2 5 6 5 4 2 5 3
5 3 5 4 3 3 2

6 5 4

1 1
,1 1 1 1

1 1 1 1
1 1

a a
a a a a a a a a a a

a a a a a a a a a a a a a a
R a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a
a a a a a a a a

a a a a


      

          
               

          
      

  

 

which shows that 3
7R  is MDS. 

  
Theorem 2.7 Let ܴ଻ be a special type of circulant rhotrix and 1R  1 2( , (1, ,1 ))a cir a a  
and 2R  2 1(1, , )cir a a   be defined over GF 8(2 ) , where a  is the root of irreducible 
polynomial 8 4 3 2 1a a a a    . Then  3

1R   and  3
2R   form MDS rhotrix 3

7R  of order 7. 
Proof:  Let 3

7R  be defined as in (2.4) and 1R  1 2( , (1, ,1 ))a cir a a    in (2.4), therefore we 
have 

1 1 1

2 2 2
3

1 2 2 2

2 2 2

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

a a a
a a a a a aR a a a a a a

a a a a a a

  

  

  

  

                         
2 3 2 2 3 4 2 2 3 4 2 2 3 4

2 2 3 4 3 2 1 6 2 1 2 3 4 1 2 4

2 2 3 4 1 2 4 3 2 1 6 2 1 2 3 4

2 2 3 4 2 1 2

1
1

a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a

          

           

           

    

          
                             
     3 4 1 2 4 3 2 1 61a a a a a a a a a a a      

               

  

(2.13) 
This gives, 

3 2 3 7 6 5 3
1 [1][1] 0R a a a a a a a         , 
3 3 3 2 2 3 4 5 4 2

1 1 1[1][2] [1][3] [1][4] 0,R R R a a a a a a a a              
3 3 3 2 2 3 4 5 4 2

1 1 1[2][1] [3][1] [4][1] 0,R R R a a a a a a a a              
3 3 3 3 2 1 6 7 5 4 2

1 1 1[2][2] [3][3] [4][4] 0,R R R a a a a a a a a a a               
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3 3 3 2 1 2 3 4 7 5 4 3
1 1 1[2][3] [3][4] [4][2] 1 1 0,R R R a a a a a a a a a                

 
3 3 3 4 2 1 4

1 1 1[2][4] [3][2] [4][3] 1 0.R R R a a a a a a             
Hence, 3

1R  is MDS for ݊ = 8.Now, 
2 1 2 1 2 1

3 1 2 1 2 1 2
2

2 1 2 1 2 1

1 1 1
1 1 1

1 1 1

a a a a a a
R a a a a a a

a a a a a a

     

     

     

                
 

                               

3 6 5 1
1 3 6 5
5 1 3 6

1
1 .

1

a a a a
a a a a
a a a a

   
   
   

         
   (2.14)                

The matrix (2.14) gives, 
3 3 3 3 6 7 4 3
2 2 2[1][1] [2][2] [3][3] 1 0,R R R a a a a a a            
3 3 3 5 6 5 3 2
2 2 2[1][2] [2][3] [3][1] 0,R R R a a a a a         
3 3 3 1 7 3 2
2 2 2[1][3] [3][2] [2][1] 0.R R R a a a a a         

Therefore, 3
2R  is MDS. From (2.13) and (2.14), we obtain 

7 6 5 3
5 4 2 7 4 3 5 4 2

5 4 2 7 3 2 7 5 4 2 6 5 3 2 5 4 2
3 5 4 2 6 4 7 4 3 7 5 4 3 7 3 2 5 4 27

7 5 4 3 7 3 2 7 5 4 2 6
1 1

1

a a a a
a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a
R a a a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a

  
        

               
                   

           5 3 2 4
4 7 4 3 7 5 4 3

7 5 4 2

,
1

1 1
a a a a a

a a a a a a a a a a
a a a a a

    
        

   
 
which shows that 3

7R  is MDS. 
  

 
Theorem 2.8 Let ܴ଻ be a special type of circulant rhotrix and 1R 

1 2 1( , (1,1 , ))a cir a a a a a      and 2R  1(1, , )cir a a a  be defined over GF 8(2 ) , 
where a  is the root of irreducible polynomial 8 4 3 2 1a a a a    . Then  3

1R   and  3
2R   
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form MDS rhotrix 3
7R  of order 7. 

Proof:  Let 3
7R  be defined as in (2.4) and 1R  1 2 1( , (1,1 , ))a cir a a a a a       in (2.4), 

therefore we have 
1 2 1 1 2 1 1 2 1

3
1 1 1 2 1 1 2 1 1 2

1 2 1 1 2 1 1 2

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

a a a
a a a a a a a a a a a a a a aR a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a

        

        

        

                                              1 1

      
2 3 2 1 4 2 1 4 2 1 4

2 1 4 3 2 5 6 3 2 1 5 3 2 2 3 4

2 1 4 3 2 2 3 4 3 2 5 6 3 2 1 5

2 1 4 3 2 1 5 3

1 1 1
1 1 1
1 1 1
1 1

a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a

      

         

         

   

         
                                 
       2 2 3 4 3 2 5 61a a a a a a a a a a     

               
 
 (2.15) 
This gives, 

3 2 3 6 3 2
1 [1][1] 1 0,R a a a a a a        , 
3 3 3 2 1 4 6 4

1 1 1[1][2] [1][3] [1][4] 1 1 0,R R R a a a a a a             
3 3 3 2 1 4 6 4

1 1 1[2][1] [3][1] [4][1] 1 1 0,R R R a a a a a a             
3 3 3 3 2 5 6 4 2

1 1 1[2][2] [3][3] [4][4] 1 0,R R R a a a a a a a a               
3 3 3 3 2 1 5 7 6 5 3 2

1 1 1[2][3] [3][4] [4][2] 1 1 0,R R R a a a a a a a a a a               
3 3 3 3 2 3 4 2 5 3 2

1 1 1[2][4] [3][2] [4][3] 0.R R R a a a a a a a a a               
Hence, 3

1R  is MDS for ݊ = 8.Now, 
1 1 1

3 1 1 1
2

1 1 1

1 1 1
1 1 1

1 1 1

a a a a a a a a a
R a a a a a a a a a

a a a a a a a a a

  

  

  

                      
 

       

1 3 3 2 2 3 2
3 2 1 3 3 2 2

3 2 2 3 2 1 3

1
1 .

1

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

  
  

  

                        
  (2.16)                

 The matrix (2.16) gives, 
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3 3 3 1 3 5
2 2 2[1][1] [2][2] [3][3] 1 1 0,R R R a a a a           
3 3 3 3 2 2 6 3
2 2 2[1][2] [2][3] [3][1] 1 0,R R R a a a a a a           
3 3 3 3 2
2 2 2[1][3] [3][2] [2][1] 0.R R R a a a       

Therefore, 3
2R  is MDS. From (2.15) and (2.16), we obtain 

6 3 2
6 4 5 6 4

6 4 3 2 7 5 4 2 6 3 6 4
3 6 4 6 3 5 3 2 5 7 6 5 3 2 3 2 6 47

7 6 5 3 2 3 2 7 5 4 2 6 3 5

1
1 1 1

1 1 1
1 1 1 1 1

1 1

a a a a
a a a a a a a

a a a a a a a a a a a a a a a a a
R a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a

   
      

              
                    

                3 2
5 3 2 5 7 6 5 3 2

7 5 4 2

,

1 1
a

a a a a a a a a a a
a a a a a


        

   

 

which shows that 3
7R  is MDS. 

  
Theorem 2.9 Let ܴଽ be a special type of circulant rhotrix and                                                       

1R  1 2( , (1, , , ))a cir a a a and 2R  1(1, , ,1 )cir a a a   be defined over GF 8(2 ) , where a  is 
the root of irreducible polynomial 8 4 3 2 1a a a a    . Then  3

1R   and  3
2R   form MDS 

rhotrix 3
9R  of order 9. 

 
Proof: Let 3

9R  be defined as 
3
1

3 3 3
1 2 1

3 3 3 3 3
1 2 1 2 1

3 3 3 3 3 3 3
1 2 1 2 1 2 1

3 3 3 3 3 3 3
9 1 2 1 2 1 2

[1][1]
[2][1] [1][1] [1][2]

[3][1] [2][1] [2][2] [1][2] [1][3]
[4][1] [3][1] [3][2] [2][2] [2][3] [1][3] [1][4]

[5][1] [4][1] [4][2] [3][2] [3][3] [2][

R
R R R

R R R R R
R R R R R R R

R R R R R R R 3 3 3
1 2 1

3 3 3 3 3 3 3
1 2 1 2 1 2 1

3 3 3 3 3
1 2 1 2 1

3 3 3
1 2 1

5
1

3] [2][4] [1][4] [1][5]
[5][2] [4][2] [4][3] [3][3] [3][4] [2][4] [2][5]

[5][3] [4][3] [4][4] [3][4] [3][5]
[5][4] [4][4] [4][5]

[5][5]

R R R
R R R R R R R

R R R R R
R R R

R

 (2.17) 

and 1R 1 2( , (1, , , ))a cir a a a , then 
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1 2 1 2 1 2
3 2 1 2 1 2 1
1

1 2 1 2 1 2
1 2 1 2 1 2

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

a a a
a a a a a a a a a

R a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

  
  

  
  

                         

 

 
3 4 3 2 2 4 3 2 2 4 3 2 2 4 3 2 2

4 3 2 2 2 6 4 1 4 2 3 1 5 3 2
4 3 2 2 5 3 2 2 6 4 1 4 2 3 1
4 3 2 2 4 2 3 1 5 3 2

1 1
1 1

a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a

   
    
    
  

           
              

               
           2 6 4 1

4 3 2 2 6 4 1 4 2 3 1 5 3 2 2

.
1 1

1 1
a a a a

a a a a a a a a a a a a a a a a a a
 

    

                            

 

 (2.18) 
From (2.18), we get 

3 3
1 [1][1] 0,R a  , 
3 3 3 3 4 3 2 2 6 4 3

1 1 1 1[1][2] [1][3] [1][4] [1][5] 1 0,R R R R a a a a a a a a            
 

3 3 3 3 4 3 2 2 6 4 3
1 1 1 1[2][1] [3][1] [4][1] [5][1] 1 0,R R R R a a a a a a a a            

 
3 3 3 3 2 6 2

1 1 1 1[2][2] [3][3] [4][4] [5][5] 1 0,R R R R a a a a          
3 3 3 3 6 4 1 7 6 4 3 2

1 1 1 1[2][3] [3][4] [4][5] [5][2] 0,R R R R a a a a a a a a a            
3 3 3 3 4 2 3 1 5 4 2

1 1 1 1[2][4] [3][5] [4][2] [5][3] 1 0,R R R R a a a a a a a a             
3 3 3 3 5 3 2

1 1 1 1[2][5] [3][2] [4][3] [5][4] 1 0.R R R R a a a a          
Therefore, 3

1R is MDS. Now, 
1 1 1

1 1 1
3
2 1 1 1

1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

a a a a a a a a a
a a a a a a a a aR a a a a a a a a a
a a a a a a a a a

  
  

  
  

                           
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2 1 1 3 1 2 1
2 1 2 1 1 3 1

3 1 2 1 2 1 1
1 3 1 2 1 2 1

1 1 1
1 1 1

1 1 1
1 1 1

a a a a a a a
a a a a a a a

a a a a a a a
a a a a a a a

      
      

      
      

                             

(2.19) 

 From (2.19), we get 
3 3 3 3 2 1 7 6 3
2 2 2 2[1][1] [2][2] [3][3] [4][4] 1 0,R R R R a a a a a            
3 3 3 3 1 7 3 2
2 2 2 2[1][2] [2][3] [3][4] [4][1] 1 1 0,R R R R a a a a a            
3 3 3 3 3 1 5
2 2 2 2[1][3] [3][1] [2][4] [4][2] 1 0,R R R R a a a a           
3 3 3 3 2 1 7 6 3
2 2 2 2[1][4] [2][1] [3][2] [4][3] 1 0.R R R R a a a a a            

Therefore, 3
2R is MDS. The matrices (2.18) and (2.19) shows that the rhotrix (2.17) is an 

MDS rhotrix.  
 
Theorem 2.10 Let ܴଽ be a special type of circulantrhotrix and  1R 

1( 1, (1, , , 1))a cir a a a  and 2R  2( ,1, 1, )cir a a a  be defined over GF 8(2 ) , where a  is 
the root of irreducible polynomial 8 4 3 2 1a a a a    . Then  3

1R   and  3
2R   form MDS 

rhotrix 3
9R  of order 9. 

 
Proof: Let 3

9R  be defined as in (2.17) and 1R 1( 1, (1, , , 1))a cir a a a   , then 

1 1 1
3 1 1 1
1

1 1 1
1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

a a a
a a a a a a a a a

R a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

  
  

  
  

                                   
 
 



40  

3 2 2 1 2 2 1 2 2 1 2 2 1
2 2 1 2 1 1 3 1 2 1
2 2 1 2 1 2 1 1 3 1
2 2 1 3 1 2 1 2 1 1
2 2 1 1 3 1

( 1)a a a a a a a a a a a a a
a a a a a a a a a a a a a a
a a a a a a a a a a a a a a
a a a a a a a a a a a a a a
a a a a a a a a a a

       
        
        
        
    

        
        

         
        
      2 1 2 1

.

a a a a   

            

(2.20) 

 From (2.20), we get 
3 3 2

1 [1][1] 1 0,R a a a      
3 3 3 3 2 2 1 7 6 3 2

1 1 1 1[1][2] [1][3] [1][4] [1][5] 1 0,R R R R a a a a a a a            
 

3 3 3 3 2 2 1 7 6 3 2
1 1 1 1[2][1] [3][1] [4][1] [5][1] 1 0,R R R R a a a a a a a            

 
3 3 3 3 2 1 7 6 3

1 1 1 1[2][2] [3][3] [4][4] [5][5] 1 0,R R R R a a a a a a a            
 

3 3 3 3 1 7 3 2
1 1 1 1[2][3] [3][4] [4][5] [5][2] 0,R R R R a a a a a        
3 3 3 3 3 1 5

1 1 1 1[2][4] [3][5] [4][2] [5][3] 1 0,R R R R a a a a         
3 3 3 3 2 1 7 6 3

1 1 1 1[2][5] [3][2] [4][3] [5][4] 1 0.R R R R a a a a a a a            
 
Therefore, 3

1R is MDS. Now,   
2 2 2

2 2 2
3
2 2 2 2

2 2 2

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

a a a a a a a a a
a a a a a a a a aR a a a a a a a a a

a a a a a a a a a

                           

 

 
5 4 6 2 5 4 2
4 2 5 4 6 2 5

5 4 2 5 4 6 2
6 2 5 4 2 5 4

1 1 1 1
1 1 1 1 .1 1 1 1
1 1 1 1

a a a a a a a
a a a a a a a

a a a a a a a
a a a a a a a

                                 

(2.21) 

 From (2.21), we get 
3 3 3 3 5 4
2 2 2 2[1][1] [2][2] [3][3] [4][4] 1 0,R R R R a a        
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3 3 3 3 6 2
2 2 2 2[1][2] [2][3] [3][4] [4][1] 1 0,R R R R a a        
3 3 3 3 5
2 2 2 2[1][3] [3][1] [2][4] [4][2] 1 0,R R R R a       
3 3 3 3 4 2
2 2 2 2[1][4] [2][1] [3][2] [4][3] 1 0.R R R R a a        

Therefore, 3
2R  is MDS. The matrices (2.20) and (2.21) shows that the rhotrix (2.17) is an 

MDS rhotrix.  
 
3. CONCLUSION 

We introduced circulant and special form of circulant rhotrices.We constructed 
MDS rhotrices using special form of circulant rhotrices with entries using the elements ܽ, ܽ + 1, ܽଶ, ܽିଵ where ܽ is the root of the constructing irreducible polynomial

8 4 3 2 1a a a a     over GF 8(2 ) . 
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ABSTRACT 

Cryptography has a significant role in the present scenario of information. It 
provides security and integrity to the messages which travel over the insecure channels, 
and authenticity to the communicating parties. Hill cipher is a symmetric cryptosystem 
that is used to protect information or data. We propose an algorithm which enhance the 
security of the Hill cipher by using matrices and irreducible polynomials over finite 
fields. 
AMS classification:  11T71, 94A60. 
Keywords: Plain text; Cipher text; Irreducible polynomial; Finite field.  
1 INTRODUCTION 

Information security has become a very critical aspect of modern computing 
systems. Cryptography is the science which provides confidentiality, authenticity and 
integrity of information passing through insecure channels,see [10,11]. Although the 
ultimate goal of cryptography is to hide information from unauthorized individuals. Most 
algorithms can be broken and the information can be revealed if the attacker has enough 
time, desire, and resources. As a result researchers are using new techniques from 
different areas of mathematics like matrix analysis, finite fields [6, 23-26] etc. for the 
security of data during transmission. There are similar structures to matrices which are 
known as rhotrices. Such structures came into existence in the literature since 2003. 
Various researchers have used these rhotrices to develop their structures and apply the 
same  in the field of cryptography, see [12-19]. 

Hill Cipher is an application of linear algebra to cryptography. The Hill Cipher is 
classical symmetric cipher invented by Lester S. Hill in 1929 [3] and extension of this 
work is in [4]. The main advantages of Hill cipher includes its frequency analysis, high 
speed, high throughput and the simplicity because it uses matrix operations but it 
succumbs to the known plaintext attack [5]. Hill cipher is modified by several authors. 
Saeednia [7] uses the dynamic key matrix while Chefranov [2] uses a pseudo-random 
permutation generator. Ismail et al. [5] give an initial vector to form a different key for 
each block  encryption. Adi et al. [1] modify the Hill cipher using circulant matrices. 
Shastry et al. [8, 9] use the key on both sides of the plain text to modify Hill cipher. 
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Sharma and Rehan [20, 21] modify Hill cipher using logical operator. Sharma and 
Sharma [22] modify Hill cipher using elements of finite field. We give an algorithm  
along with illustration which involves the encryption and decryption of plaintext by using 
irreducible polynomials over finite field (2)ܨܩ. In the proposed cipher, we use the 
following matrices and the irreducible polynomial. 
Vandermonde matrix : A matrix ܸ(ܽଵ, ܽଶ, … , ܽ௠) of order ݉ × ݊ having terms in each 
row with a geometric progression is called Vandermonde matrix and is written as  

ܸ =
ێۏ
ێێ
ۍێ
1 ܽଵ ܽଵଶ … ܽଵ௡ିଵ
1 ܽଶ ܽଶଶ … ܽଶ௡ିଵ
1 ܽଷ ܽଷଶ … ܽଷ௡ିଵ
⋮ ⋮ ⋮ ⋱ ⋮1 ܽ௠ ܽ௠ଶ … ܽ௠௡ିଵۑے

ۑۑ
 .ېۑ

Coefficient matrix: Let ܣ be a ݊ × ݊ matrix, then the coefficient matrix is defined as 
,(1 ݓ݋ݎ)ܿݎ൫ܿ݅ܿݎ݅ܿ ,(2 ݓ݋ݎ)ܿݎ݅ܿ … , ,൯(݊ݓ݋ݎ)ܿݎ݅ܿ where1 ݓ݋ݎ, ,2 ݓ݋ݎ … . ,  are ݊ݓ݋ݎ
rows of matrix ܣ and ܿ݅(1 ݓ݋ݎ)ܿݎis the circulant matrix of row 1. It is denoted by ܣ௖ . 
Example: If ܣ be a2 × 2 matrix, then its coefficient matrix ܣ௖ is 4 × 4. 

ܣ = ቂ݃ଵ ݃ଶ݃ଷ ݃ସቃ, 

௖ܣ = ൦
݃ଵ ݃ଶ ݃ଷ ݃ସ݃ଶ ݃ଵ ݃ସ ݃ଷ݃ଷ ݃ସ ݃ଵ ݃ଶ݃ସ ݃ଷ ݃ଶ ݃ଵ

൪. 

Representation of elements in finite fields: 
There are number of different representations for the elements of finite fields such 

as polynomial, binary and decimal. 
Example: The following table shows different representations for the elements of ܨܩ(2ଷ) with respect to the irreducible polynomial ݂(ݔ) = ଷݔ + ݔ  + 1. Let the element ߙ 
be a root of the irreducible polynomial ݂(ݔ), therefore, ݂(ߙ) = 0. This gives, ߙଷ = ߙ  +1, which is used to reduce the higher power of ߙ. 
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Powers 
of ࢻ 

Polynomial 
representation 

Binary Decimal 

0 0 0 0 0 0 
 ଴ 1 0 0 1 1ߙ
 2 0 1 0 ߙ ଵߙ
 ଶ 1 0 0 4ߙ ଶߙ
ߙ ଷߙ + 1 0 1 1 3 
ଶߙ ସߙ +  6 0 1 1 ߙ
ଶߙ ହߙ + ߙ + 1 1 1 1 7 
ଶߙ ଺ߙ + 1 1 0 1 5 

Table-I 
2 ALGORITHM OF THE PROPOSED CIPHER In the proposed algorithm, we use the elements of finite field in binary, polynomial 
form and also use irreducible polynomials over Galois field ܨܩ(2௠). 

ENCRYPTION: 
1. Sender consider a ݊ × ݊Vander monde matrix S as secret key. 
2. He chooses a ݊ × ݊  non singular matrix A as public key such that det(ܣ௖) = 0. 
3. Sender calculates key ܭଵ =  is an irreducible polynomial of ݌ where ,(݌ ݀݋݉)ଵିܵܣܵ

degree ݉ over finite field (2)ܨܩ. 
4. The sender converts the plaintext into numerical values by using Table –II(given on 

page 4).  
5. He then converts the numerical values into binary strings of ݉-bits. 
6. Further, he converts ݉-bits binary strings into polynomial form. 
7. Sender calculates ܵଵ =  ௠ andݔ Each entry of ܵଵ is multiplied witℎ .(݌ ݀݋݉)ܯଵܭ

sender calculates ܭଶ,whose entries are 0 if ݔ has the power less than2௠ − 1otherwise 1 
and shares it with the receiver. 

8. He then reduces the powers of the entries to ݉2) ݀݋௠ − 1) and gets the matrix ܵଷ.  
9. After writing it into binary form, he converts the same in numerical values and then in 

text to get the final cipher text ܵସ. 
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DECRYPTION : 
 1. Receiver receives the message. He convert the message into numerical values by using 

the Table – II(given on page 4). 
2. Receiver then converts the numerical values into binary string of ݉ -bits. 
3. Then receiver converts the binary strings into the elements of ܨܩ(2௠) to get ܵଷ. 
4. He then multiplies each entry of ܵଷ with ݔଶ೘ିଵ which represents 1 in the matrix ܭଶ. 
5. Receiver multiplies each entry with  ିݔ௠ to obtain ܵଵ. 
6. Sender calculate key ܭଵି ଵ =  is an irreducible polynomial ݌ where ,(݌ ݀݋݉)ଵܵିଵିܣܵ

of degree ݉ over finite field (2)ܨܩ. 
7. H calculates ܯ = ଵିܭ ଵܵ1(݉݌݀݋). 
8. Then he converts the entries into binary strings to get ଵܲ. 
9. Then the receiver converts the entries of ଵܲ into numerical values. After writing it into 

numerical values, he converts the same into text to get plaintext. 
Numerical values for alphabets and some symbols used in the paper 
[ ] A B C D E F G H I J K L M N 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
O P Q R S T U V W X Y Z     
17 18 19 20 21 22 23 24 25 26 27 28     

Table-II 
3 ILLUSTRATION OF THE CIPHER   Let us consider the following plain text which is to be sent over an insecure 
channel is [CD]. Further, we consider the irreducible polynomial ݔଷ + ݔ + 1 with ߙ as its 
root and finite field ܨܩ(2ଷ). 

 
ENCRYPTION: 
Step 1. Sender considers the 2× 2 Vandermonde matrix S. 

S=  ൤1 ଶݔ + 11 ଶݔ + ଶݔ ൨, whereݔ + 1, ଶݔ + ݔ ∈  .(2ଷ)ܨܩ
Step 2. Select a 2× 2 non singular matrix A whose elements are from ܨܩ(2ଷ) as public 
key. 

 
                                                   A=  ቂ ݔ ݔ + ଶݔ1 ଶݔ + 1ቃ. 

Step 3. Calculate the key 
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ଵ = SAܵିଵ    =   ൤1ܭ ଶݔ + 11 ଶݔ + ൨ݔ ቂ ݔ ݔ + ଶݔ1 ଶݔ + 1ቃ ൤ ݔ ଷݔ
ଶݔ + ݔ ଶݔ + ൨ݔ ଷݔ݀݋݉) + ݔ + 1). 

 =    ൤ݔଶ + 1 ଶݔ + ଶݔ1 + 1 ݔ ൨. 
Step 4. Sender converts the plaintext [CD]into numerical values using Table -II as 
follows 

ܲ  =    ቂ1 56 2ቃ. 
Step 5. He converts the above numerical values into binary string 3-bits and therefore ܲ 
becomes 

ଵܲ=   ቂ001 101110 010ቃ. 
Step 6. Sender further converts the 3-bits binary string  into polynomial form and 
therefore ଵܲ gives 

൤    = ܯ 1 ଶݔ + ଶݔ1 + ݔ ݔ ൨. 
Step 7. He calculatesܵଵ = ܭଵ ܯ =  ൤ݔଶ + 1 ଶݔ + ଶݔ1 + 1 ݔ ൨ ൤ 1 ଶݔ + ଶݔ1 + ݔ ݔ ൨ ଷݔ݀݋݉) + ݔ + 1) 

  =   ൤ݔଶ + ݔ ଶݔ + ݔݔ ݔ + 1 ൨ 
Using Table-I, we get 

ܵଵ  =  ቂݔସ ସݔ
଼ݔ  .ଷቃݔ

In order to make the exponent of maximum entries of ܵଵas 7 = (2ଷ − 1), we multiply each 
entry by ݔଷ. Therefore, ܵଵbecomes 

ܵଶ= ቂ ଻ݔ ଻ݔ
ଵଵݔ  .଺ቃݔ

and the key matrix 
ଶ = ቂ1ܭ 11 0ቃ 

is chosen in such a way that if power of ݔ in ܵଶ is less than 7, the entry in the key matrix 
is taken 0 otherwise 1. 
Step 8. The powers of elements of ܵଶ are reduced by mod 7 and hence it becomes 
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ܵଷ= ቂݔ଴ ଴ݔ
ସݔ  .଺ቃݔ

Step 9.The elements of cipher text matrix  ܵଷ are converted into the binary elements as 
follows  

 ܵସ=   ቂ001 001110 101ቃ. 
The entries of ܵସ are converted into numerical values as follows 

 ܵହ=   ቂ1 16 5ቃ. 
Further, numerical values are converted into Cipher text  =[[DC. 
The cipher text is sent to the receiver through public channel. 
DECRYPTION: 
Step 1.Receiver receives the message. He converts the message into numerical values by 
using Table -II, which gives 

 ܵହ=   ቂ1 16 5ቃ. 
Step 2. He converts the numerical values into binary strings of 3-bits as follows  

  ܵସ=   ቂ001 001110 101ቃ. 
Step 3. Further, he converts binary strings into the elements of ܨܩ(2ଷ), so  ܵସ becomes 

ܵଷ= ቂݔ଴ ଴ݔ
ସݔ  .଺ቃݔ

Step 4. Receiver multiplies only those entries of  ܵଷ by ݔ଻, which represents 1 in the 
matrix ܭଶ. 

ܵଶ= ቂ ଻ݔ ଻ݔ
ଵଵݔ  .଺ቃݔ

Step 5. He multiplies each entry of  ܵଶ with ିݔଷ and obtain 
ܵଵ = ൤4ݔ 4ݔ

8ݔ  3൨ݔ
Further, ܵଵ൫݉3ݔ݀݋ + ݔ + 1൯ can be written as  

ܵଵ = ൤2ݔ + ݔ 2ݔ + ݔݔ ݔ + 1 ൨. 
Step 6. Calculate the key ܭଵି ଵ =  =  ଵܵିଵିܣܵ
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൤1 ଶݔ + 11 ଶݔ + ൨ݔ ൤ ଶݔ ଶݔ + ଶݔ1 + ݔ + 1 ଶݔ + 1൨ ൤ ݔ ଷݔ
ଶݔ + ݔ ଶݔ + ൨ݔ ݀݋݉) ଷ + ݔ + 1) 

                                                                                 =    ቂݔଶ + ݔ ଶݔ
ଶݔ  .ଶቃݔ

Step 7. The receiver calculates ܭଵି ଵܵ1(݉ݔ݀݋ଷ + ݔ + 1). 
ଵିܭ ଵܵ1   = ቂݔଶ + ݔ ଶݔ

ଶݔ ଶቃݔ ൤ݔଶ + ݔ ଶݔ + ݔݔ ݔ + 1 ൨ ଷݔ݀݋݉) + ݔ + 1) 
        = ൤ 1 ଶݔ + ଶݔ1 + ݔ ݔ ൨. 
Step 8. Receiver converts the message into binary strings, which gives 

ଵܲ=   ቂ001 101110 010ቃ. 
Step 9. He converts the binary strings  into numerical values as follows 

ܲ  =    ቂ1 56 2ቃ. 
Receiver converts the digits in text by using Table -II and the plain text [CD]is obtained. 
4 CONCLUSION 
 The proposed cipher is the enhanced form of the Hill cipher. With the addition of 
Vandermonde matrix and modulo irreducible polynomials, the cipher has increased its 
security. The introduced mechanism in the cipher has created difficulty to the hackers to 
break the system and retrieve the original message from the cipher text. 
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Abstract  
The present paper mathematically establishes that ‘the principle of the exchange of 
stabilities’ for rotatory hydrodynamic triply diffusive convection in porous medium is 
valid in the regime ோభఙ

ଶఛభమగర + ோమఙ
ଶఛమమగర + ܶ ଵܲଶ ≤ 1,  where ܴଵ and ܴଶ are the Rayleigh numbers 

for the two concentration components, T is the Taylor number, ଵܲ is a constant, ߬ଵ and ߬ଶ 
are the Lewis numbers for the two concentration components and ߪ is the thermal Prandtl 
number. It is further proved that the above result is uniformly valid for any combination 
of rigid and free boundaries. 
Keywords: Triply diffusive convection; Principle of the exchange of stabilities; Concentration 
Rayleigh number; Taylor number; Porous medium; Darcy Model 
1. Introduction 
Research on convective fluid motion in porous media under the simultaneous action of a uniform 
vertical temperature gradient and a gravitationally opposite uniform vertical concentration 
gradient (known as double diffusive convection) has been an area of great activity due to its 
importance in the predication of ground water movement in aquifers, in assessing the 
effectiveness of fibrous materials, in engineering geology and in nuclear engineering. Most of the 
researchers have studied double diffusive convection in porous medium by considering the Darcy 
flow model which is relevant to densely packed, low permeability porous medium. Double 
diffusive convection is now well known. For a broad view of the subject one may be referred to 
Nield and Bezan [10], Murray and Chen [9], Nield [11], Taunton et al. [21], Kuznetsov and Nield 
[6], Vafai [26] and Kellner and Tilgner [5].   

All these researchers have considered double diffusive convection. However, it has been 
recognized later that there are many fluid systems, in which more than two components are 
present. The oceans contain many salts having concentrations less than a few percent of the 
sodium chloride concentration. Multi-component concentrations can also be found in magmas 
and substratum of water reservoirs. The subject with more than two components (in porous and 
non porous medium) has attracted the attention of many researchers Griffiths [2, 3], Poulikakos 
[14], Pearlstein et al. [12], Terrones and Pearlstein [22], Rudraiah and Vortmeyer [16], Lopez et 
al. [7], Tracey [23, 24], Straughan and Tracey [19], and Rionero [15]. The essence of the works 
of these researchers is that small salinity of a third component with a smaller mass diffusivity can 
have a significant effect upon the nature of convection; and ‘oscillatory’ and direct ‘salt finger’ 
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modes are simultaneous possible under a wide range of conditions, when the density gradients 
due to components with greatest and smallest diffusivity are of same signs.  

Double or triply diffusive convection in a rotating fluid layer saturating a porous medium is 
an interesting topic due to its applications in chemical process industry, food processing industry, 
solidification and centrifugal costing of metals and rotating machinery, petroleum industry, 
geophysics and biomechanics. Several studies are available in which phenomena related to the 
onset of single diffusive (Benard Problem) and double diffusive convection in a rotating porous 
medium have been investigated. For a detailed review of the subject one may be referred to 
Vadasz [25], Nield and Bezan [10], Tagare et al. [20], Sengupta and Gupta [18], Malashetty and 
Begum [8]. To the authors knowledge no such significant work has been done so far in rotatory 
hydrodynamic triply diffusive convection in porous medium. 

The establishment of the non occurrence of any slow oscillatory motions which may be 
neutral or unstable implies the validity of the principle of the exchange of stabilities (PES). The 
validity of this principle in stability problems eliminates the unsteady terms from the linearized 
perturbation equations which results in notable mathematical simplicity since the transition from 
stability to instability occurs via a marginal state which is characterized by the vanishing of both 
real and imaginary parts of the complex time eigen value associated with the perturbation. Pellew 
and Southwell [13] proved the validity of PES (i.e. occurrence of stationary convection) for the 
classical Rayleigh-Benard instability problem. However no such results existed for other more 
general hydrodynamic configurations. Banerjee et al. [1] established such a criterion for 
magnetohydrodynamic Rayleigh-Benard convection problem which has further been extended by 
Gupta et al. [4] for thermohaline convection problems. 

The aim of the present paper is to establish criteria for characterizing non oscillatory motions 
which may be neutral or unstable for rotatory hydrodynamic triply diffusive configuration in 
porous medium. It is proved that for rotatory hydrodynamic triply diffusive convection in porous 
medium, if ோభఙ

ଶఛభమగర + ோమఙ
ଶఛమమగర + ܶ ଵܲଶ ≤ 1, then an arbitrary neutral or unstable mode of the system is 

definitely non oscillatory in character and in particular PES is valid where  ܴଵ and ܴଶ are 
concentration Rayleigh numbers for the two concentration components, T is the Taylor number, ߬ଵ and ߬ଶ are the Lewis numbers for the two concentrations, ߪ is the Prandtl number. It is further 
proved that the above result is uniformly valid for all the combinations of rigid and free 
boundaries. 
2. Mathematical Formulation of the Problem 
 An infinite horizontal porous layer filled with a viscous and Boussinesq fluid, statically confined 
between two horizontal boundaries ݖ = 0 and ݖ = ݀, respectively maintained at uniform constant 
temperatures ଴ܶ and ଵܶ (< ଴ܶ) and uniform concentrations ܵଵ଴ ,  ܵଶ଴ and ܵଵଵ(< ܵଵ଴),  ܵଶଵ(< ܵଶ଴) 
is kept rotating at a constant rate ߗሬԦ about the vertical (as shown in fig. 1). It is further assumed 
that the cross-diffusion effects of the stratifying agencies can be neglected. The Darcy model has 
been used to investigate the triply diffusive convection in porous medium. 
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The equations that govern the motion of triply diffusive fluid layer in a porous medium 
(Darcy Model) under the action of a uniform vertical rotation, in the non-dimensional 
form, are as follows (Wankat and Schowalter [27], Vafai [26]): 
ቀ௣

ఙ + ଵ
௉భቁ ଶܦ) − ܽଶ)ݓ = −ܴܽଶߠ + ܴଵܽଶ߶ଵ+ܴଶܽଶ߶ଶ −  (1)                                ,ߞܦܶ

ଶܦ) − ܽଶ − ߠ(݌ܣ =  (2)                          ,ݓ−
ቀܦଶ − ܽଶ − ௣

ఛభቁ ߶ଵ = − ௪
ఛభ,                                     (3) 

ቀܦଶ − ܽଶ − ௣
ఛమቁ ߶ଶ = − ௪

ఛమ,                                     (4) 
and ቀ௣

ఙ + ଵ
௉భቁ ߞ =  (5)                                      .ݓܦ

Eqs. (1) - (5) are to be solved using the following boundary conditions: 
ݓ = 0 = ߠ = ߶ଵ = ߶ଶ = ݓଶܦ = ݖ at ߞܦ = 0 and ݖ = 1,                      (6) 
(Both the boundaries are dynamically free) 
Or ݓ = 0 = ߠ = ߶ଵ = ߶ଶ = ݓܦ = ݖ at ߞ = 0 and ݖ = 1,                                 (7) 
(Both the boundaries are rigid) 
ݓ = 0 = ߠ = ߶ଵ = ߶ଶ = ݓଶܦ = ݖ at ߞܦ = 0,                        (8) 
(lower boundary is dynamically free) 
and ݓ = 0 = ߠ = ߶ଵ = ߶ଶ = ݓܦ = ݖ at ߞ = 1,                       (9) 
(upper boundary is rigid) 
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 ݔ  
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)

ܵଶଵ 
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o 

Fig.  1. Physical Configuration 
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Eqs. (1) – (5) together with the boundary conditions (6) – (9) present an eigen value 
problem for ݌ for the given values of the other parameters and govern rotatory triply 
diffusive convection in a porous medium. 
 The meaning of the symbols involved in Eqs. (1)-(9) from the physical point of 
view are as follows : ݖ is the vertical coordinate, ܦ is the differentiation w.r.t. ݖ , ܽଶ is 
square of the wave number, ߪ > 0 is the Prandtl number, ߬ଵ > 0 and ߬ଶ > 0 are the 
Lewis numbers for the two concentration components with mass diffusivity ߢଵ,  ଶߢ
respectively, ܴ > 0 is the thermal Rayleigh number, ܴଵ > 0 and ܴଶ > 0 are the two 
concentration Rayleigh numbers, ܶ > 0 is Taylor number, ݌ = ௥݌  +  ௜ is the complex݌ ݅
growth rate where ݌௥ and ݌௜ are real constants, ݓ is the vertical velocity, ߠ is the 
temperature and ߶ଵ and ߶ଶ  are the two concentrations. The governing equations also 
involve two more positive constants namely ଵܲ = ௞భ

ఢௗమ  and ܣ =  1 +  ఘೞబ௖ೞబ
ఘబ௖బ

ଵିఢ
ఢ , where  ݇ଵ 

is the permeability, ߳ is the porosity of the medium, ݀ is the depth of the fluid layer, ߩ௦బis 
the solid density, ܿ௦బ is the heat capacity of the solid. The suffix ‘0’ denotes the values of 
various parameters involved in the governing equations at some properly chosen mean 
temperature ଴ܶ . 
       We prove the following theorem: 
Theorem: If (ݓ, ,ߠ ߶ଵ, ߶ଶ, ,݌ ,(ߞ ௥݌ ≥ 0 is a solution of equations (1) – (9) with ܴ > 0, 
ܴଵ > 0, ܴଶ > 0, ܶ > 0 and ோభఙ

ଶఛభమగర + ோమఙ
ଶఛమమగర + ܶ ଵܲଶ ≤ 1, then ݌௜ = 0. In particular ݌௥ = 0 

implies ݌௜ = 0, if ோభఙ
ଶఛభమగర + ோమఙ

ଶఛమమగర + ܶ ଵܲଶ ≤ 1. 
Proof: Multiplying Eq. (1) by ݓ∗ (the complex conjugate of ݓ) and integrating the 
resulting equation over the vertical range of z, we obtain 
ቀ௣

ఙ + ଵ
௉భቁ ׬ ଶܦ)∗ݓ − ܽଶ)ݖ݀ݓ =ଵ

଴ − ܴܽଶ ׬ ݖ݀ ߠ∗ݓ +ଵ
଴ ܴଵܽଶ ׬ ଵݖ݀ ଵ߶∗ݓ

଴ +  
ܴଶܽଶ ׬ ݖ݀ ଶ߶∗ݓ − ܶ ׬ ଵݖ݀ ߞܦ∗ݓ

଴ .ଵ
଴                                   (10) 

Making use of Eqs. (2) – (5) and the fact that (0)ݓ = 0 =  we can write ,(1)ݓ
−ܴܽଶ ׬ ݖ݀ ߠ∗ݓ =ଵ

଴ R ܽଶ ׬ ଶܦ) ߠ − ܽଶ − ଵݖ݀ ∗θ(∗݌ܣ
଴ ,                                          (11) 

ܴଵܽଶ ׬ ݖ݀ ଵ߶∗ݓ =ଵ
଴ − ܴଵܽଶ߬ଵ ׬ ߶ଵ ቀܦଶ − ܽଶ − ௣∗

ఛభቁ ߶ଵ∗ ݀ݖ,ଵ
଴                    (12) 

ܴଶܽଶ ׬ ݖ݀ ଶ߶∗ݓ =ଵ
଴ −ܴଶܽଶ߬ଶ ׬ ߶ଶ (ܦଶ − ܽଶ − ௣∗

ఛమ)߶ଶ∗ ݀ݖଵ
଴ ,                                         (13) 

−ܶ ׬ ଵݖ݀ ߞܦ∗ݓ
଴ = ܶ ቀ௣∗

ఙ + ଵ
௉భቁ ׬ ଵݖ݀ ଶ|ߞ|

଴ .                                            (14) 
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Combining Eqs. (10) – (14), we get  
ቀ௣

ఙ + ଵ
௉భቁ ׬ ଶܦ)∗ݓ − ܽଶ)ݖ݀ݓ = Rଵ

଴ ܽଶ ׬ ଶܦ) ߠ − ܽଶ − ଵݖ݀ ∗θ(∗݌ܣ
଴ − ܴଵܽଶ߬ଵ  

׬ ߶ଵ ቀܦଶ − ܽଶ − ௣∗
ఛభቁ ߶ଵ∗ ݀ݖ−ܴଶܽଶ߬ଶ ׬ ߶ଶ (ܦଶ − ܽଶ − ௣∗

ఛమ)߶ଶ∗ ݀ݖଵ
଴

ଵ
଴   

+ܶ ቀ௣∗
ఙ + ଵ

௉భቁ ׬ ଵ.ݖ݀ ଶ|ߞ|
଴                                    (15) 

Integrating the various terms of Eq. (15), by parts, for an appropriate number of times 
and utilizing the boundary conditions (6) - (9), we obtain 
ቀ௣

ఙ + ଵ
௉భቁ ׬ ଶ|ݓܦ|) + ܽଶ|ݓ|ଶ)݀ݖ =ଵ

଴ ܴ ܽଶ ׬ ଶ|ߠܦ|) + ܽଶ|ߠ|ଶ + ݖ݀(ଶ|ߠ|∗݌ܣ −ଵ
଴

ܴଵܽଶ߬ଵ ׬ ቀ|ܦ߶ଵ|ଶ + ܽଶ|߶ଵ|ଶ + ௣∗
ఛభ |߶ଵ|ଶቁ ݖ݀ − ܴଶܽଶ߬ଶଵ

଴ ׬ ቀ|ܦ߶ଶ|ଶ + ܽଶ|߶ଶ|ଶ +ଵ
଴

௣∗
ఛమ |߶ଶ|ଶቁ ݖ݀ − ܶ ቀ௣∗

ఙ + ଵ
௉భቁ ׬ ଵ.ݖ݀ ଶ|ߞ|

଴  (16)              
Equating the imaginary parts of both sides of Eq. (16) and cancelling ݌௜ (≠ 0) 
throughout from the resulting equation, we have 
ଵ
ఙ ׬ ଶ|ݓܦ|) + ܽଶ|ݓ|ଶ)݀ݖ = −ଵ

଴ ଶܽܣܴ ׬ ݖଶ݀|ߠ| +ଵ
଴ ܴଵܽଶ ׬ |߶ଵ|ଶ݀ݖଵ

଴ + ܴଶܽଶ ׬ |߶ଶ|ଶ݀ݖଵ
଴   

+ ்
ఙ ׬ ଵ.ݖ݀ ଶ|ߞ|

଴   (17) 
Now, multiplying equation (3) by its complex conjugate, we obtain 
׬ ቀܦଶ − ܽଶ − ௣

ఛభቁ ߶ଵ ቀܦଶ − ܽଶ − ௣∗
ఛభቁ ߶ଵ∗݀ݖଵ

଴ = ଵ
ఛభమ ׬ ଵݖଶ݀|ݓ|

଴ .   (18) 
Integrating the various terms on the left hand side of equation (18), by parts, for an 
appropriate number of times and making use of the boundary conditions on ߶ଵ, it 
follows that  
׬ ଶ߶ଵ|ଶܦ|) + 2ܽଶ|ܦ߶ଵ|ଶ + ܽସ|߶ଵ|ଶ)݀ݖଵ

଴ + ଶ௣ೝ
ఛభ ׬ ଵ|ଶ߶ܦ|) + ܽଶ|߶ଵ|ଶ)݀ݖଵ

଴ +
|௣|మ
ఛభమ ׬ |߶ଵ|ଶଵ

଴ ݖ݀ = ଵ
ఛభమ ׬ ଶଵ|ݓ|

଴                                                                                           (19)                                                                                     .ݖ݀
Since ݌௥ ≥ 0, it follows from equation (19), that 
2ܽଶ ׬ ଵݖଵ|ଶ݀߶ܦ|

଴ < ଵ
ఛభమ ׬ ଶଵ|ݓ|

଴  (20)                                                                                 .ݖ݀
Now, since ߶ଵ, ߶ଶ and ݓ satisfy the boundary conditions, namely, ߶ଵ(0) = 0 = ߶ଵ(1),  ߶ଶ(0) = 0 = ߶ଶ(1), (0)ݓ = 0 =  respectively, we have by Rayleigh-Ritz (1)ݓ
inequality (Schultz [17]) 
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׬ ଵݖଵ|ଶ݀߶ܦ|
଴ ≥ ଶߨ ׬ |߶ଵ|ଶ݀ݖ,ଵ

଴                                                                                       (21) 
׬ ଵݖଶ|ଶ݀߶ܦ|

଴ ≥ ଶߨ ׬ |߶ଶ|ଶ݀ݖଵ
଴ ,                                                                     (22) 

and  
׬ ଵݖଶ݀|ݓܦ|

଴ ≥ ଶߨ ׬ ଵ.ݖଶ݀|ݓ|
଴                                                                                          (23) 

Utilizing inequalities (21) and (23) in inequality (20), we get 
ܽଶ ׬ |߶ଵ|ଶ݀ݖଵ

଴ ≤ ଵ
ଶఛభమగర ׬ ଵݖଶ݀|ݓܦ|

଴ .                                                                               (24) 
In the same manner, we obtain from equation (4), the inequality 
ܽଶ ׬ |߶ଶ|ଶ݀ݖଵ

଴ ≤ ଵ
ଶఛమమగర ׬ ଵ.ݖଶ݀|ݓܦ|

଴                                                                                (25) 
Multiplying Eq. (5) by ߞ∗ on both sides and equating real parts on both sides, we obtain 
௣ೝ
ఙ ׬ ݖ݀ ଶ|ߞ| + ଵ

௉భ
ଵ

଴ ׬ ݖ݀ ଶ|ߞ| = real part of ቀ׬ ଵݓܦ∗ߞ
଴ ቁଵݖ݀

଴   
≤ ቚ׬ ଵݖ݀ݓܦ∗ߞ

଴ ቚ ≤ ׬ ଵݖ݀|ݓܦ∗ߞ|
଴   

≤ ቀ׬ ଵݖଶ݀|ݓܦ|
଴ ቁଵ/ଶ ቀ׬ ଵݖଶ݀|ߞ|

଴ ቁଵ/ଶ,              (using Schwartz inequality) 
which implies that             
ଵ

௉భ ቀ׬ ଵݖଶ݀|ߞ|
଴ ቁଵ/ଶ ≤ ቀ׬ ଵݖଶ݀|ݓܦ|

଴ ቁଵ/ଶ,                                                                          (26)  
which implies 
׬ ଵݖଶ݀|ߞ|

଴ ≤ ଵܲଶ ׬ ଵݖଶ݀|ݓܦ|
଴ .                                                                                          (27)              

Using inequalities (24), (25) and (27) in equation (17), we get 
ቂଵ

ఙ − ቀ ோభ
ଶఛభమగర + ோమ

ଶఛమమగర + ்௉భమ
ఙ ቁቃ ׬ ݖଶ݀|ݓܦ| + ௔మ

ఙ ׬ ଵݖଶ݀|ݓ|
଴ + ଵܣܴ

଴ ܽଶ ׬ ଵݖଶ݀|ߠ|
଴ < 0,        (28) 

which clearly implies (for ݌௜ ≠ 0) that 
ோభఙ

ଶఛభమగర + ோమఙ
ଶఛమమగర + ܶ ଵܲଶ > 1.                                                      

(29) 
Hence if ோభఙ

ଶఛభమగర + ோమఙ
ଶఛమమగర + ܶ ଵܲଶ ≤ 1, then we must have ݌௜ = 0. 

This establishes the desired result. 
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The essential content of the theorem from the physical point of view is that for the 
problem of rotatory hydrodynamic triply diffusive convection in a porous medium of an 
arbitrary neutral or unstable mode of the system is definitely non oscillatory in character 
if  ோభఙ

ଶఛభమగర + ோమఙ
ଶఛమమగర + ܶ ଵܲଶ ≤ 1 and in particular PES is valid if  ோభఙ

ଶఛభమగర + ோమఙ
ଶఛమమగర + ܶ ଵܲଶ ≤ 1. 
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ABSTRACT 
Quantum effects on the Rayleigh-Taylor Instability in an inhomogeneous stratified 
incompressible, viscoelastic Walters' (model B') fluid/plasma in hydromagnetics are 
investigated. The linear growth rate is derived for the case where a plasma with 
exponential density, viscosity, viscoelasticity and quantum parameter distribution is 
confined between two rigid planes at ݖ = 0, ݖ = ݀.  The solution of the linearized 
equations of the system together with the boundary conditions leads to derive the 
dispersion relation (the relation between the normalized growth rate and square 
normalized behaviour wave number) using normal mode technique to explain the roles 
that play the variables of the problem. The behaviour of growth rates with respect to the 
quantum effect and kinematic viscoelasticity are examined in the presence of kinematic 
viscosity. The results show that the vertical magnetic field brings about more stability for 
a certain wave number band on the growth rate of unstable configuration.  
 
1. Introduction 
The Rayleigh-Taylor instability is an important hydrodynamic effect that arises when a 
heavy fluid is accelerated into a lighter one. Similar to pouring water into oil, the heavier 
fluid, once perturbed, streams to the bottom, pushing the light fluid aside. Chandrasekhar 
(1961) has given a detailed account of these investigations. A good account of such 
hydrodynamic stability problems has also been given by Drazin and Reid (1981) and 
Joseph (1976). This class of fluids is mainly used to analyze the frequency of gravity 
waves in deep oceans, liquid vapour/globe, to extract oil from the earth to eliminate water 
drops, laser etc. Quantum plasma can be composed of electrons, ions, positrons, holes 
and or grains. 
Quantum plasmas play an important role in ultra small electronic devices which has been 
given by Dutta and McLennan (1990), dense astrophysical plasmas system has been 
given by Madappa et al. (2001), intense laser-matter experiments has been investigated 
by Remington et al. (1999) and non-linear quantum optics has been given by Brambilla et 
al. (1995). It is well known that quantum effects become important in the behaviour of 
the charged plasma particles when the de-Broglie wavelength of the charged carriers 
become equal to or greater than the dimension of the quantum plasma system has been 
investigated by Kaushal (2001). It should be observed that there is a difference between a 
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light-wave and the de Broglie or Schrodinger wave associated with the light-quanta. 
Firstly, the light-wave is always real, while the de Broglie wave associated with a light-
quantum moving in a definite direction must be taken to involve an imaginary 
exponential. 
While naturally occurring plasma is relatively unusual on earth, it is playing a larger and 
increasingly important role in how we use and develop modern technology. For instance, 
producing compact chips on an industrial scale is only made possible by the application 
of plasma. Plasma is also a key technology in the development of alternative energy 
sources. Nuclear fusion, which is plasma based, is one of the most promising candidates 
for the energy needs of the future when fossil fuels finally run out. Plasma is increasingly 
becoming part of the industrial area and its range of application is vast. The different 
variables of plasma play important role in the general behaviour of the considerable 
model. The pressure one of the variables, that is divided to two terms  p pC pQ   
(classical  pC  and quantum  pQ  pressure) has been investigated by Gardner and 
Haas (1994, 2005). In the momentum equation the classical pressure rises in the form  
p , while the quantum pressure rises in the form ࡽ = h మ

ଶ௠೐௠೔ ∇ߩ ൬∇మඥఘ
ඥ஡ ൰  , where h  is 

the Plank constant,  em   is the mass of electron and  im   is the mass of ion. One of the 
important model that rises in hydrodynamic plasma, is called the Rayleigh-Taylor 
instability problem and has been investigated by Lord Rayleigh (1882) and G. I. Taylor 
(1950). 
Two models are used to study quantum plasma systems. The first one is the Wigner-
Poisson and the other is the Schrodinger-Poisson approaches. These have been widely 
used to describe the statistical and hydrodynamic behaviour of the plasma particles at 
quantum scale in quantum plasmas. The quantum hydrodynamic model was introduced 
by Gardner (1994) for  semiconductor physics to describe the transport of charge, 
momentum and energy in plasmas. Several studies were analysed both analytically and 
numerically in plasma with quantum corrections. For example Haas et al. (2000) studied 
a quantum multi-stream model for one and two stream plasma instabilities. Bengt 
Eliasson et al. (2010) and by employing the Wigner-Poisson model, they studied the 
dispersion properties of electrostatic oscillations in quantum plasmas for different 
parameters ranging from semiconductor plasmas to typical metallic electron densities and 
densities corresponding to compressed matter and dense astrophysical objects. 
The linear quantum growth rate of a finite layer plasma in which the density is 
continuously stratified exponentially along the vertical is studied by Goldston and 
Rutherford (1997). The effect of the quantum term on Rayleigh-Taylor instability of 
stratified plasma layer through a porous medium is studied by Hoshoudy (2009). 
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The fluids have been considered to be Newtonian in all the above studies. With the 
growing importance of the non-Newtonian fluids in modern technology and industries, 
the investigations of such fluids are desirable. There are many elastico-viscous fluids.  
But we are interested in Walters' (model B'). Walters' (1960) has proposed a theoretical 
model for such elastico-viscous fluid. Molten plastics, petroleum oil additives and 
whipped cream are examples of incompressible viscoelastic fluids. The mixture of 
polymethyl methacrylate and pyridine at  025 C   containing 30.5 grams of polymer per 
litre behaves very nearly as the Walters' (model B') viscoelastic fluid and which is 
proposed by Walters' (1962). Previous work on the effects of incompressible quantum 
plasma on Rayleigh-Taylor instability of Oldroyd model through a porous medium has 
been investigated by Hoshoudy (2011), where the author has shown that both maximum  
k max   and critical  k c   points for the instability are unchanged by the addition of the 
strain retardation and the stress relaxation. All growth rates are reduced in the presence of 
porosity of the medium, the medium permeability, the strain retardation time and the 
stress relaxation time. Sunil et al. (2004) have investigated theoretically and analytically 
the stability of stratified Walters’ (model ܤᇱ ) viscoelastic fluid in stratified porous 
medium. Sharma et al. (2014) have studied the numerical investigations of a stability of 
stratified viscoelastic Walters’ (model Bᇱ ) fluid/plasma in the presence of quantum 
physics saturating a porous medium. This paper aims at numerical analysis of the effect 
of the quantum mechanism on Rayleigh-Taylor instability for a finite thickness layer of 
incompressible viscoelastic plasma. An ideal incompressible magnetized plasma 
described by the Quantum magnetohydrodynamics (QMHD) model, where in the 
Rayleigh-Taylor instability by ignoring shear flow or ablation effects, has been studied in 
quantum magnetized viscous plasma by Hoshoudy (2011a). External magnetic field 
effects on the Rayleigh-Taylor instability in an inhomogeneous rotating quantum plasma 
has been studied by Hoshoudy (2012). Later on, Hoshoudy (2013) has investigated 
quantum effects on Rayleigh-Taylor instability of a Plasma-Vacuum. Recently, Rayleigh-
Taylor instability in a magnetized plasma has been investigated by Hoshoudy (2014). 
The effect of incompressible quantum plasma on Rayleigh-Taylor instability of Oldroyd 
model through a porous medium has been investigated by Hoshoudy (2011b), in which it 
has been shown that both maximum and critical  wave numbers for the instability are 
unchanged due to the strain-retardation and the stress-relaxation. This paper is devoted to 
examine the stability of a stratified viscoelastic Walters′  (model B′ ) fluid in 
hydromagnetics in the presence of quantum physics and is an extension of the research 
work by Hoshoudy (2010) on the quantum effects on Rayleigh-Taylor instability of 
incompressible  plasma in a vertical magnetic field and it has been found that the 
presence of vertical magnetic field beside the quantum effect has brought more stability 
on the growth rate of unstable configuration.  
2. Mathematical formulation of the problem and perturbation equations 
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The initial stationary state whose stability we wish to examine is that of an infinitely 
electrically conducting incompressible, heterogeneous infinitely extending viscoelastic 
Walters’ (model Bᇱ) fluid/plasma of thickness ݀ bounded by the rigid planes ݖ = 0 and ݖ = ݀, of variable density, kinematic viscosity, kinematic viscoelasticity, magnetic field 
and quantum pressure arranged in horizontal strata of electrons and immobile ions in a 
homogeneous, saturated porous medium with the Oberbeck-Boussinesq approximation 
for density variation, so that the free surfaces are almost horizontal. The fluid is acted on 
by gravity force ࢍሺ0, 0, −݃ሻ and the plasma is immersed in a uniform vertical magnetic 
field  ࡴሺ0, 0,    .ሻܪ
The equations of motion, continuity, condition of incompressibility, Gauss divergence 
equation and magnetic induction equations are [Chandrasekhar (1961), Walters’ (1960), 
Hoshoudy (2009)] 
ߩ ቂ డ

డ௧ + ሺ∇. ሻቃ࢛ ࢛ = ݌∇− + ࢍߩ + ఓ೐
ସగ ሺ∇ × ሻࡴ × ࡴ + ቀߤ − ′ߤ డ

డ௧ቁ ∇ଶ࢛ +  (1)   ,ࡽ
∇. ࢛ = 0, (2) 
డఘ
డ௧ + ሺ࢛. ∇ሻߩ = 0, (3) 
∇. ࡴ = 0 (4) 
డࡴ
డ௧ = ∇ × ሺ࢛ ×  ሻ,  (5)ࡴ
where ࢛, ,ߩ ,݌ ,ߤ ,′ߤ  ݇ଵ, ௘ߤ  , ,ࡴ  ,represent fluid velocity, density, pressure, viscosity ࡽ
viscoelasticity, medium permeability, magnetic permeability, magnetic field and Bohr 
vector potential, respectively. Equation (3) ensures that the density of every particle 
remains unchanged as we follow it with its motion. 
The equilibrium profiles are expressed in the form 
࢛ = ሺ0,0,0ሻ, ߩ = ,ሻݖ଴ሺߩ ݌ = ,ሻݖ଴ሺ݌ ࡴ = ࡽ  ሻ  andݖ଴ሺܪ =  ሻ.  (6)ݖ଴ሺࡽ
To investigate the stability of hydromagnetic motion, it is necessary to see how the 
motion responds to a small fluctuation in the value of any flow of the variables. 
Infinitesimal perturbations are superimposed on the steady state and let ࢛ሺݑ, ,ݒ ,ሻݓ ,ߩߜ
,݌ߜ ൫ℎ௫ ࢎ , ℎ௬ , ℎ௭൯, ,൫ܳ௫ଵ ࡽߜ  ܳ௬ଵ,  ܳ௭ଵ൯ denote respectively, infinitesimally small 
perturbations in fluid velocity ࢛ ሺ0, 0, 0ሻ, density ߩ, pressure  ݌, magnetic field ࡴ and 
quantum pressure ࡽ. 
Using these perturbations and linear theory, equations (1) - (5) in the linearized 
perturbation form become 
଴ߩ డ࢛

డ௧ = ݌ߜ∇− + ߩߜࢍ + ఓ೐
ସగ ሾሺ∇ × ૙ሻࡴ × ࢎ + ሺ∇ × ሻࢎ × ૙ሿࡴ + ቀߤ − ′ߤ ߲

ቁݐ߲ ࢛2∇ +  , ࡽߜ
 (7) 
∇. ࢛ = 0,  (8) 
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డ
డ௧ ߩߜ + ݓ ௗఘబ

ௗ௭ = 0,  (9) 
∇. ࢎ = 0,  (10) 
డࢎ
డ௧ = ∇ × ሺ࢛ ×  ૙ሻ,  (11)ࡴ
where   
ࡽߜ =

௛෡మ
ଶ௠೐௠೔ ቂଵ

ଶ ∇ሺ∇ଶߩߜሻ − ଵ
ଶఘబ ଴ߩଶ∇ߩߜ∇ − ଵ

ଶఘబ ߩߜ଴∇ଶߩ∇ + ఋఘ
ଶఘబమ ଴ߩ଴∇ଶߩ∇ − ଵ

ଶఘబ ∇ሺ∇ߩ଴∇ߩߜሻ +
ఋఘ

ସఘబమ ∇ሺ∇ߩ଴ሻଶ + ଵ
ଶఘబమ

ሺ∇ߩ଴ሻଶ∇ߩߜ + ଵ
ఘబమ

ሺ∇ߩ଴∇ߩߜሻ∇ߩ଴ − ఋఘ
ఘబయ

ሺ∇ߩ଴ሻଷቃ.  
Since the boundaries are assumed to be rigid. Therefore the boundary conditions 
appropriate to the problem are 
ݓ = 0, ݓܦ = 0  at  ݖ = 0 and ݖ = ݀, on a rigid surface.  (12) 
All the physical perturbed quantities are ascribed describing the perturbation dependence 
on  ݔ,  of the forms  ݐ  and  ݕ
݂ሺݖሻ ݁݌ݔ ݅൫݇௫ݔ + ݇௬ݕ −  ൯,  (13)ݐ݊
Now, using the expression (13), the equations (7)-( 11) reduce to 
ݑ଴ߩ݊݅− = −݅݇௫݌ߜ + ఓ೐

ସగ ቂܪ଴ሺݖሻ ቀడ௛ೣ
డ௭ − ݅݇௫ℎ௭ቁ + ℎ௫ డுబሺ௭ሻ

డ௭ ቃ + ሼߤ + ଶܦሽሺ′ߤ ݊݅ − ݇ଶሻݑ +
തܳ௫ଵ ,  (14) 
ݒ଴ߩ݊݅− = −݅݇௬݌ߜ + ఓ೐

ସగ ቂܪ଴ሺݖሻ ቀడ௛೤
డ௭ − ݅݇௬ℎ௭ቁ + ℎ௬ డுబሺ௭ሻ

డ௭ ቃ + ሼߤ + ଶܦሽሺ′ߤ ݊݅ − ݇ଶሻݒ +
തܳ௬ଵ ,  (15) 
ݓ଴ߩ݊݅− = ݌ߜܦ− − ߩߜ݃ + ሼߤ + ଶܦሽሺ′ߤ݊݅ − ݇ଶሻݓ + തܳ௭ଵ,  (16) 
݅݇௫ݑ + ݅݇௬ݒ + ݓܦ = 0,  (17) 
ߩߜ ݊݅  =  ଴,  (18)ߩܦݓ
݅݇௫ℎ௫ + ݅݇௬ℎ௬ + ℎ௭ܦ = 0,  (19) 
− ݅݊ ℎ௫ =  (20)  , ݑܦܪ
− ݅݊ ℎ௬ =  (21)  , ݒܦܪ
− ݅݊ ℎ௭ =  (22)  , ݓܦܪ
where 
തܳ௫ଵ = ௛෡మ

ଶ௡௠೐௠೔ ቂଵ
ଶ ݓଶܦ଴ߩܦ + ቄܦଶߩ଴ − ଵ

ଶఘబ ሺܦଶߩ଴ሻଶቅ ݓܦ + ቄଵ
ଶ ଴ߩଷܦ − ଵ

ఘబ ଴ߩଶܦ଴ߩܦ −
௞మ
ଶ ଴ߩܦ + ଵ

ଶఘబమ
ሺߩܦ଴ሻଷቅ ቃ,  തܳ௬ଵݓ = ௞೤

௞ೣ
തܳ௫ଵ,  
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തܳ௭ଵ = ௛෡మ
ଶ௡௠೐௠೔ ቂଵ

ଶ ݓଷܦ଴ߩܦ + ቄଷ
ଶ ଴ߩଶܦ − ଵ

ఘబ ሺܦଶߩ଴ሻଶቅ ݓଶܦ + ቄଵ
ଶ ଴ߩଷܦ − ଵ

ఘబ ଴ߩଶܦ଴ߩܦ −
௞మ
ଶ ଴ߩܦ + ଷ

ଶఘబమ
ሺߩܦ଴ሻଷቅ ଶ݇ݓܦ + ଵ

ଶ ଴ߩସܦ − ଵ
ఘబ ଴ߩଷܦ଴ߩܦ − ௞మ

ଶ ଴ߩଶܦ − ଵ
ఘబ ሺܦଶߩ଴ሻଶ +

ହ
ଶఘబమ

ሺߩܦ଴ሻଶܦଶߩ଴ + ௞మ
ଶఘబ ሺߩܦ଴ሻଶ − ଵ

ఘబమ
ሺߩܦ଴ሻସቃ.  (22a) 

Multiplying equation (14) by −݅݇௫  and equation (15) by −݅݇௬ , adding and using 
equations (17), (19) – (22), we obtain 
ݓܦ݊ߩ = ݅݇ଶ݌ߜ + ݇௫ തܳ௫ଵ + ݇௬ തܳ௬ଵ − ఓ೐ுమ

ସగ௡ ሺܦଶ − ݇ଶሻݓܦ + ݅ሺߤ + ଶܦᇱ݅ ݊ሻሺߤ − ݇ଶሻݓܦ. 
  (23) 
Multiplying equation (14) by −݅݇௬ and equation (15) by  ݅݇௫, adding and using equation 
(17), (19) – (22), we obtain 
ߦ݊ߩ = −݇௫ തܳ௬ଵ + ݇௬ തܳ௫ଵ − ఓ೐ுమ

ସగ௡ ߦଶܦ + ݅ሺߤ + ଶܦᇱ݅݊ሻሺߤ − ݇ଶሻ(24)  ,ߦ 
where  ߦ = ݅݇௫ݒ − ݅݇௬ݑ is the ݖ-component of vorticity, 
Since  ݇௫ തܳ௬ଵ = ݇௬ തܳ௫ଵ, therefore, equation (24) implies that ߦ = 0. 
Eliminating  ߩߜ,  and  തܳ௭ଵ from the equations (22a), (16) and (23) the characteristic ݌ߜ
equation in  ݓ obtained is 
ሾߩ଴݇ଶሼ−݅݊ − ሺߥ + ߥ ′݅݊ሻሺܦଶ − ݇ଶሻሽሿݓ − ሾ−݅݊ − ሺߥ + ߥ ′݅݊ሻሺܦଶ − ݇ଶሻሿሺߩܦ଴ሻݓܦ +
ఓ೐
ସగ ቂ4ܪ଴ሺݖሻܦଶܪ଴ሺݖሻ + 4൫ܪܦ଴ሺݖሻ൯ଶ − ݇ଶ൫ܪ଴ଶሺݖሻ൯ቃ ݓଶܦ − ݊݅−଴ሾߩ − ሺߥ + ߥ ′݅݊ሻሺܦଶ −
݇ଶሻሿܦଶݓ + ఓ೐

ସగ ሾܪ଴ሺݖሻܦଷܪ଴ሺݖሻ + ሻݖ଴ሺܪଶܦሻݖ଴ሺܪܦ3 − 2݇ଶܪ଴ሺݖሻܪܦ଴ሺݖሻሿݓܦ +
ఓ೐
ସగ ቂ൫ܪ଴ሺݖሻ൯ଶܦସݓ + ቃݓଷܦሻݖ଴ሺܪܦሻݖ଴ሺܪ5 + ௚௞మ

௜௡ ሺߩܦ଴ሻݓ + ௞మ
௜௡ ቀ ௛෡మ

ସ௠೐௠೔ቁ ቂ ଵ
ఘబ ሺߩܦ଴ሻଶܦଶݓ −

ଵ
ఘబమ

ሺߩܦ଴ሻሼሺߩܦ଴ሻଶ − ݓܦ଴ሽߩଶܦ଴ߩ2 − ௞మ
ఘబ ሺߩܦ଴ሻଶݓቃ = 0.  (25) 

3. The case of exponentially varying stratifications 
Now the case of incompressible continuously stratified viscoelastic plasma layer is 
considered in a porous medium in which the density, viscosity, viscoelasticity and 
quantum pressure are assumed to vary exponentially about the vertical and are given by  
ሻݖ଴ሺߩ = ݌ݔ଴ሺ0ሻ݁ߩ ቀ ௭

௅ವቁ , ሻݖ଴ሺߤ   = ݌ݔ଴ሺ0ሻ݁ߤ ቀ ௭
௅ವቁ , ଴ᇱߤ ሺݖሻ = ଴ᇱߤ ሺ0ሻ݁݌ݔ ቀ ௭

௅ವቁ,   
ሻݖ଴ሺܪ      = ݌ݔ଴ሺ0ሻ݁ܪ ቀ ௭

ଶ௅ವቁ ,   ݊௤బሺݖሻ = ݊௤బሺ0ሻ݁݌ݔ ቀ ௭
௅ವቁ ,  (26) 

where  ߩ଴ሺ0ሻ, ,଴ሺ0ሻߤ  ଴ᇱߤ  ሺ0ሻ, ,଴ሺ0ሻܪ   ݊௤బሺ0ሻ   and ܮ஽ are constants. 
Using the stratifications given by expression (26), the characteristic equation (25) yields 
that 
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஺ܸଶ ቂܦସݓ + ଶ
௅ವ ቃݓଷܦ + ൤݅݊ሼ−݅݊ − ሺߥ + ߥ ′݅݊ሻሺܦଶ − ݇ଶሻሽ − ݊௤ଶ + ஺ܸଶ ቀ ହ

ସ௅ವమ
−

݇ଶቁቃ ݓଶܦ + ଵ
௅ವ ൤݅݊ሼ−݅݊ − ሺߥ + ߥ ′݅݊ሻሺܦଶ − ݇ଶሻሽ − ݊௤ଶ + ஺ܸଶ ቀ ଵ

ଶ௅ವమ
− ݇ଶቁ൨ ݓܦ −

݇ଶ ቂ݅݊ሼ−݅݊ − ሺߥ + ߥ ′݅݊ሻሺܦଶ − ݇ଶሻሽ − ݊௤ଶ + ௚
௅ವቃ ݓ = 0,  (27) 

where  ݊௤ଶ = ௛෡మ௞మ
ସ௠೐௠೔௅ವమ

,   ஺ܸଶ = ఓ೐ቀுబమሺ௭ሻቁ
ସగ   represent quantum pressure and the square of the 

Alfv݁́n velocity, respectively. 
Differentiating w.r.t. ݖ and using equation (17) the boundary conditions (12) yields that 

ݓଶܦ = 0 at  ݖ = 0 and ݖ = ݀. (28) 
The exact solutions of the eigen-value problem (25) satisfying the boundary conditions 
(28) are chosen to be 
ݓ  = ݊݅ݏ ቀ௡′గ

ௗ ቁݖ  .are positive integers ߣ ሻ, where ݊′ andݖߣሺ݌ݔ݁
 Using this solution the equation (24), yields that 
  ஺ܸଶ ൤ቀ௡ᇲగ

ௗ ቁସ ݊݅ݏ ቀ௡ᇲగ
ௗ ቁݖ − ߣ4 ቀ௡ᇲగ

ௗ ቁଷ ݏ݋ܿ ቀ௡ᇲగ
ௗ ቁݖ − ଶߣ6 ቀ௡ᇲగ

ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ
ௗ ቁݖ +

ଷߣ3 ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁݖ + ݊݅ݏସߣ ቀ௡ᇲగ
ௗ ቁݖ +

ଶ
௅ವ ൜− ቀ௡ᇲగ

ௗ ቁଷ ݏ݋ܿ ቀ௡ᇲగ
ௗ ቁݖ − ߣ2 ቀ௡ᇲగ

ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ
ௗ ቁݖ + ଶߣ2 ቀ௡ᇲగ

ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ
ௗ ቁݖ +

ߣ ቀ௡ᇲగ
ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ

ௗ ቁݖ + ଶߣ ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁݖ + ݊݅ݏଷߣ ቀ௡ᇲగ
ௗ ቁቅ൨ݖ + ൤݅݊ሺ−݅݊ሻ − ݊௤ଶ +

஺ܸଶ ቀ ହ
ସ௅ವమ

− ݇ଶቁቃ ൤− ቀ௡ᇲగ
ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ

ௗ ቁݖ + ߣ2 ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁ൨ݖ −
݅݊ሺߥ + ߥ ′݅݊ሻ ൤ቀ௡ᇲగ

ௗ ቁସ ݊݅ݏ ቀ௡ᇲగ
ௗ ቁݖ − ߣ4 ቀ௡ᇲగ

ௗ ቁଷ ݏ݋ܿ ቀ௡ᇲగ
ௗ ቁݖ − ଶߣ6 ቀ௡ᇲగ

ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ
ௗ ቁݖ +

ଷߣ3 ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁݖ + ݊݅ݏସߣ ቀ௡ᇲగ
ௗ ቁቃݖ + ݅݊ሺߥ + ߥ ′݅݊ሻ݇ଶ ൤− ቀ௡ᇲగ

ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ
ௗ ቁݖ +

ߣ2 ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁቃݖ + ଵ
௅ವ ൤݅݊ሺ−݅݊ሻ − ݊௤ଶ + ஺ܸଶ ቀ ଵ

ଶ௅ವమ
− ݇ଶቁ൨ ቂቀ௡ᇲగ

௛ ቁ ݏ݋ܿ ቀ௡ᇲగ
ௗ ቁݖ +

݊݅ݏߣ ቀ௡ᇲగ
ௗ ቁቃݖ − ݅݊ሺߥ + ߥ ′݅݊ሻ ൜− ቀ௡ᇲగ

ௗ ቁଷ ݏ݋ܿ ቀ௡ᇲగ
ௗ ቁݖ − ߣ2 ቀ௡ᇲగ

ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ
ௗ ቁݖ +

ଶߣ2 ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁݖ + ߣ ቀ௡ᇲగ
ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ

ௗ ቁݖ + ଶߣ ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁݖ + ݊݅ݏଷߣ ቀ௡ᇲగ
ௗ ቁቅݖ +

݅݊ሺߥ + ߥ ′݅݊ሻ݇ଶ ቂቀ௡ᇲగ
௛ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁݖ + ݊݅ݏߣ ቀ௡ᇲగ
ௗ ቁቃݖ − ݇ଶ ቂ݅݊ሺ−݅݊ሻ + ݅݊ܽଶሺߥ + ߥ ′݅݊ሻ −
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݊௤ଶ + ௚
௅ವቃ ݊݅ݏ ቀ௡ᇲగ

ௗ ቁݖ + ݅݊݇ଶሺߥ + ߥ ′݅݊ሻ ൤− ቀ௡ᇲగ
ௗ ቁଶ ݊݅ݏ ቀ௡ᇲగ

ௗ ቁݖ + ߣ2 ቀ௡ᇲగ
ௗ ቁ ݏ݋ܿ ቀ௡ᇲగ

ௗ ቁ൨ݖ = 0  
 (29) 
Equating the coefficients of  ݊݅ݏ ቀ௡ᇲగ

ௗ ݏ݋ܿ  ቁ  andݖ ቀ௡ᇲగ
ௗ  ቁ from equation (29), one obtainsݖ

  ஺ܸଶ ൤ቀ௡ᇲగ
ௗ ቁସ − ଶߣ6 ቀ௡ᇲగ

ௗ ቁଶ + ସߣ + ଶ
௅ವ ൜−2ߣ ቀ௡ᇲగ

ௗ ቁଶ + ߣ ቀ௡ᇲగ
ௗ ቁଶ + ଷൠ൨ߣ − ቀ௡ᇲగ

ௗ ቁଶ ൤݊ଶ − ݊௤ଶ +
஺ܸଶ ቀ ହ

ସ௅ವమ
− ݇ଶቁቃ + ఒ

௅ವ ൤݊ଶ − ݊௤ଶ + ஺ܸଶ ቀ ଵ
ଶ௅ವమ

− ݇ଶቁ൨ − ݇ଶ ቂ݊ଶ + ݅݊݇ଶሺߥ + ߥ ′݅݊ሻ − ݊௤ଶ +
௚

௅ವቃ − ݅݊ሺߥ + ߥ ′݅݊ሻ ൤ቀ௡ᇲగ
ௗ ቁସ − ଶߣ6 ቀ௡ᇲగ

ௗ ቁଶ + ସ൨ߣ − ݅݊ሺߥ + ߥ ′݅݊ሻ݇ଶ ቀ௡ᇲగ
ௗ ቁଶ + ߥሺ݊ ݅ ߣ +

ߥ ′݅݊ሻ݇ଶ − ݅݊ሺߥ + ߥ ′݅݊ሻ ൜−2ߣ ቀ௡ᇲగ
ௗ ቁଶ + ߣ ቀ௡ᇲగ

ௗ ቁଶ + ଷൠߣ − ݅݊݇ଶሺߥ + ߥ ′݅݊ሻ ቀ௡ᇲగ
ௗ ቁଶ = 0,  and  

 (30) 
  ஺ܸଶ ൤−4ߣ ቀ௡ᇲగ

ௗ ቁଷ + ଷߣ3 ቀ௡ᇲగ
ௗ ቁ + ଶ

௅ವ ൜− ቀ௡ᇲగ
ௗ ቁଷ + ଶߣ2 ቀ௡ᇲగ

ௗ ቁ + ଶߣ ቀ௡ᇲగ
ௗ ቁൠ൨ + ߣ2 ቀ௡ᇲగ

ௗ ቁ ൤݊ଶ −
݊௤ଶ + ஺ܸଶ ቀ ହ

ସ௅ವమ
− ݇ଶቁቃ + ଵ

௅ವ ൤݊ଶ − ݊௤ଶ + ஺ܸଶ ቀ ଵ
ଶ௅ವమ

− ݇ଶቁ൨ ቀ௡ᇲగ
ௗ ቁ −

݅݊ሺߥ + ߥ ′݅݊ሻ ൤−4ߣ ቀ௡ᇲగ
ௗ ቁଷ + ଷߣ3 ቀ௡ᇲగ

ௗ ቁ൨ + ߣ2 ቀ௡ᇲగ
ௗ ቁ ݅݊ሺߥ + ߥ ′݅݊ሻ݇ଶ − ݅݊ሺߥ +

ߥ ′݅݊ሻ ൜− ቀ௡ᇲగ
ௗ ቁଷ + ଶߣ2 ቀ௡ᇲగ

ௗ ቁ + ଶߣ ቀ௡ᇲగ
ௗ ቁൠ + ݅݊ሺߥ + ߥ ′݅݊ሻ݇ଶ ቀ௡ᇲగ

ௗ ቁ = 0.  (31) 
Now introducing the non-dimensional quantities  
݊∗ଶ = ௡మ

௡೛೐మ ,  ݊௤∗ ଶ = ௡೜మ
௞మ௅ವమ ௡೛೐మ , ∗ߥ = ఔ

௡೛೐ , ߥ ′∗ = ఔ′
௡೛೐ , ݇ଵ∗ = ௞భ

௡೛೐ , ݀∗ଶ = ௗమ
௅ವమ

, ݇∗ଶ = ݇ଶܮ஽ଶ ,  ஺ܸ∗ଶ =
௏ಲమ

௡೛೐మ ௅ವ , ଶ∗ߣ = ஽ଶܮଶߣ , ݊௣௘ = ቀఘబ௘మ
௠೐మఌబቁଵ ଶ⁄ , ݃∗ = ௚

௡೛೐మ ௅ವ .   

where  ݊௣௘ = ቀ ఘ௘మ
௠೐మఌబቁଵ ଶ⁄ ,   is the plasma frequency. 

The equation (30) after dropping the asterisk for our convenience  and in the absence of 
vertical magnetic field,  ஺ܸଶ = 0; equation (31) yields that  ߣ = ଵ

ଶ  and substituting this 
value of  ߣ in equation (30), the dispersion relation so obtained is 
ଵሺ݅ ݊ሻଶܣ + ଶሺ݅ ݊ሻܣ − ଷܣ = 0,  (32) 
where, the constants ܣଵ −  .ଷ containing large number of terms so we omit hereܣ
Since ݊ = ݊௥ + ݅݊௜  and in the case of ݊௥ = 0 and ݊௜ ≠ 0 (stable oscillations), then the 
equation (32)  becomes 
ଵ݊௜ଶܣ − ଶ݊௜ܣ − ଷܣ = 0,  (33) 
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which is the required dispersion relation studying the effects of magnetic field, viscosity, 
viscoelasticity and quantum pressure, respectively. 
4. Numerical results and discussion 
Numerical computations are carried out using the dispersion relation described by 
equation (33), using the software Mathematica version 5.2 to look into the effect of 
various factors on the instability of the considered system. This is to find the role of the 
quantum pressure  and  magnetic field on the square of the normalized growth rate of the 
unstable mode of perturbation for fixed permissible values of the dimensionless 
parameters ߥ ′ = 0.2, ݊௤ = 0.6 , ஺ܸଶ = 0.2, ݊′ = 1, ݀ = 1, ݃ = 9.8  and ߥ = 0.1 . 
Pertaining results are presented in figures 2 and 3. 
Figure 2 shows the variations of the square of the normalized growth rate  ݊௜ଶ with respect 
to the square normalized wavenumber  ݇ଶ  for three different values of square of the 
Alfv݁́n velocity  ஺ܸଶ = 0.2, 0.3, 0.5. It is evident from the graph that the growth rates 
increases for  ݇ ≤ 2.9 ሺ ஺ܸଶ = 0.2ሻ, ݇ ≤ 5 ሺ ஺ܸଶ = 0.3ሻ, ݇ ≤ 7 ሺ ஺ܸଶ = 0.5ሻ  showing 
thereby the destabilizing effect whereas the growth rates decrease for 7 ≤ ݇ ≤ 30 
implying thereby the stabilizing effect of Alfv݁́n velocity on the system.   
Figure 3 corresponds to the three different values of quantum plasma  ݊௤ = 0.2, 0.3, 0.5, 
respectively. It is clear from the graphs that the growth rates increase for ݇ ≤ 6, showing 
thereby the destabilizing effect, whereas the growth rates decrease for ݇ > 6, implying 
thereby the stabilizing effect of quantum pressure on the system. 
It is clear from the figures 2 - 3 that the simultaneous presence of magnetic field implying 
thereby the large enough stabilizing effect of the quantum pressure on the system. 
5. Conclusions  
The stability of stratified viscoelastic Walters' (model B′) fluid/plasma in hydromagnetics  
in the presence of quantum physics has been studied. The principal results of the analysis 
are as follows: 
i) The magnetic field has a stabilizing effect on the system under certain 

wavenumber band. 
ii) The effect of quantum pressure with the simultaneous presence of magnetic field 

is more stabilizing. 
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7. Figures 

Figure 2: Variations of the square of normalized 
growth rate ݊௜ଶ   versus the square normalized 
wavenumber  ݇ଶ for three different values of the 
square of the Alfv݁́n velocity  ஺ܸଶ = 0.2, 0.3, 0.5.   

Figure 3: Variations of the square of normalized 
growth rate ݊௜ଶ  versus the square normalized 
wavenumber  ݇ଶ  for three different values of 
quantum pressure ݊௤ = 0.2, 0.3, 0.5.   
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ABSTRACT 
 
In the present paper, the problem of double-diffusive steady convection in the presence of 
Soret effect and magnetic field has been studied. The eigen value equations governing the 
problem for stationary convection for rigid and impervious boundaries have been casted 
into a mathematical tractable form by using certain linear transformations.  An expression 
for Rayleigh number for stationary convection using variational principle is obtained and, 
consequently, a necessary condition for the validity of principle of exchange of stabilities 
is obtained by using trial function satisfying the essential boundary conditions from the 
minimum property of the functional. The effects of Soret parameter,  Chandrasekhar 
number and Lewis number on stationary convection have been discussed and it is found 
that, the Soret parameter has both stabilizing as well as destabilizing effect (depending 
upon the sign) on the stationary double diffusive convection, whereas the Chandrasekhar 
number and the Lewis number have stabilizing effect on the stability of the system.           

 Keywords: Double diffusive convection, Soret effect, Stationary convection, Magnetic 
field. Impervious boundaries. 
1. INTRODUCTION  

The problem of thermal instability in a thin layer of a Newtonian fluid with single 
diffusive (heat) component in the force field of gravity has been extensively studied by 
many authors, under the varying assumptions of hydrodynamics and hydromagnetics. 
The main objective of the studies related to thermal instability, in particular, is to 
determine the value of the Rayleigh number which characterizes the stability or 
instability of the system or to derive certain criteria for the onset of instability through 



73 
 

convection. The detailed account of such analysis is given in the treatise by 
Chandrasekhar [5].     

The study of convective motions in the presence of two diffusing components 
with different diffusivities is an interesting phenomena in the field of convection, known 
as double-diffusive convection or thermohaline convection. Double-diffusive convection 
involves motions driven by two different density gradients diffusing at different rates 
(Mojtabi and Charrier-Mojtabi [11]). The interesting effects of double-diffusive 
convection are due to the sharp contrasts between thermal and salt diffusivities and were 
first observed by Stern [15] in 1960 and by Veronis [18]  in 1965. In double diffusive 
system, the convection starts due to variations in temperature and solute concentrations 
both. The flux of heat caused by concentration gradient is termed as Dufour effect, 
whereas, the flux of mass caused by temperature gradient is known as the Soret effect.  
 Due to the cross diffusion effect (Soret and Dufour effects), each property gradient 
has a significant influence on the flux of the other property. According to Schechter et. al. 
[14], Bergeron et. al. [4] and Straughan and Hutter [16], the Dufour coefficient is of order 
of magnitude smaller than the Soret coefficient in liquids, and the corresponding 
contribution to the heat flux may be neglected   in liquids in comparison to the Soret 
effect. The study of Soret driven double diffusive convection has received much attention 
over the years due to its numerous fundamental and industrial applications in various 
fields such as high quality crystal production oceanography, solidification of molten 
alloys, astrophysics and engineering.  For a broader view on the subject, one may  refer to 
Hurle and Jakeman [8],  Malashetty & Gaikwad [10] and Dhiman and Goyal [7].  

Chandrasekhar [6] and Banerjee et. al. [3] have investigated  the effect of 
magnetic field on the stability of Bénard convection problem in detail.  Banerjee et. al. 
[2] studied a more general problem, namely, magnetohydrodynamic thermohaline 
convection problem and derived a characterization theorem. N. Rudraiah [12, 13] has 
made a study of double diffusive magnetoconvection and shown that magnetic field 
destabilizes the double diffusive system under certain conditions. Takashima [17] studies 
the effect of magnetic field on convective instability in a horizontal layer of two 
component fluid with Soret effect and it has been established that even if a magnetic field 
is present, the presence of solute plays a prominent role through the Soret effect and that 
even if the solute is present, the magnetic field inhibits the onset of instability.  
 Most of the authors have dealt the convection problems in a horizontal layer for 
the unrealistic case of both dynamically free boundaries in which no tangential stress 
acts. For the realistic case of both rigid bounding surfaces, the exact solutions in closed 
forms are not obtainable because of the mathematical complexities in the governing eigen 
value equations.  Further, for the solutions when the binary fluids are subjected to Soret 
effect, the boundary conditions on concentration, in view of the solid boundaries, must be 
impervious (Bahloul et. al. [1]). Dhiman and Goyal recently studied the stability of Soret 
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driven double-diffusive convection problem analytically for the case of rigid, impervious 
and thermally perfectly conducting boundary conditions using Variational principle.  
 Motivated by the above discussions and the role of rigid and impervious bounding 
surfaces on the onset of convection, in the present analysis the effect of magnetic field on 
the onset of Soret driven double-diffusive steady convection with rigid and impervious 
boundaries has been studied. The eigen value equations governing the problem under 
consideration has been transformed into a mathematical tractable form for the variational 
treatment using some indigenous linear transformations. The variational principle has 
been established for the problem and using the minimum property of the functional, an 
expression for Rayleigh number has been  obtained. The effects of Soret parameter, 
Chandrasekhar number and Lewis number on stationary convection have been discussed. 
2. PHYSICAL CONFIGURATION AND GOVERNING EQUATIONS 
 Consider a electrically conducting viscous, quasi-incompressible two component 
fluid of infinite horizontal extension and finite vertical depth statically confined between 
two horizontal boundaries 0z and d  z  which are respectively maintained at uniform 
temperatures 0T  and  011 TTT   and uniform concentrations 0C  and  011 CCC   in the 
presence of uniform magnetic field acting in the vertical direction in the force field of 
gravity. Both the boundaries are assumed to be a rigid, impervious and perfectly heat 
conducting.  
Following the usual steps of the linear stability analysis [5, 7], we obtain the following 
system of non-dimensional linearized perturbation equations; 
    zhaDQDaRRawpaDaD 22222222 


           (1) 

  wpaD  22               (2) 
  2222 aDwpaD 


             (3) 

DwhpaD z 


  
122              (4) 

We consider the case where both the boundaries are rigid, impervious and perfectly 
conducting. Thus, the appropriate boundary conditions for the present problem are;  

0,0   DDhDww z  ; at z = 0 and z = 1.        (5) 
In the forgoing equations; z  is the real independent variable, dzdD   is the 

differentiation with respect to z , 2a  is the square of the wave number,   is the Prandtl 
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number, 1  is the coefficient of electrical conductivity,   is the Lewis number,  R  is the 
thermal Rayleigh number, R  is the solutal Rayleigh number, Q  is the Chandrasekhar 
number,  ir ippp   is the complex growth rate and  ,,w  and zh  are the perturbations 
in the vertical velocity, temperature, concentration and magnetic field respectively. The 
system of equations (1)-(4) together with the boundary conditions (5) constitutes an eigen 
value problem for R  for given values of  other parameters, namely  ,,R and 2a . 
Further, a given state of system is stable, neutral or unstable according as rp  is negative, 
zero or positive. Further, if  0rp   implies 0ip for all wave numbers 2a , then the 
principle of exchange of stability (PES) is valid, otherwise, we have overstability at least 
when the instability sets in as a certain modes.  

 
3. MATHEMATICAL ANALYSIS 

When the instability sets in as stationary convection i.e. when PES is valid, we 
have p= 0, therefore, the equations (1)–(4) and boundary conditions (5) becomes 
    zhaDQDaRRawaD 2222222                (6)   waD 22                                              (7) 
    2222 aDwaD                                                          (8)   DwhaD z  22                 (9) 
together with the boundary conditions  

and 






0

0




DD

Dww
 at z = 0 and z = 1.                     (10) 

Now, redefining   and   as follows 


 24adgF , 
 24 adgG                                   (11) 

and using the linear relation 
GFM  ,                                   (12) 

equations (6)–(9) and boundary conditions (10)  assume the following form; 
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      zhaDQDMFwaD 22222 1             (13)   wRaFaD 222              (14) 
  

 waRMaD 222
                    (15) 

  DwhaD z  22                     (16)  
0 DMDww  at z = 0 and z = 1.            (17) 

 In the above equations, the thermal and solutal Rayleigh numbers are related by 
the expression RR  , where   is called stability ratio (or Soret parameter) and 
defined as    )1( 00 NNST .  The strength of the Soret forcing in mixtures is 
parameterized by the stability ratio, depending on the mixture the Soret coefficient can be 
positive or negative, meaning thereby that solute can be driven toward the hotter, or the 
colder region. Hence,   can take both positive and negative values (La-Porta and Surko 
[9]).  

To find the necessary condition for the validity of the PES and consequently the 
critical Rayleigh number for the present problem, we proceed as follows. 
Multiplying equation (14) by F  and integrating over z , we get 

    1

0

1

0
222 dzwFRadzFaDF             (18)      

Inserting the value of F  from equation (13) in the right hand side of equation (18), 
making use of equation (16) in the resulting equation, we obtain    

     dzwMRawdzQDaDwRadzFaDF  
 1

0

21

0
222221

0
22

11         
(19) 

which upon using equation (15) in the second integral on right hand side yields 
         dzMaDMR

RwdzQDaDwRadzFaDF  
 1

0
22

1

0
222221

0
22

11 


  
Integrating by parts the above equation a suitable number of times, using the boundary 
conditions (17), we have the following expression 



77 
 

    
         


 







1

0
222

2
1

0
2224222

1

0
222

2

1

dzMaDMaRdzDwQawawDa

dzFaDF
R 



   sayIa
I ,1

2
2

1           (20) 
The above expression for R (the Rayleigh number), which is the ratio of two positive 
definite integrals, is the required functional for the variational treatment of the problem. 
 Following the variational method of Chandrasekhar for thermal convection 
problem and proceeding analogously, we can easily prove the stationary property of the 
functional R  given by expression (20) for the boundary conditions (17) when the 
quantities on right hand side are evaluated in terms of true characteristic functions. Also 
the quantity on the right hand side of equation (20) attains its true minimum when F  
belongs to cR  i.e. the lowest characteristic value of R , namely cR , is indeed a true 
minimum. i.e.  

  .1
2

2
1

Ia
IRRc

                                          

 

(21) 
Thus, the above result generalizes the variational method for the problems of Soret driven 
double-diffusive magnetoconvection with rigid, impervious and heat conducting 
boundaries. 
Now, we shall evaluate the integrals 1I  and 2I  by using the trial functions satisfying the 
given boundary conditions. Let us consider a trail function 
     23422 21 zzzzzzw         (22) 
which obviously satisfies the boundary conditions  
 0w   at 0z  and 1z  
Now, using equation (22), we have 

      QaadzwaDwQawD 019.00015873.0038.08.02 42242222      (23) 
Inserting   234 2 zzzzw   in equation (14) and solving the resulting equation for  zF , using the relevant boundary conditions given by equation (17),  we obtain 
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  


 


  64
2

2
324

2
21

62
2 24122122

cosh
cosh242)( aa

zz
a

zzzza
aaRazF a  (24) 

Now, multiplying both sides of equation (14) by F and integrating the resulting equation 
over the range of z , we obtain 

  dzFaDF 1

0
22  =    dzzFzwRa .

1

0
2  .             (25) 

Inserting the values of  zw   and  zF  from equations (22) and (24) respectively in the 
right  hand side integral of above equation and integrating the resulting equation a 
suitable number of times, using the relevant boundary conditions (17), we obtain 

    






 


 


  aaaaaaRdzFaDF 62/tanh121.1218)( 225

22
1

0
222


 42

8.0019.000158.0 aa                   
(26)

  

 
Again, inserting   234 2 zzzzw   in equation (15) and solving the resulting equation 
for  zM  , using the relevant boundary conditions given by equation (17),  we obtain 

   


  42
2234

3
21 242121222/sinh

cosh12.)( aa
zzzzzaa

zaRzM  .                   (27) 
Now, multiplying both sides of equation (15) by M and integrating the resulting equation 
over the range of z , we obtain 

  dzMaDM 1

0
22  =    dzzMzwaR .

1

0

2   .                         (28) 

Inserting the values of  zw   and  zF  from equations (22) and (27) respectively in the 
right  hand side integral of above equation and integrating the resulting equation a 
suitable number of times, using the relevant boundary conditions (17), we obtain 

    






 


  2/coth2448412)( 45332

221

0
222 aaaaa

aRdzMaDM 

 42

8.0019.000158.0 aa              
(29)
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Now, substituting the values of various definite integrals from (23), (26) and (29) in 
equation (20) and upon using the fact that RR  , we obtain 

 
2

2
1

21
K

KRR 
 

         
(30)

   
where 

  422251
8.0019.00015873.062tan1211218

aaaahaaaK 



 


 


 

  
(31)

  
 

and 
  


 



 


  422622

8.0019.00015873.02/coth612148
aaaaaa

RK   

     Qaa 019.00015873.0038.08.0 42   (32)
 Now, we assume that Q  and R are of same order of magnitude and therefore, we take 

)( 6
1

QOa   and )( 6
1

ROa  . Substituting the values of 1K and 2K from equations (31) 
and (32) in equation (21) and utilizing sufficiently large values of Q  in the resulting 
equation, we obtain 















 

 0015873.0019.0
015873.011QR  







  197.11
111 

Q         (33) 

Using above value of R , inequality (21) yields 







  197.11

111  
QRc    

which further implies that 




  
11  QRc   for large values of Q          (34) 

which is a necessary condition (dependent upon Soret parameter) for the validity of PES 
for the onset of stationary convection in Soret-driven double-diffusive convection in the 
presence of magnetic field when both the bounding surfaces are rigid, impervious and 
thermally conducting. 
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 Now to study the effect of Soret parameter, Chandrasekhar number and Lewis number on 
the double diffusive system, we examine the behaviour of QRR  , and 

R analytically. 
 From equation (33), we have 










13 97.11
1)2(





QR  

which is positive if 0 and negative if 0 . Hence, for fixed positive values of 
Chandrasekhar number and Lewis number, the value of stationary Rayleigh number 
increases with increasing values of Soret parameter if 0  and decreases with increasing 
values of Soret parameter if 0 . Thus, for Soret-driven double-diffusive convection in 
the presence of magnetic field, the Soret parameter has both stabilizing as well as 
destabilizing effect on the onset of the stationary convection according as 0  and 

0 . 
Further, we can have from equation (33) that 

097.11
11

12 











Q
R  

which implies that for fixed values of Soret parameter and Lewis number, the value of 
stationary Rayleigh number increases with increasing values of Chandrasekhar number.  
Thus,  for the stationary convection Chandrasekhar number has a stabilizing effect on the 
double diffusive system. 
Also, we can have from equation (33) that 

  0197.11
11 2

2 












QR  

which implies that for fixed positive values of Soret parameter  and Chandrasekhar 
number, the value of stationary Rayleigh number increases with increasing values of 
Lewis number. Thus for the stationary convection Lewis number has a stabilizing effect 
on the double diffusive system. 
4. CONCLUSIONS 

  In the present analysis, the eigen value problem governing the Soret-driven 
double-diffusive stationary magnetoconvection problem has been transformed into an 
eigen value problem which behaves nicely for the variational treatment of the problem. 
The variational principle for Soret-driven double-diffusive stationary convection problem 
in the presence of magnetic field with realistic case of rigid, impervious and thermally 
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conducting boundary conditions has been established. A necessary condition for the 
validity of PES for this general problem utilizing the minimum property of variational 
principle have been established. Further, a expression for Rayleigh number is obtained as 
a function of the governing parameters, which characterize the stability of the system. 
The analysis reveals that the onset of magnetoconvection in double diffusive flow 
strongly depends upon of the Soret parameter. The effect of various parameters such as 
Soret parameter, Chandrasekhar number and Lewis number on the onset of stationary 
convection has been discussed. The following conclusions are drawn from our 
investigations; 

(i) For the case of stationary double diffusive convection in the presence of 
magnetic field the Soret parameter  has both stabilizing as well as 
destabilizing effect on the double diffusive system according as  <0 or 
 >0. 

(ii) The Chandrasekhar number and Lewis number has stabilizing effect on 
the onset of stationary magnetoconvection in the double diffusive system 
with Soret effect.  
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Abstract: Upper bounds for the complex growth rate of an arbitrary oscillatory 
perturbation which may be neutral or unstable in triply diffusive fluid layer heated from 
below, which is kept under the effect of uniform vertical magnetic field with the viscosity 
variation effects included are obtained. These results are uniformly valid for quite general 
nature of the bounding surfaces. 
Keywords: Triply diffusive convection, variable viscosity, concentration Rayleigh 
number, oscillatory motion, Chandrasekhar number. 
Introduction 

When two stratifying agencies with gravitationally opposite contributions(for 
instance heat and salt) are present in a viscous fluid,  a variety of convective phenomena 
are found to occur which are known as thermosolutal convection or thermohaline 
convection or more generally double diffusive convection. Double diffusive convection is 
now well known and for a broad view of the subject one may referred to Turner [25] and 
Brandt and Fernando [2]. 

There are many important hydrodynamical systems in which the density depends 
on more than two stratifying agencies having different molecular diffusivities. Some 
examples of these are the earth’s core, sea water, solidifying alloys, geothermally heated 
lakes, magmas and their laboratory models (Turner [24]). Earlier theoretical and 
experimental studies of the hydro dynamical configurations where the density depends on 
three stratifying agencies include the work of Griffiths [3-4], Pearlstein et al. [11], Moroz 
[9], Lopez et al. [8]. In the latter studies, Terrones [22] studied the effects of cross 
diffusion on the onset of convective instability in a horizontal triply diffusive fluid layer. 
Straughan and Walker [20] investigated the penetrative convection in a triply diffusive 
fluid layer. Straughan and Tracey [19] analysed multicomponent convection diffusion 
with internal heating or cooling in a fluid layer. The long-time behaviour of a triply 
convective-diffusive fluid mixture saturating a porous horizontal layer has been studied 
by Rionero [13]. Shivakumara and Kumar [17] investigated the effect of couple stresses 
on linear and weakly nonlinear stability of a triply diffusive fluid layer. Ryzhkov and 
Shevtsova [16] analysed the long wave instability of a multicomponent fluid layer with 
the soret effect included. Rionero [14] studied a triple convective diffusive fluid mixture 
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saturating a porous horizontal layer, heated from below and salted from above and derive 
sufficient conditions for inhibiting the onset of convection and guaranteeing the global 
nonlinear stability of the thermal conduction solution. Rionero [15] also studied the 
multicomponent diffusive convection in porous layer for the more general case when 
heated from below and salted by m salts partly from above and partly from below. 
Recently Prakash et al. [12] derived upper bounds for the complex growth rate in triply 
diffusive convection.  

It is, however, to note that, in most of studies cited in the preceding paragraphs, 
the fluid viscosity is considered as constant with respect to temperature variations. For 
many fluids, such as glycerine, silicone fluid, petroleum and some molten salts, the 
variation of viscosity with temperature is often much rapid than that of the other 
properties. Thus the effect of the variation of the viscosity due to temperature on the 
stability analysis of any hydrodynamic system must be included to have realistic 
approach. 

The dependence of viscosity on temperature and/or depth for most fluids has 
prompted several investigations on the onset of convection in hydrodynamics. The effect 
of large variations of viscosity on thermal convection in a layer of fluid heated from 
below has been numerically investigated by Torrance and Turcotte [23]. Korenaga and 
Jordan [7] studied the influence of temperature-and depth-dependent viscosity on the 
onset of convection in an incompressible fluid cooled from above on the basis of 2-D 
numerical simulation. Kaddiri et al. [6] studied the effects of temperature-dependent 
viscosity on the Rayleigh-Benard convection of non-Newtonian power-law fluids 
confined in a square cavity, heated from bottom and cooled on the top with uniform heat 
fluxes. Payne and Straughan [10] studied the nonlinear stability of thermal convection in 
a porous layer when viscosity depends on temperature. Global stability for thermal 
convection in a couple-stress fluid with temperature and pressure dependent viscosity has 
been investigated by Sunil and Chaudhary [21]. Banerjee et al. [1] mathematically 
analyse the stability of generalized Benard problem with a viscosity which is a linear 
function of depth (on account of thermal effects). Gupta and Kaushal [5] analytically 
investigated the rotatory hydromagnetic double diffusive convection problems by 
considering the effects of viscosity variations due to temperature and concentration. 

The present communication is primarily motivated by the investigations of Gupta 
and Kaushal [5] and their work has been extended to magnetohydrodynamic triply 
diffusive convection problems in the domains of astrophysics and terrestrial physics, 
wherein the liquid concerned has the property of electrical conduction and the magnetic 
field is prevalent. The choice of a temperature and concentration dependent viscosity on 
the pattern of density in double-diffusive and triply-diffusive convection problems has a 
limitation that viscosity is a linear function of the vertical coordinate [5] which may not 
necessarily be so in a real physical situation. Thus in the governing equations of the 
magnetohydrodynamic triply diffusive convection problem viscosity has been taken as an 
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arbitrary function of the vertical coordinate which is in accordance with role of viscosity 
in Rayleigh-Taylor instability problem. Since the resulting governing non dimensional 
differential equations have variable coefficient of viscosity contrary to the case wherein 
viscosity is considered as constant, thus these more general problems introduce extra 
mathematical complexities. Thus an attempt is made to mathematically tackle problems 
with more complexities and extending the domain of validity of the earlier results 
concerning the region of the complex growth rate in the literature of the triply diffusive 
convection problem with constant viscosity, which are important, especially when at least 
one boundary is rigid so that exact solutions in the closed form are not obtainable. 
Mathematical Formulation and analysis 

An infinite horizontal layer filled with a Boussinesq viscous fluid is statically 
confined between two horizontal boundaries z = 0 and  z = d (kept under the influence 
of a uniform vertical magnetic field), maintained at constant temperatures T଴ and Tଵ(<

଴ܶ) and uniform solute concentrations Sଵ଴, Sଶ଴ and Sଵଵ(< Sଵ଴), Sଶଵ(< Sଶ଴) at the lower 
and upper boundaries respectively. Let the origin be taken on the lower boundary  z = 0 
with z-axis perpendicular to it. It is further assumed that cross diffusion effects may be 
neglected.                                       

 Fig.1 Physical Configuration 
The basic hydrodynamic equation that governs the magnetohydrodynamic triply diffusive 
instability problem are given by (Prakash et al. [12], Gupta and Kaushal [5]) 
μ(Dଶ − aଶ)ଶw + Dଶμ(Dଶ + aଶ)w + 2DμD(Dଶ − aଶ)w − ୮

஢ (Dଶ − aଶ)w = Raଶθ −
Rଵaଶϕଵ − Rଶaଶϕଶ − QD(Dଶ − aଶ)h୸,                                                                             (1) 
(Dଶ − aଶ − p)θ = −w,                      (2) 
ቀDଶ − aଶ − ୮

தభቁ ϕଵ = − ୵
தభ ,                      (3) 

ቀDଶ − aଶ − ୮
தమቁ ϕଶ = − ୵

தమ ,                     (4) 
and ቀDଶ − aଶ − ୮஢భ

஢ ቁ h୸ = −Dw ,                     (5) 

d 

X 

Z 

gሬԦ = (0,0, −g) 

Tଵ 

T଴(> Tଵ)  
)

Sଵଵ 

Sଶ଴(> Sଶଵ)  
)

Sଵ଴(> Sଵଵ)  
)

Sଶଵ Z = d 

Z = 0 

μᇱ = μ଴μ(z) HሬሬԦ = (0,0, H) 
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with w = 0 = θ = ϕଵ = ϕଶ = Dଶw at z = 0 and z = 1 (both boundaries are 
dynamically free)                                                                                                               (6)                                  
or w = 0 = θ = ϕଵ = ϕଶ = Dw   at z = 0 and z = 1  (both boundaries are rigid)        (7)                               
or w = 0 = θ = ϕଵ = ϕଶ = Dw      at z = 0 and    (lower boundary is rigid) 
    w = 0 = θ = ϕଵ = ϕଶ = Dଶw     at z = 1 (upper boundary is dynamically free)      (8) 
or w = 0 = θ = ϕଵ = ϕଶ = Dଶw     at z = 0 and   (lower boundary is dynamically free)  
    w = 0 = θ = ϕଵ = ϕଶ = Dw       at z = 1  (upper boundary is rigid)                      (9)   
and either h୸ = 0 on both the boundaries if the regions outside the fluid are perfectly 
conducting                   (10) 
or  Dh୸ = ∓ah୸ on the upper and lower boundary respectively if the regions outside the 
fluid are insulating,                                                                                                          (11) 
where z is the vertical coordinate, D = ୢ

ୢ୸ is the differentiation along the vertical 
direction, aଶ is the square of the wave number, σ > 0 is the Prandtl number, σଵ > 0 is the 
Magnetic Prandtl number, τଵ > 0 and τଶ > 0 are the Lewis numbers for the two 
concentration components respectively, R > 0 is the Rayleigh number, Rଵ > 0and Rଶ > 0 are the concentration Rayleigh numbers for the concentration components Sଵ and Sଶ respectively, Q > 0 is the Chandrasekhar number, p = p୰ + ip୧ is the complex growth 
rate, w is the vertical velocity, θ is the temperature, ϕଵ and ϕଶ are the concentration of 
two components Sଵ and  Sଶ respectively and μᇱ = μ଴μ(z) where μ଴ is constant having the 
dimensions of viscosity and μ(z) is twice continuously differentiable function of z and is 
such that the ratio of the viscosities at the top and bottom boundaries is small 
(Stengel[18]). It may further be noted that equations (1)-(5) describe an eigen value 
problem for  p and govern magnetohydrodynamic triply diffusive convection with 
variable viscosity for the boundary conditions (6)-(11). 
Now we prove the following theorem: 
Theorem: If (w, θ, ϕଵ, ϕଶ, h୸, p), p = p୰ + ip୧ , p୰ ≥ 0, p୧ ≠ 0 R > 0, Rଵ > 0, Rଶ > 0 is 
a non-trivial solution of equations (1)-(5) together with the boundary conditions (6)-(11) 
then |p| < ቂඥ(Rଵݔܽ݉ + Rଶ)σ,   Qσቃ. 
Proof: Equation (1) can further be simplified as 
D(μDଷw + DμDଶw − 2aଶμDw) + aସμw − ୮

஢ (Dଶ − aଶ)w + aଶ(Dଶμ)w = Raଶθ −
Rଵaଶϕଵ − Rଶaଶϕଶ − QD(Dଶ − aଶ)h୸.                                                                           (12) 
Multiplying both sides of equation (12) by w∗(the superscript ∗ henceforth denotes 
complex conjugation), integrating the resulting equation over the vertical range of z, we 
get 
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׬ w∗ଵ
଴ D(μDଷw + DμDଶw − 2aଶμDw)dz + aସ ׬ μଵ

଴ |w|ଶdz − ୮
஢ ׬ w∗ଵ

଴ (Dଶ − aଶ)wdz +
 aଶ ׬ w∗ଵ

଴ Dଶμwdz = Raଶ ׬ w∗ଵ
଴ θdz − Rଵaଶ ׬ w∗ଵ

଴ ϕଵ dz − Rଶaଶ ׬ w∗ଵ
଴ ϕଶ dz −

Q ׬ w∗D(Dଶ − aଶ)h୸dzଵ
଴  .                                                              (13)   

Making use of equations (2)-(5), we can write 
׬ w∗ଵ

଴ D(μDଷw + DμDଶw − 2aଶμDw)dz + aସ ׬ μଵ
଴ |w|ଶdz − ୮

஢ ׬ w∗ଵ
଴ (Dଶ − aଶ)wdz +

aଶ ׬ w∗ଵ
଴ Dଶμwdz = −Raଶ ׬ θ(Dଶ − aଶ − p∗)θ∗ଵ

଴ dz+Rଵaଶτଵ ׬ ϕଵ ቀDଶ − aଶ −ଵ
଴୮∗

தభቁ ϕଵ∗ dz + Rଶaଶτଶ ׬ ϕଶ ቀDଶ − aଶ − ୮∗
தమቁ ϕଶ∗ଵ

଴  dz − Q ׬ ቀDଶ − aଶ − ୮∗஢భ
஢ ቁ h୸∗(Dଶ −ଵ

଴
aଶ)h୸dz .                                       (14) 
Integrating the various terms, by parts, for an appropriate number of times and making 
use of the boundary conditions (6)-(11), we get 
׬ μଵ

଴ (|Dଶw|ଶ + 2aଶ|Dw|ଶ + aସ|w|ଶ)dz + ୮
஢ ׬ (|Dw|ଶ + aଶ|w|ଶ)ଵ

଴ dz +
aଶ ׬ Dଶμଵ

଴ |w|ଶdz + Q ׬ |(Dଶ − aଶ)h୸|ଶdzଵ
଴ = Raଶ ׬ (|Dθ|ଶ + aଶ|θ|ଶ + p∗|θ|ଶ)ଵ

଴ dz −
Rଵaଶτଵ ׬ (|Dϕଵ|ଶ + aଶ|ϕଵ|ଶ + ୮∗

தభ |ϕଵ|ଶ)ଵ
଴ dz − Rଶaଶτଶ ׬ (|Dϕଶ|ଶ + aଶ|ϕଶ|ଶ +ଵ

଴
୮∗
தమ |ϕଶ|ଶ) dz − ୕୮∗஢భ

஢ ቂaሼ(|h୸|ଶ)଴ + (|h୸|ଶ)ଵሽ + ׬ (|Dh୸|ଶ + aଶ|h୸|ଶ)dzଵ
଴ ቃ                    (15) 

Equating the imaginary parts of both sides of equation (15) and cancelling p୧(≠0)throughout from the imaginary parts, we have 
ଵ
஢ ׬ (|Dw|ଶ + aଶ|w|ଶ)ଵ

଴ dz = − Raଶ ׬ |θ|ଶଵ
଴ dz + Rଵaଶ ׬ |ϕଵ|ଶଵ

଴  dz + Rଶaଶ ׬ |ϕଶ|ଶଵ
଴  dz +

୕஢భ
஢ ቂaሼ(|h୸|ଶ)଴ + (|h୸|ଶ)ଵሽ + ׬ (|Dh୸|ଶ +  aଶ|h୸|ଶ)dzଵ

଴ ቃ .                                             (16) 
Now, multiplying equation (3) by its complex conjugate, integrating the resulting 
equation over the vertical range of z for an appropriate number of times and utilizing the 
boundary conditions on ϕଵ, we have 
׬ (|Dଶϕଵ|ଶ + 2aଶ|Dϕଵ|ଶ + aସ|ϕଵ|ଶ)dzଵ

଴ + ଶ୮౨
தభ ׬ (|Dϕଵ|ଶ + aଶ|ϕଵ|ଶ)ଵ

଴ dz +
|୮|మ
தభమ ׬ |ϕଵ|ଶଵ

଴ dz =  ଵ
தభమ ׬ |w|ଶଵ

଴  dz.                                                            (17) 
Since   p୰ ≥ 0, we have from equation (17), that 
׬ |ϕଵ|ଶଵ

଴ dz ≤ ଵ
|୮|మ ׬ |w|ଶଵ

଴ dz .                                           (18) 
In the same manner by using (4), we obtain  
׬ |ϕଶ|ଶଵ

଴ dz ≤ ଵ
|୮|మ ׬ |w|ଶଵ

଴ dz .                                                                                          (19) 
Multiplying equation (5) by its complex conjugate, integrating the resulting equation over 
the vertical range of z for an appropriate number of times and utilizing the boundary 
conditions on h୸ , we have 
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׬ |(Dଶ − aଶ)h୸|ଶdz + ଶ୮౨஢భ
஢

ଵ
଴ ቂaሼ(|h୸|ଶ)଴ + (|h୸|ଶ)ଵሽ + ׬ (|Dh୸|ଶ + aଶ|h୸|ଶ)dzଵ

଴ ቃ +
|୮|మ஢భమ

஢మ ׬ |h୸|ଶdz = ׬ |Dw|ଶdzଵ
଴

ଵ
଴                                                           (20) 

which implies that 
׬ |h୸|ଶଵ

଴ dz ≤ ஢మ
|୮|మ஢భమ ׬ |Dw|ଶdzଵ

଴                                                                                       (21) 
and  ׬ |(Dଶ − aଶ)h୸|ଶdz ≤ ׬ |Dw|ଶdzଵ

଴
ଵ

଴                                                 (22) 
respectively. 
Now using inequalities (21) and (22), we obtain 
aሼ(|h୸|ଶ)଴ + (|h୸|ଶ)ଵሽ + ׬ (|Dh୸|ଶ + aଶ|h୸|ଶ)ଵ

଴ dz ≤ − ׬ h୸∗(Dଶ − aଶ)h୸dzଵ
଴  , 

≤ ቚ׬ h୸∗(Dଶ − aଶ)h୸dzଵ
଴ ቚ ≤ ቂ׬ |h୸|ଶଵ

଴ dzቃ
భ
మ ቂ׬ |(Dଶ − aଶ)h୸|ଶdzଵ

଴ ቃ
భ
మ ≤ ஢

|୮|஢భ ׬ |Dw|ଶdzଵ
଴  (23) 

Now utilizing inequalities (18), (19) and (23) in equation (16), we get 
ቂଵ

஢ − ୕
|୮|ቃ ׬ |Dw|ଶଵ

଴ dz + aଶ ቂଵ
஢ − (ୖభାୖమ)

|୮|మ ቃ ׬ |w|ଶଵ
଴ dz + Raଶ ׬ |θ|ଶଵ

଴ dz < 0 ,       (24) 
which clearly implies that 
|p| < ቄ ඥ(Rଵݔܽ݉ + Rଶ)σ, Qσ  ቅ .                                                                                 (25) 
The above theorem may be stated in an equivalent form as: the complex growth rate of an 
arbitrary, neutral or unstable oscillatory perturbation of growing amplitude in a 
magnetohydrodynamic triply diffusive fluid layer (with variable viscosity) heated from 
below, must lie inside a semicircle in the right half of the (p୰, p୧) – plane whose centre is 
at the origin and radius equals ݉ܽݔ൛ඥ(Rଵ + Rଶ)σ, Qσൟ . Further, it is proved that this 
result is uniformly valid for quite general nature of the bounding surfaces. 
Special Cases: The following results may be obtained from above theorem as special 
cases:  

i) For Magnetohydrodynamic Rayleigh-Benard convection with variable viscosity         
(Rଵ = 0 = Rଶ, Q > 0),     |p| <  .ߪܳ

ii) For Thermohaline convection of Veronis type [2] with variable viscosity (Rଵ >
0, Rଶ = 0 = Q), |p| < ඥRଵσ. 

iii) For Magnetohydrodynamic Thermohaline convection of Veronis type [2] with 
variable viscosity (Rଵ > 0, Rଶ = 0, Q > 0), |p| < ,൛ඥRଵσݔܽ݉ Qσൟ. 

iv) For Magnetohydrodynamic triply diffusive convection analogous to Stern 
type[25] with variable viscosity (R < 0, Rଵ < 0, Rଶ < 0, Q > 0), |p| <
ݔܽ݉ ቄඥ|R|σ, Qσቅ 

      Proof: Putting Rଵ = −|Rଵ| and Rଶ = −|Rଶ| in equation (1), and adopting the same 
procedure as is used to prove above Theorem, we obtain the desire result. 
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v) For Thermohaline convection of Stern type [25] with variable viscosity (R <
0, Rଵ < 0, Rଶ = 0 = Q), |p| < ඥ|R|σ. 

vi) For Magnetohydrodynamic Thermohaline convection of Stern type [25] with 
variable viscosity (R < 0, Rଵ < 0, Rଶ = 0, Q > 0), |p| < ݔܽ݉ ቄඥ|R|σ , Qσቅ. 

Conclusion 
A linear stability analysis is used to derive the upper bounds for complex growth rates in 
magnetohydrodynamic triply diffusive convection problem with variable viscosity. This 
analysis is important especially when both the boundaries are not dynamically free so that 
exact solutions in the closed form are not obtainable. Further, the results so obtained are 
uniformly valid for quite general nature of the bounding surfaces.  
References 
[1] Banerjee, M. B., Gupta, J. R. and Shandil, R. G. 1977. Generalized thermal 
convection with viscosity variations. J. Math. Phys. Sc., 11(5): 421-442.  
[2] Brandt, A. and Fernando, H.J.S. 1996. Double-diffusive convection. Am. Geophys. 
Union, Washington D.C., United States. 
[3] Griffiths, R. W. 1979 a. A note on the formation of “salt finger” and ‘diffusive’ 
interfaces in three component systems. Int. J. Heat Mass Transf., 22: 1687-1693. 
[4] Griffiths, R. W. 1979b. The influence of a third diffusing component upon the onset 
of convection. J. Fluid Mech., 92: 659-670. 
[5] Gupta, J. R. and Kaushal, M. B. 1988. Rotatory Hydromagnetic double diffusive 
convection with viscosity variation. J. Math. Phys. Sci., 22 (3): 301-320. 
[6] Kaddiri, M., Naimi, M., Raji, A. and Hasnaoui, M. 2012. Rayleigh-Benard convection 
of Non-Newtonian power-law fluids with temperature-dependent viscosity. ISRN 
Thermodynamics, vol. 2012 doi:10.5402/2012/614712. 
[7] Korenaga, J. and Jordan, T. N. 2002. Onset of convection with temperature-and 
depth-dependent viscosity. Geophys. Res. Lett., 29(19), 1923, doi: 
10.1029/2002GL015672: 1-4. 
[8] Lopez, A. R., Romero, L. A. and Pearlstein, A. J. 1990. Effect of rigid boundaries on 
the onset of convective instability in a triply diffusive fluid layer. Phys. Fluids A, 2(6), 
897-902. 
[9] Moroz, I. M. 1989. Multiple instabilities in a triply diffusive system. Stud. Appl. 
Math., 80: 137-164.  
[10] Payne, L. E. and Straughan, B. 2000. Unconditional Nonlinear Stability in 
temperature-dependent viscosity flow in porous medium. Studies in Applied Maths., 105: 
59-81. 
[11] Pearlstein, A. J., Harris, R. M. and Terrone, S. G. 1989. The onset of convective 
instability in a triply diffusive fluid layer. J. Fluid Mech., 202: 443-465. 



90  

[12] Prakash, J., Vaid, K. and Bala, R. 2014. Upper limits to the complex growth rates in 
triply diffusive convection. Proc. Ind. Nat. Sci. Acad., 80 (1): 115-122.   
[13] Rionero, S. 2010. Long-time behaviour of multi-component fluid mixtures in porous 
media, Int.  J. Eng. Sci., 48: 1519-1533. 
[14] Rionero, S. 2013a .Triple diffusive convection  in  porous media. Acta Mech., 224: 
447-458. 
[15] Rionero, S. 2013b. Multicomponent diffusive-convective fluid motions in porous 
layer ultimately boundedness, absence of subcrictical instabilities and global non linear 
stability for any number of salts. Phys. Fluids, 25: 1-23. 
[16] Ryzhkov, I. I. and  Shevtsova, V. M. 2009. Long wave instability of a 
multicomponent fluid layer with the soret effect. Phys. Fluids, 21: 1-14. 
[17] Shivakumara, I. S. and Kumar S. B. 2014. Linear and weakly non linear triple 
diffusive convection in a couple stress Fluid Layer. International Journal of Heat and 
Mass Transfer, 68: 542-553. 
[18] Stengel, K. C., Oliver, D. S. and Booker, J. R. 1982. Onset of convection in variable 
viscosity fluid. J. Fluid Mech., 120: 411-431. 
[19] Straughan, B. and Tracey, J. 1999. Multi-component convection-diffusion with 
internal heating or cooling. Acta Mech., 133: 219-238. 
[20] Straughan, B. and Walker, D. W. 1997. Multi-component diffusion and penetrative 
convection. Fluid Dyn. Res., 19 77.doi: 10.1016/SO 169-5983(96)00031-7. 
[21] Sunil and Chaudhary, S. 2013. Global stability for thermal convection in a couple 
stress fluid with temperature and pressure dependent viscosity. Stud. Geot. Mech., 35(3): 
85-102. 
[22] Terrones, G. 1993. Cross-diffusion effects on the stability criteria in a triply 
diffusive system. Phys. Fluids A: Fluid Dynamics, 01/1993;5: 2172-2182.DOI: 10.1063 
/1.858556.  
[23] Torrance, K. E. and Turcotte, D. L. 1971. Thermal convection with large viscosity 
variations. J. Fluid Mech., 47:113-125. 
[24] Turner, J. S. 1985. Multicomponent convection. Ann. Rev. Fluid Mech., 17: 11-14. 
[25] Turner, J.S. 1974. Double-diffusive phenomena. Ann. Rev. Fluid Mech., 6: 37-54. 



91 
 

Rigidly fixed vibrations of functionally graded 
viscothermoelastic sphere 

*Dinesh Kumar Sharma and **Vishal Walia 
*Assistant Professor, Shiva Institute of Engineering & Technology, Bilaspur (H. P.)  

**Assistant Professor, Govt. College Tissa, District Chamba (H. P.)  
Email: dksharma200513@gmail.com, vishalnit04@gmail.com,  

Abstract 
The present study is based on free vibrations of in – homogenous 

viscothermoelastic hollow sphere. The material is assumed to be graded in radial 
direction with a simple power law. Matrix Fröbenious method of extended power series is 
employed to obtain the analytical solution for displacement and temperature. Numerical 
iteration technique has been used by MATLAB software tools. The computer simulated 
results for polymethyl methecrylate material in respect of natural frequencies, 
thermoelastic damping have been presented graphically. 
Key Words: Functionally graded; Rigidly fixed; Vibrations; Fröbenius; Thermoelastic 
Damping.  
 
1. Introduction  
According to Schaflauch et al. [1] the great achievements have been made by the authors 
[2 – 5] to obtain general solution of the vibration problems for an isotropic sphere. Ding 
et al. [6] obtained the eigen frequencies of an anisotropic elastic sphere. Neuringer [7] 
developed the procedure of Fröbenius method when the roots of indicial equation are 
complex. Othman et al. [8] studied the plane waves in viscothermoelasticity in the 
context of generalized thermoelasticity by two relaxation times. Sharma et al. [9 – 10] 
studied the free vibration analysis of homogenous isotropic viscothermoelastic solid 
sphere and hollow sphere by using matrix Fröbenius method. Keles and Tutuncu [11] 
investigated the free and forced vibrations of functionally graded elastic spheres and 
cylinders. Dhaliwal and Singh [12] have given a detailed look to such types of problems. 

The purpose of present paper is to study the exact vibration analysis of 
inhomogeneous isotropic, viscothermoelastic sphere subjected to rigidly fixed, thermally 
insulated conditions. The problem has been modeled with the help of non-classical 
theories of thermoelasticity developed by Lord and Shulman [13] and Green and Lindsay 
[14].  The secular equations have been solved with the help of MATLAB software tools 
for different modes of vibrations The computer simulated results in respect of natural 
frequencies and thermoelastic damping are shown graphically. 
2. Formulation of Problem   
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Consider a thick walled thermally conducting viscothermoelastic hollow sphere of 
inner radius a  and outer radius la  initially at uniform temperature 0T  in the undisturbed 
state. For plane strain problem, the components of displacement in spherical coordinated 

),,( r system are expressed as 0  uu and ),( truur  respectively. The basic 
governing equations are given by [12]: 

ujij  ,   (1) 
)()(1

10
*
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2 eteTTtTCr
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 
   (4) 

Here ),( truu   is the displacement vector;  trT , is the temperature; ij and ije  ,  trji ,,  are stress and strain components, respectively;  is mass density;  eC  is the 
specific heat at constant strain; K is the thermal conductivity; 0t  and 1t are the thermal 
relaxation times and * is the viscothermoelastic coupling constant. The 
quantity )2,1(, iik , is the Kronecker’s delta in which 1k corresponds to Lord-
Shulman (LS) theory and 2k  represents Green-Lindsay (GL) theory. The superposed 
dots represent time differentiation. 
We consider the material is isotropic and functionally graded in the sense that the 
modulus of elasticity, thermal conductivity and density vary with the radial coordinate 
according as            rKKrrrr e 0

*
0

*
00 ,,,, ,  

where the exponent  essentially represents the degree of non-homogeneity.  
The material parameter have been defined as 






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








 ttt eee 0

*
01000 1,1,1   

   eTeeTeee  ))23((,23 100  are the viscothermoelastic 
parameters and viscothermoelastic coupling parameters. The quantities 10 ,   are the 
thermal relaxation times; ee  , are Lame’s parameters and T  is the coefficient of linear 
thermal expansion of the material. 
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Boundary Conditions  
We consider the exact analysis of non-homogenous hollow sphere which is 

subjected to rigidly fixed, thermally insulated conditions at inner radius ar  and lar  . 
Mathematically, this provides us: 

.,at,0,0conditionsboundaryInsulatedThermally , laarTu r 
 (5) 
3. Solution of the problem 
In order to facilitate the solution we introduce the following non – dimensional quantities  
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Using quantities (6) and (3) - (4) in equations (1) and (2) and simplifying we get 
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where    



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4. Introduction of time harmonics and transformation 
We consider time harmonic vibrations and transformation as  

)exp(2
1   iUXU  (9) 

)exp(2
1   iX  

Using equation (9) in equations (7) and (8) and simplifying we get 
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5. Solution by applying Matrix Fröbenius Method 

Clearly, the dimensional domain of consideration lara   corresponds to  
lX 1  in non-dimensional form. In order to apply the matrix Fröbenius method to 

solve equations (10) we look for power series of the type 
 

0k
kp

k XZZ  (11) 

where      kkk BAZZ andU ,   Here p  is the eigen value and kk BA , are 
unknown coefficients to be determined.  
Substituting the solution (11) in equations (10) we get following system of equations 
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Equating to zero, the coefficients of lowest power of X ( 2.. pXei ) in equation (12), we 
obtain  

0)( 01 ZpH          (13) 
The system of equations (13) will have a non-trivial solution iff 0)(1 pH , which leads 
to the indicial equation 

  02
1 2
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The roots of above equations are given as 
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Clearly, these roots satisfy the property 3412 , pppp  . Here the roots 
)2,1( ipi  are complex and the roots )4,3( ipi  being real. Thus, in the former case 

the leading terms in the series solution (11) are of the type        )log(sin)log(cos000000 XpiXpXBAXBAXBA II
ppipp RIR  

   
In order to obtain two independent real solutions, it is sufficient to use any one of the 
complex root and taking its real and imaginary parts see Neuringer [7].  
For the choice of indicial roots, the system of equations (14) leads to: 

    







 4,3,1

2,1,0,4,3,0
2,1,1

00 j
jpBj

jpA jj     (16) 
Again equating to zero the coefficients of next lowest degree term 1pX in equation (13), 
we obtain 

0)()1( 0211  ZpHZpH jj        (17) 
The equation (18) on simplification gives us a solution  

011 ZDZ     (18) 
where 
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Now equating the coefficients of like powers of kpX  equal to zero, we obtain the 
recurrence relation: 

,...3,2,1,0,0)1()2( 1221   kZHZkpHZkpH kkjkj      (19) 
On simplification the equation (19) implies that  

,...3,2,1,0,)(0
0)(
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)(0
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
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where       22
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For ,0k the equation (20) upon simplifications provides us 
022 ZDZ   (21) 

where 
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and putting ...4,3,2,1k .so on. Continuing in this manner it can be easily shown that 
the matrices )(2 jk pD have similar form as that of )(1 kpH   and the matrices 

)(12 jk pD  are alike )(2 kpH  . Thus, in general, we have 
...3,21,)()( 022  kZpDpZ jkjk   , (22) 

...3,2,1,)()( 01212   kZpDpZ jkjk   (23)    
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where  4,3,2,1;)(1)( 0
22

0
11  jpdpd jj . 

 6. Convergence Analysis  
From equation (22) – (23), it can also be shown that      **1

12
*1

2 )(,)( EkOpDEkOpD jkjk
   (24) 

where 
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Now according to Cullen [15], a matrix sequence  kA in the complex filed converges,  
)( AALim kk  , if each of the 2k component sequence is convergent. Upon utilizing the 

above stated fact, we see that both the matrices 0)(2 jk pD  and 0)(12  jk pD , 
as k . This implies that the series (11) is absolutely and uniformly convergent having 
infinite radius of convergence and the derived series is analytic functions and hence can 
be differentiated term by term. 
Thus the series solution (11) becomes 
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21 )...( ZXXDXDXDXDXDIZ jp    (25) 
where I is an identity matrix of order two and matrices ...)3,2,1( iDi  have been 
defined above 
7. Formal Solution to obtain displacement and temperature gradient 
In the light of the above discussion, the series solution (26) with help of equations (5) via 
equation (9) displacement, temperature and temperature gradient are written as:  
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where )4,3,2,1,( jE j are arbitrary constants to be evaluated.  
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8. Secular dispersion equations 
We assume the viscothermoelastic sphere is subjected to rigidly fixed and 

thermally insulated conditions (5) at its surfaces ),1( lX  . The system will have a 
nontrivial solution if and only if the determinant of the coefficients 

)4,3,2,1( jE j vanishes. This requirement of nontrivial solution leads to following 
dispersion equations as discussed below: 
Case I: For 0k . In this case the secular equations are obtained as: 

)4,3,2,1,(,0)(det *  jimij        (27) 
where the elements *

ijm have been defines as below: 
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Case: II For 0k . In this case the secular equations for Set I and Set II are obtained as: 

)4,3,2,1,(,0)(det  jimij             (29) 
where the elements of ijm are defined as below: 
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The secular dispersion equations (27) and (29) govern axisymmetric vibrations of 
functionally graded viscothermoelastic sphere under rigidly fixed thermally insulated 
conditions prevailing at its surface.  
9. Numerical results and discussion 
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In order to illustrate the analytical development, we propose some numerical 
results in this section. Here numerical computations have been carried out in case of 
rigidly fixed thermally insulated sphere by employing fixed point iteration numerical 
technique with the help of MATLAB software. The polymethyl methacrylate material has 
been considered for numerical computations whose physical data is given below Othman 
et al. [8]: 

,333.0,773,1011.1,045.0 2
0

111*    KTsT  
,1190,03.0,02.0,05.0ˆˆ 3

1010
 mkg  

161111 1077,1400,19.0   KKkgJCKmWK Te  
Due to the presence of dissipation term in heat conduction equation (2), the secular 
equations are, in general, complex transcendental equations and hence provide us 
complex values of the natural frequency . If we write m

I
m
R

m i , the non – 
dimensional frequency and dissipation factor are given by m

Rvf  and m
ID  , 

where m is the mode number which corresponds to the roots of the transcendental 
equation (29). The numerical computations have been done from equation (29) by taking 
sufficient number of the values of Fröbenius parameter )(k  in order to obtain the natural 
frequency vf  and dissipation factor )(D  of different modes. The computer simulated 
natural frequency, thermoelastic damping and frequency shift have been presented 
graphically for viscothermoelastic (VTE), thermoelastic (TE), viscoelastic (VE) and 
elastic (E) spheres. Here the thermoelastic damping )( 1Q  and frequency shift )( s  are 
defined as [16], 

vf
DQ 21   and E

v

E
v

M
v

f
ffs  respectively. Here M stands for VTE 

(viscothermoelastic), TE (thermoelastic), VE (viscoelastic) materials and E denotes 
elastic one.  
Figs. 1 and 2 present variation of non – dimensional frequency )( vf  versus mode number 

)(m  for 4,2  ll  and different values of grading index )( . It is observed that the 
non – dimensional frequency )( vf  increases with mode number )(m  for 

4and2  ll . The frequency increases with grading index )( in the 
order 0.5,0.2,0.5,0.0,0.2   for 2l  where as it happens in the order 

0.5,0.5,0.2,0.2,0.0   for 4l . Thus, the magnitude of the frequency 
)( vf remains large for 5 in both the cases for all considered values of )(m in 

comparison to other values of )( and it has small magnitude for 0.2  and 
0.0  in case of 4and2  ll , respectively. This depicts the effect of in – 

homogeneity parameter on the variations of non – dimensional frequency. 



100 
 

 

                   
Fig. 1: Non – dimensional frequency )( vf  versus mode number )(m for different values 
of   and  2l . 

                     
Fig. 2: Non-dimensional frequency )( vf  versus mode number )(m  for different values 
of  and  4l . 
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Fig. 3. Thermoelastic damping )( 1Q versus mode number )(m for VTE, TE and  
            VE ).2,0(  l  

                     
Fig. 4: Thermoelastic damping )( 1Q versus mode number )(m  VTE, TE and 
VE ).2,2(  l  
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Fig. 5: Frequency shift ( s ) versus mode number )(m for VTE, TE and VE 

).2,0(  l  

                 
Fig. 6: Frequency shift ( s ) versus mode number )(m  for VTE, TE and 
VE ).2,2(  l  
 

Figs. 3 and 4 show the variations of thermoelastic damping )( 1Q between VTE, TE 
and VE for 2,2and2,0  ll . It is revealed that thermoelastic damping )( 1Q  
profiles initially increase to attain their peak values and then decrease with increasing mode 
number )(m . This peak value of the quantity varies according as 

2,0for111   lQQQ VEVTETE  and obeys the inequalities 111   TEVTEVE QQQ for 
2,2  l . Thus, the in – homogeneity index )( significantly affects the existence of 

peak value. The peak value of 1
VTEQ  seems to be more or less the average of 1

TEQ  and 1
VEQ  in 



103 
 

both the cases with reversed trends. The variations of frequency shift )( s  versus mode 
number )(m have been plotted in Figs. 5 and 6 for 2,2and2,0  ll . It is 
noticed that frequency shift of vibrations is quite high for VE materials as compared to that 
for VTE and TE spheres in both the cases 2,2and2,0  ll . 
10. Conclusion 

The Matrix Fröbenius method has been successfully implemented to study 
axisymmetric rigidly fixed vibrations of viscothermoelastic spheres. The in-homogeneity 
parameter significantly affects the vibration characteristics. The analytically observed 
relations for different cases of vibrations have been analyzed numerically for polymethyl 
methacrylate material. Thermoelastic damping and frequency shift may also be handled with 
this index to enhance the quality of the signals of different modes of vibrations. The energy 
loses (othermoelastic damping) can also be optimized with the help of grading index. The 
thermal relaxation time and thermoelastic coupling parameters have significant vibrations 
effect on vibration characteristics such as thermoelastic damping and frequency shift. The 
study may find applications in industry and medicine to control the stress distribution.  
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Abstract. Properties of almost injective modules and indecomposable almost self-
injective modules derived by various researchers since the inception of these modules 
(i.e. 1989) have been surveyed. The conditions have been studied as to when a direct sum 
of almost injective modules is again almost injective. It is observed that for any module ܯ to be an indecomposable almost self injective module then (ܯ)݀݊ܧ is local. 
Keywords: Almost Injective Modules, Local rings, Uniform Modules, Injective Hull. 
Introduction. This is a brief survey on ‘almost injective modules’ that has been studied 
mostly by Harada and his collaborators. Harada and Tozaki in [3] defined ‘almost M-
projective modules’ which is generalized from the concept ‘M-projective modules’. 
Further, Baba in [2] introduced the concept ‘almost M-injective modules’ analogous to 
the concept of ‘almost M-projective modules’. He generalized the Azumaya’s theorem 
concerning to ‘M-injective module’ to the case of ‘almost M-injective module: ܰ is ܯଵ-
and ܯଶ-injective module iff ܰ is ܯଵ ⊕  ଶ toܯ ଵ andܯ ଶ-injective module for modulesܯ
the case of ‘almost M-injective modules’. Harada in [4] extended the theorem proved by 
Baba in [2]to the case of Artinian modules. Mainly, in this paper, we analysed and 
reproduced the results of Alahmadi and Jain [1].  
Preliminiries. In this paper, we always assume that ܴ is a ring with identity and every 
module is unitary right ܴ-module. For module ܯ, the socle and injective hull of ܯ will 
be denoted by Soc(ܯ) and E(ܯ). ܰ ⊂௘  is an essential extension of ܯ will denote that ܯ
module ܰ. If Endோ(ܯ) is a local ring, we say ܯ is an LE module.  
Definition1.1. Harada in [3] defined the concept of almost ܯ-projective modules. Let M 
and N be two right R-modules.  Let ݒ: ܯ → ܯ ൗܭ  be the canonical epimorphism and 
ℎ: ܰ → ܯ ൗܭ  be any R-homomorphism. If there exist an R-homomorphism ݇: ܰ →  ܯ
such that the diagram 1 commutes, i.e. ݇ݒ = ℎ, or there exist a non-zero direct summand ܯଵ of ܯ (denoted by ܯ⊕ ⊇ ଵܯ :′݇ and an R-homomorphism (ܯ → ܰ such that ℎ݇ᇱ =  ݒ
restricted to ܯଵ as shown in the diagram 2 then ܰ is called almost ܯ-projective module.  
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Definition1.2. Baba in [2] defined the concept ‘almost ܯ-injective modules’. ܯ is called 
almost ܰ – injective module if for each submodule ܺ of ܰ and each homomorphism ݂: ܺ → :݃ either there exists  homomorphism ,ܯ ܰ →  such that diagram 3 commutes ܯ
or there exists homomorphism ℎ: ܯ → ܰ such that diagram 4 commutes where ܰ ଵ is a 
nonzero direct summand of N, and ߨ ∶ ܰ → ଵܰ is a projection onto ଵܰ. 
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            Diagram 1 

            Diagram 2 
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Definition 1.3. (Almost self-injective module). If an R-module ܯ is almost ܯ–injective  
then ܯ is called almost self-injective module. 
Definition 1.4. (Right almost self-injective ring). A ring ܴ is called right almost self 
injective if it is almost self injective as a right module over itself. 
Definition 1.5. (Essential extension). An ܴ-module ܯ with submodule ܰ is said to be 
essential extension of ܰ if for each submodule ܪof ܪ ,ܯ ∩ ܰ = {0} implies that ܪ ={0}. 
Definition 1.6. (Injective hull). An ܴ-module ܧ is called the injective hull of an 
moduleܴ–module ܯ if ܧ is an essential extension of ܯ and ܧ is an injective module.  
Definition 1.7. (Uniform module). An ܴ-moduleܯ is called a uniform module if 
Intersection of any two non-zero submodules of ܯ is non-zero. 
Definition 1.8. (Local ring). A ring ܴ is called local if set of non-unit elements in ܴ 
forms an ideal. 

ܰ= ଵܰ ⊕ ଶܰ 0 
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Definition 1.9. (Indecomposable module). An R-module M is said to be 
indecomposable if it is non-zero and it cannot be written as direct sum of two non-zero 
submodules. 
Definition 1.10. (࣊-injective module) .An R-module ܯ is called quasi-continuous or ߨ-
injective if for any two submodules ܯଵ and ܯଶ of ܯ with ܯଵ ∩ ଶܯ = 0, each projection ߨ௜ ∶ ଵܯ ⊕ ଶܯ → ݅ ݎ݋݂ ௜ܯ = 1,2, can be extended to an endomorphism of ܯ. 
Theorem 1.11. [Azumaya Theorem] Let ܰ, ܯଵand ܯଶ be ܴ-modules. If ܰ isܯଵ-and ܯଶ-
injective, then ܰ is ܯଵ ⊕  .ଶ injectiveܯ
Baba in [2] generalized the Azumaya’s above theorem to the case of almost ܯ-injective 
modules as following: 
Theorem1.12. Let ܷ௞ be the uniform modules of finite composition length for ݇ = 0,1,2 … ݊, then the following two conditions are equivalent: 
(1) ܷ଴ is almost ∑ ⊕௡௞ୀଵ ܷ௞-injective. 
(2) ܷ଴ is almost ܷ௞- injective for every ݇ = 1,2 … ݊ and if Soc(ܷ଴)≈Soc(ܷ௞) ≈ Soc( ௟ܷ)( 
for any ݇, ݈ ∈ {1,2 … ݊}, ݇ ≠ ݈) then (i) ܷ଴ is ܷ௞-and ௟ܷ-injective or (ii) ܷ௞ ⊕ ௟ܷ is 
extending for simple module. 
Harada in [4] generalized the above theorem proved by Baba [2] to the case of Artinian 
Modules as following: 
Theorem 1.13. Let ܷ଴ and ൛ ௝ܷ , ௞ൟ௝ୀଵܫ

௡
 ௞ୀଵ
௠ be LE and Artinian modules such that ܷ଴ is ܫ௝-

injective for all j and ܷ଴ is almost ௜ܷ-injective but not for all ݅. Then ܷ଴ is almost (∑ ⊕ ௜ܷ)௜ ⊕ (∑ ⊕ ௝௝ܫ ) injective iff ∑ ⊕ ௜ܷ)௜ is an extending module. 
Definition1.14. Harada in [5] introduced the concept of ‘almost ܯ-simple projective 
modules’ and ‘almost ܯ-simple injective modules’. He introduced a little weaker 
condition to the definition of almost M-projective module. In the diagram 1 and 2, he 
take only ℎ ∶ ܰ → ܯ ܰൗ  whose image is simple. If for any ℎ in these diagrams, there exist 
a homomorphism ℎ෨, then ܰ is called almost ܯ-simple projective module. Similarly in the 
diagram 3 and 4, he take only those ݂: ܺ →  whose image is simple. If for any ݂ in the ܯ
diagram 3 and 4, either there exist ݃: ܰ → such that diagram 3 commutes or there exist ℎ: ଵܰ ܯ → ܯ such that diagram4 commutes, then ܰ is called almost ܯ −simple injective 
module. He proved that the above weaker conditions coincide with the original one when ܴ is semi perfect ring and ܯ and ܰ are ܴ-modules of finite length. He gave a criterion for 
an ܴ-module ܯ଴ to be almost ܯଵ-projective, where ܴ is a perfect ring and ܯଵ is 
indecomposable ܴ-module. 
We have reproduced the results of Alahmadi and Jain of [1] as following: 
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Lemma1.15. An indecomposable almost self-injective module is π-injective and hence 
uniform. 
Proof. Let ܣ and ܤ be non zero submodules of an indecomposable almost self-injective 
module ܯ such that ܣ ∩ ܤ = 0.    Then the projection π: ܣ ⊕ ܤ →  can either be ܣ
extended to an endomorphism of M by diagram 3 or there exists a homomorphism ݃ ∈ End(ܯ) such that ݃ߨ = ݅ by diagram 4. The later implies ker (ߨ)=0, a contradiction. 
So ܯ is ߨ-injective and hence uniform module. 
Lemma 1.16. Let ܯ be a uniform module then (ܯ)ܧ (injective hull of ܯ) is again 
uniform module. 
Proof: Let ܭଵ,ܭଶ  be submodules of (ܯ)ܧ with ܭଵ⋂ܭଶ = 0,  then ܯ ∩ ܯ  ,ଵܭ ∩  ଶ  areܭ
submodules of M and  (ܯ ∩ ܯ)⋂(ଵܭ ∩ ( ଶܭ = ( ଶܭ⋂ଵܭ)⋂ܯ = 0⋂ܯ = 0.  being ܯ
uniform module implies thatܯ ∩ ଵܭ = 0 or ܯ ∩ = ଶܭ 0. So by the definition of (ܯ)ܧ, 
either ܭଵ = 0 or ܭଶ = 0 which shows that (ܯ)ܧ is a uniform module.  
Theorem 1.17. By [7] A module ܯ is almost ܰ − injective iff for any homomorphism ݂ ∈ ,(ܰ)ܧ)݉݋ܪ (ܰ)݂ such that ((ܯ)ܧ  ⊈  :the following holds ,ܯ
(i) ܰ = ଵܰ ⊕ ଶܰfor some submodules ଵܰ, ଶܰ with ଵܰ ≠ 0. 
(ii) ݂ is monic on ܧ( ଵܰ), (ܯ)ܧ = )ܧ)݂ ଵܰ)) ⊕ )ܧଵ such that ݂൫ܭ ଵܰ)൯⋂ߨଵ(ܯ) ⊆
݂( ଵܰ) where ߨଵ: (ܯ)ܧ → )ܧ)݂ ଵܰ)) is a projection via ܭଵ. 
(iii) ݂( ଶܰ⋂ܮ) ⊆ ܮ ଵ, whereܭ = ݔ} ∈ ܰ: (ݔ)݂ ∈ {ܯ = ݂ିଵ(ܯ)⋂ܰ. 
(iv) For the projection ߨଵ: (ܯ)ܧ → )ܧ)݂ ଵܰ)) via ܭଵ, there exist an isomorphism ݃: )ܧ ଵܰ) → )ܧ)݂ ଵܰ)) such that ߨଵ(ܯ) ⊆ ݃( ଵܰ), ݃ maps ܧ( ଵܰ) onto ݂(ܧ( ଵܰ)) and 
(ଵݔ)݃ = (ଵݔ)݂ +  .(ଶݔ)ଵ݂ߨ
Proposition 1.18. Let ܯ and ܰ be uniform modules. Then ܯ is almost ܰ-injective 
module if and only if for every ݂ ∈ ,(ܰ)ܧ) ݉݋ܪ (ܰ)݂ either ((ܯ)ܧ  ⊆  or ݂ is an ܯ
isomorphism and  ݂ିଵ(ܯ)  ⊆ ܰ. 
Proof. Assume ܯ is almost ܰ-injective module.  
To prove: For every ݂ ∈ ,(ܰ)ܧ൫ ݉݋ܪ (ܰ)݂ ൯ either(ܯ)ܧ ⊆  or ݂ is an isomorphism ܯ
and    ݂ିଵ(ܯ)  ⊆ ܰ. .                                                                                                         
Let ݂ ∈ ,(ܰ)ܧ൫ ݉݋ܪ = ܺ ൯ and(ܰ)ܧ  { ݊ ∈  ܰ | ݂(݊) ∈ →then f|ଡ଼ : X { ܯ M. Since ܯ 
is almost ܰ– injective then, either  diagram 3 or the diagram 4 holds. If diagram 3 holds, 
then there exists ݃: ܰ → such that f|ଡ଼ ܯ  =  g|ଡ଼.                                       
 Claim   ܯ ∩ (݃ − ݂)(ܰ ) =  0.       
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Assume that  ݉ ∈ ∩ ܯ  (݃ − ݂)(ܰ) that imply  ݉ ∈ ∋ ݉ andܯ (݃ − ݂)(ܰ) such that 
 ݉ = ൫ ݃ –  ݂ ൯(݊), for some ݊ ∈ ܰ.Then ݂ (݊)  =  ݃(݊) –  ݉ ∈ .ܯ ( because ݉ ∈  ܯ
and ݃ ∶  ܰ → (݊)݃ such thatܯ ∈ ܰ for all ݊ ∈  ܰ that implies݃(݊)–  ݉ ∈  which  ,ܯ 
implies ݊ ∈ ܺ .  So ݉ = ݃(݊) − ݂(݊) = 0 (because f|ଡ଼  =  g|ଡ଼).  
 But ܯ ⊆ ݃) Hence  . (ܯ)ܧ ݁ − ݂)(ܰ) = 0 . That is ݂ (ܰ) ⊆  .ܯ 
If diagram 4 holds, then there exists ℎ: ܯ → ܰ such that ℎ(ݔ)݂݋  =  ݂ which shows (ݔ)ܫ
is one-one. Since ܯ and ܰ are uniform modules then by lemma 1.16, (ܯ)ܧ and ܧ(ܰ) are 
uniform which implies that we cannot decompose ܯ, ܰ,  Hence, by .(ܯ)ܧ and (ܰ)ܧ
theorem 1.17, ݂ is an isomorphism. Clearly h|୤(ଡ଼) = f ିଵ|୤(ଡ଼).   
Again claiming M ∩ (݂ିଵ − ℎ ) (ܯ) = 0. Let ݉′ ∈ M ∩ (݂ିଵ − ℎ ) (ܯ) such that there 
exist ݊ᇱ ∈ ܰ, ݊ᇱ = ( ݂ିଵ − ℎ )(݉ᇱ)for some ݉′ ∈ ′݊+(′݉)then ݂ିଵ(݉′) = hܯ ∈ ܰ. 
Apply ݂ to both sides, we get݉′= f݂(݉′) = f(ℎ(݉ᇱ) + ݊ᇱ) which implies ݉ᇱ ∈ ݂(ܺ). So ݊ᇱ = (݂ିଵ − ℎ)(݉ᇱ) = 0 because h|୤(ଡ଼) = f ିଵ|୤(ଡ଼) and ݉ᇱ ∈ ݂(ܺ). Hence our claim is 
true. Since N ⊆ୣ E(N), (݂ିଵ −  ℎ )(ܯ)  =  0 . That means ݂ିଵ(ܯ) = ℎ(ܯ) ⊆ ܰ. The 
converse is clear. 
Lemma 1.19. Let ܴ be a ring with unity. Let ݀݊ܧ(ܴோ) denote the ring of endomorphism 
of R regarded as a right R-module. Then ܴ ≈  .as rings (ோܴ)݀݊ܧ
Lemma 1.20. An ܴ module ܯ ≠ 0 is indecomposable iff  (ܯ)݀݊ܧ has no non-trivial 
idempotent. 
Proposition1.21. Let ܴ be a ring with no nontrivial idempotent. Then ܴ is right almost 
self- injective if and only if for every ܿ ∈ ∋ ܿ either ,(ோܴ)ܧ ܴ or there exists ݎ ∈ ܴ such 
tha ܿݎ =  1. 
Proof. Assume first ܴ is right almost self –injective module. Lemma 1.19 and 1.20 
implies that ܴோ is an indecomposable module. So ܴோ is uniform by lemma 1.15. 
Let ܿ ∈ → ܴ :௖ܫ and (ோܴ)ܧ   = ௖(r)ܫ .be the left multiplication homomorphism. i.e (ோܴ)ܧ 
cr.  Then there exits ݂ ∶ (ோܴ)ܧ   → ௖|ோܫ such that (ோܴ)ܧ  = ݂|ோ . 
By proposition (1.18) either ݂(ܴ)  ⊆  ܴ or ݂ is an isomorphism and ݂ିଵ(R) ⊆ R. 
If ݂(ܴ)  ⊆  ܴ, then ݈௖(1) = ܿ = ݂(1) ⊆ ܴ which implies that ܿ ∈ ܴ. If ݂ is an 
isomorphism and ݂ିଵ(R) ⊆  R, then there exists ݎ ∈ ܴ such that ݂(ݎ)  =  1. So, ܿݎ =݈௖(ݎ)  = (ݎ)݂   =  1. Conversely, suppose for every ܿ ∈ ܿ either ,(ோܴ)ܧ ∈ ܴ or there 
existsݎ ∈ ܴ such that ܿݎ =  1. We claim that E(ܴோ)is uniform.     
Let ݁ ∈ be an idempotent then for ݁(1)(ோܴ)ܧ)݀݊ܧ   ∈ either ݁(1) ,(ோܴ)ܧ  ∈ ܴ or there 
exists ݎ ∈  ܴ such that ݁(1)ݎ =  1. If ݁(1)  ∈  ܴ, then ݁(1) is an idempotent in ܴ and by 
assumption ݁(1)  = 0 or ݁(1)  = 1. Hence ݁ =  0 or ݁ =  1ா(ோೃ) because ݁(ݎ) =
 ݁(1. (ݎ = ݎ(1)݁ = 0. ݎ =  0 implies ݁ = 0or ݁(ݎ) =  ݁(1. (ݎ = ݎ(1)݁ = 1. ݎ =  ݎ 
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implies ݁ = 1. Hence ݁ =  0or =  1ா(ோೃ) . If ݁(1)ݎ = 1 for some ݎ ∈  ܴ, then 
(ݎ)݁ = 1. So ݁(1) = ݁൫݁(ݎ)൯ = ݁ଶ(ݎ) = (ݎ)݁  = ோೃ|݁ ݏ݈݁݅݌݉݅ 1  =  1ோೃ .   
 We proceed to show that ݁ =  1ா(ோೃ). Suppose that there exists ݔ ∈  such (ோܴ)ܧ
that ݁(ݔ) ≠ (ݔ)݁ then,ݔ − ≠ ݔ  0, since ܴ ⊆௘ ݎ then there exists ,(ோܴ)ܧ ∈  ܴ, such that (݁ݔ − ᇱݎ (ݔ  ≠  0 and (݁ݔ − ᇱݎ (ݔ  ∈  ܴ.So (݁ݔ − ᇱݎ (ݔ  = − ݔ݁)݁  ᇱݎ (ݔ   = (݁ଶݔ −
ᇱݎ (ݔ݁ = − ݔ݁)  = ݎ (ݔ݁   0, a contradiction to the fact  that (݁ݔ – ᇱݎ (ݔ  ≠  0. Therefore, ݁ =  1ா(ோೃ). This proves E(ܴோ) is indecomposable and hence uniform. Thus ܴோ  is 
uniform. Now let ݂ ∈ Then by assumption݂(1) .(ோܴ)ܧ ݀݊ܧ  ∈ implies either ݂(1)(ோܴ)ܧ   ∈  ܴor ݂(1)ݎ = (ݎ)݂    =  1.If ݂(1)  ∈  ܴ implies ݂(ܴ)  ⊆  ܴ because for all ݎ ∈ ܴ, 
we have ݂(ݎ) = ݂(1. (ݎ = ݎ(1)݂ ∈ ܴ. If ݂(ݎ)  = 1 for some r ∈R, then݂|௥ோ: rR→ R is an 
isomorphism (because (E(ܴோ)) is uniform  and injective ),  ݂ is an isomorphism on E(ܴோ) and ݂ିଵ(R) =ܴݎ ⊆  ܴ.By proposition 1.18, ܴ is almost self injective module.  
Lemma 1.22.Let ܯ be an indecomposable almost self injective module. Then for every ݂, ݃ ∈ ܵ = (݂) ݎ݁݇ if (i) ,(ܯ) ݀݊ܧ ⊊ ݃ܵ then (݃) ݎ݁݇ ⊊  ݂ܵ (ii) if ݇݁ݎ (݂) =  (݃)ݎ݁݇ 
then either ݂ܵ ⊆ ܵ݃ or ܵ݃ ⊆ ݂ܵ. 
Proof. Let  ∅ ∶ (ܯ)݂   → ( (݉)݂)∅ be an ܴ-homorphism defined by  (ܯ)݃   =  ݃(݉) .    
(i) We have ݎ݁ܭ(݂) ⊊  ker (݃) then ∅ is not one-one map since there exist  0 ≠ ݉ଵ ∈
such that ݉ଵ (݃) ݎ݁ܭ ∉ such that  ∅൫݂(݉ଵ)൯ (݂) ݎ݁ܭ =  ݃(݉ଵ) = 0. Since M is almost 
N-injective module which implies diagram 4 cannot hold and only diagram 3 holds 
because ܯ is an indecomposable module. By assumption ∅ can be extended to ܯ. Then 
there exist ℎ ߳ ܵ such that  ℎ(݂(݉)) = ∅(݂(݉)) for all ݉ ∈ ܫ Let  .ܯ  ∈ ܵ be an 
identity map. Then ݋ ܫ ݃ ∈ ܵ݃ and ݃݋ܫ(݉)  = ((݉)݃)ܫ   =  ݃(݉)  =   ∅(݂(݉))  =
  ℎ (݂(݉)) for all ݉ ∈ so  ℎ ൫݂(݉)൯ ܯ  ∈  ݂ܵ implies  ܵ݃ ⊊  ݂ܵ. 
Let ݇݁ݎ(݂) =  In this case ∅ is one – one. Because if ∅ is not one-one implies .(݃)ݎ݁݇
∋ ݉ such that ݂(݉)  ≠  0 such that ∅൫݂(݉)൯ =  0 =  ݃(݉)which implies ݉ ∈
ker (݃) = ker (݂)which is contradiction because m ∉ ker (݂) ). So either ∅  is extended 
to an endomorphism ℎ ߳ ܵ or there exist  ߟ ∈  ܵ such that ߟo߶= ܫ௙(௠). If߶ = ℎ on ݂(ܯ) 
then as above ܵ݃ ⊆  ݂ܵ. If ߟo߶= ܫ௙(௠). Let ܫ be identity map. That imply ܫ ∈ ܵ. Then 
(݉)݂݋ܫ ∈ ݂ܵ. (݉)݂݋ܫ  =  ݂(݉)  = ((݉)݂)߶݋ߟ   = (((݉)݂)߶)ߟ   = ((݉)݃)ߟ ⊇ ݂ܵ Thus .ܯ ߳ ݉ for all (݉)݃݋ߟ =    ܵ݃. 
Lemma 1.23. Let ܯ be an indecomposable almost self-injective module and let ܵ  of ܵ generated by non-isomorphic monomorphisms in ܵ is ܪ Then the left ideal.(ܯ)݀݊ܧ=
a two-sided ideal.  
Proof. Given that ܪ is left ideal generated by non-isomorphic monomorphism in ܵ. We 
need only to show that ݂݃ ∈ ݃ for each ܪ ∈ ܵ and for each non-isomorphism ݂ ∈  ܵ 
with ݇݁ݎ (݂) =  0. If ݇݁ݎ(݂݃) ≠ 0 which implies ݂݃ ∈  .(by lemma 1.22) ܪ 
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If ݎ݁ܭ(݂݃) =  0then݂݃ is one-one implies ݃ is one-one. If ݂݃ were an isomorphism that 
implies ݂ would be onto which is contradiction because ݂ ∈ ݂݃ That implies .ܪ ∈  is ܪ
non-isomorphic monomorphism. 
Theorem 1.24. If ܯ is an indecomposable almost self injective module then (ܯ)݀݊ܧ is 
local. 
Proof. Given that ܯ is an indecomposable almost self injective module.To prove (ܯ) ݀݊ܧ is local, we have to prove the set of non-units of (ܯ) ݀݊ܧ forms an ideal.                                 
Let ܵ =  be set of all ܨ then by lemma1.20, ܵ has only trivial idempotent. Let(ܯ)݀݊ܧ 
non-isomorphic monomorphism in ܵ. If ܨ is empty, then ߶ ∈ ܵ is an isomorphism iff ݇݁ݎ(߶) =  0. Let ܭ be set of non-units in ܵ. We have to prove ܭ is an ideal. Let ℎ, + and suppose that ℎ ܭ ∋ ݃  ݃ ∈  ܷ(ܵ) where ܷ(ܵ) is group of units of S. Let ݎ݁݇ ∋ ݔ (ℎ)  ∩ + then (ℎ (݃)ݎ݁݇  (ݔ)(݃   =  0 implies that ݔ =  0. Since ܯ is uniform, 
either ݇݁ݎ (ℎ)  =  0or ݇݁ݎ (݃)  =  0. This means either ℎ or ݃ is an isomorphism. Which 
is contradiction because ℎ, ݃ ∈ + implies that ℎ ܭ   ݃ ∈ ∋ ݎ Let .ܭ   ܵ, ℎ ∈  ℎ isݎ if ,ܭ 
non-units then ݎℎ ∈ ℎݎ If .ܭ  ∈ ܷ(ܵ) that imply ℎ is one-one . So ℎ is an isomorphism 
(because ܨ is empty) which is contradiction because ℎ ∈ ∋ ℎݎSo .ܭ  .Henceܵ is local .ܭ
Suppose ܨ is non-empty. Let ܪ = ∑ ݂ܵ௙∈ி . By Lemma 1.22, ܵ\ܷ(ܵ) ⊂  Now let .ܪ 
ℎ ∈ We show that ℎ is not invertible. Write ℎ.ܪ = ∑ ݃௜ ௜݂௡௜ୀଵ , where ௜݂ ∈ ,ܨ ݃௜ ∈ ܵ.By 
Lemma 1.22ܵ ଵ݂ ,ܵ ଶ݂ , … … . . , ܵ ௡݂are linearly order.So ܵ ଵ݂  ⊆ ܵ ଶ݂ ⊆ ⋯ … . . ⊆ ܵ ௡݂after 
reordering if necessary. Hence ℎ =  ݃ ௡݂ for some ݃ ∈  ܵ. Now if ℎ is invertible, then 

௡݂is left invertible. Since ܵ has no nontrivial idempotents, ௡݂ is invertible, a contradiction 
because ௡݂ ∈F. Thus ܪ =  ܵ \ܷ(ܵ). Since ܪ is two- sided ideal of ܵ by lemma 1.23, it 
follows that ܵ is local.  
Theorem 1.25. Let {ܯ௜}௜ୀଵ௡  be the finite set of indecomposable almost self-injective 
modules. If ܯ௜ is almost ܯ௝-injective for each pair ݅ and ݆ in  {1,2, … . , ݊} then ⊕௜ୀଵ௡  .௜ is almost self- injective moduleܯ
Definition 1.26 .(Generalization ࡺ-injective modules). In [6], Hanada K. et al. 
introduced a generalization of relative injectivity.For two modules ܯ and ܰ, ܯ is called 
generalized ܰ-injective module, if for any submodule ܺ of ܰ and any homomorphism 
݂: ܺ → ܰ there exist decompositions ,ܯ = ܰ തതത⨁ ധܰധധ, ܯ = നܯ ⨁ ഥܯ , a homomorphism 
݂ҧ: ഥܰ → ഥܯ , and a monomorphism ݂ҧ: നܯ → നܰ satisfying properties (*), (**)  
(*) X⊂ ܰ തതത⨁ ݃(ܯന) 
(**) For ݔ ߳ ܺ, we express ݔ in ܰ = ܰ തതത⨁ നܰas x = (ݔ)݂ Ӗ, where xന Nന, thenݔ⨁ഥ ݔ =
݂ҧ(ݔҧ) + ݂Ӗ(ݔӖ), where ݂Ӗ = ݃ିଵ. 
 .injective module-ܯ is generalizedܯ is called generalized self-injective module if ܯ
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Proposition 1.27. If ܯ is generalized ܰ- injective module, then ܯ is almost ܰ- injective 
module. 
Proof. Let ܺ be a submodule of ܰ and ݂: ܺ →  be a homomorphism. Then there exist ܯ
decompositionsܰ = ഥܰ⨁ നܰ, ܯ = നܯ ⨁ ഥܯ  , a homomorphism ݂ҧ: തܺ → ഥܯ  and a 
monomorphism ݃: നܯ → നܰ satisfying the properties ݂ҧ: തܺ →  ഥ(*), (**).  If ݂ can beܯ
extended to ܰ, then ܰ ≠ ഥܰ .This means നܰ ≠ 0.Define ℎ ∶ → ܯ  നܰ by ℎ = ெനߨ ݋ ݃   
where ߨெന ܯ :  → നܯ  is the canonical projection of ܯ onto ܯന  with respect to the 
decomposition ܯ = ഥܯ  ⊕ നܯ . For every ݔ ∈ X, express ݔ in N = ഥܰ ⊕ നܰ ܽݔ ݏ = ҧݔ  ⊕
ҧݔ Ӗ, whereݔ ∈ ഥܰ and ݔӖ ∈ നܰ. Then by (**) ℎ݂(ݔ)  =  ℎ(݂ҧ(ݔҧ )  + ݂(ധധധݔӖ),  where ݂Ӗ = ݃ିଵ 
      = g ߨெന  h(݂ҧ(ݔҧ ) +݂(ധധധݔӖ))   
      = g( ݂(ധധധݔӖ) )     
      Ӗݔ =      
ெനߨ =        o ݅௑(x)     
  Hence ܯ is almost ܰ- injective module.     
   
Remark 1.28. Clearly, if ܯ and ܰ are indecomposable modules, then ܯ is almost ܰ-
injective module if and only if ܯ is generalized ܰ-injective module.   
Definition 1.29. For two modules ܯ and ܰ, ܯ is said to be essentially ܰ-injective 
module if for every submodule ܺ of ܰ, any homomorphism ݂ ∶  ܺ → (݂) ݎ݁݇ with ܯ ⊆௘ ܺ, then ݂ can be extended to a homomorphism ݃ ∶  ܰ → (݂) ݎ݁݇ provided ܯ  ⊆௘  ܰ..                
Proposition 1.30. If ܯ is generalized ܰ-injective module, then ܯ is essentially ܰ-
injective module.         
Proof. Let ܺ be a submodule of ܰ and let ݂ ∶  ܺ → ௘⊇ ݂ ݎ݁݇ be a homomorphism with ܯ ܺ. Let ܻ be a submodule of ܰ with ܺ ⊕  ܻ ⊆௘ ܰ. Define ݃ ∶ = ܣ   ܺ ⊕ ܻ → ݔ)݃ by ܯ  + (ݕ  = ⊕ ܺ Since .(ݔ)݂   ܻ ⊆௘ ܰ and ݇݁ݎ (݂)  ⊆௘  ܺ, We see 
ker (݃)  ⊆௘  ܰ. By assumption, there exist decomposition ܯ = ഥܯ  ⊕ നܯ  and ܰ =  ഥܰ ⊕നܰ, a homomorphism ҧ݃ : ഥܰ → ഥܯ , and a monomorphism ℎ: ܯന → നܰ satisfying, for 
ܽ =   തܽ + ധܽ with തܽ ∈ ഥܰ and ധܽ ∈ നܰ, ݃(ܽ)  =  ( ҧ݃( തܽ )  + Ӗ݃(ܽ ന ), where Ӗ݃ = ℎିଵ. Since 
ker (݃) ⊆௘  ܰ, we see  ݉ܫ(ℎ)  =  0 and hence ܯന  = 0. Now define݂∗: ܰ = ഥܰ ⊕ നܰ ) ∗݂ by ܯ→ ത݊ + ധ݊ ) = ҧ݃( ത݊). Then we see ݂∗|௑= ݂. Thus ܯ is essentially ܰ-injective 
module. 
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Abstract 
This paper deals with the convection of micropolar fluids heated from below in the 
presence of suspended particles (fine dust) and uniform vertical magnetic field  H,0,0 H  in a porous medium and using the Boussinesq approximation, the linearized 
stability theory and normal mode analysis, the exact solutions are obtained for the case of 
two free boundaries.  It is found that the presence of the suspended particles number 
density, the magnetic field intensity and medium permeability bring oscillatory modes  
which were non–existent in their absence. It is found that the presence of coupling 
between thermal, micropolar effects, magnetic field intensity and suspended particles 
may introduce overstability in the system. Graphs have been plotted by giving numerical 
values to the parameters accounting for magnetic field intensity  H,0,0 H , the dynamic 
microrotation viscosity   and coefficient of angular viscosity     to depict the stability 
characteristics, for both the cases of stationary convection and overstability. It is found 
that Rayleigh number for the case of overstability and stationary convection increases 
with increase in magnetic field intensity and decreases with increase in micropolar 
coefficients and medium permeability, for a fixed wave number, implying thereby the 
stabilizing effect of magnetic field intensity and destabilizing effect of micropolar 
coefficients and medium permeability on the thermal convection of micropolar fluids.  
 
Keywords: Micropolar fluid; Magnetic field; Suspended particles (fine dust); Medium 
permeability; Microrotation; Coefficient of angular velocity. 
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 Introduction 
Micropolar theory was introduced by Eringen [5] in order to describe some physical 
systems which do not sastisfy the Navier Stokes equations. These fluids are able to 
describe the behaviour of colloidal solutions, liquid crystals; animal blood etc.The 
equations governing the flow of micropolar fluid theory involve a spin vector and a 
microinertia tensor in addition to velocity vector. A generalization of the theory including  
thermal  effects  has  been  developed  by  Kazakia  and  Ariman  [7]  and Eringen [6]. 
Micropolar fluid stabilities have become an important field of research these days. A 
particular stability problem is the Rayleigh-Bénard instability in a horizontal thin layer of 
fluid heated from below. A detailed account of thermal convection in a horizontal thin 
layer of Newtonian fluid heated from below has been given by Chandrasekhar [4]. 
Ahmadi [1] and Pérez-Garcia et al. [13] have studied the effects of the microstructures on 
the thermal convection and have found that in the absence of coupling between thermal 
and micropolar effects, the principle of exchange of stabilities may not be fulfilled and 
consequently micropolar fluids introduce oscillatory motions. The existence of oscillatory 
motions in micropolar fluids has been depicted by Lekkerkerker in liquid crystals [9, 10], 
Bradley in dielectric fluids [3] and Laidlaw in binary mixture [11]. In the study of 
problems of thermal convection, it is frequent practice to simplify the basic equations by 
introducing an approximation which is attributed to Boussinesq [2]. In geophysical 
situations, the fluid is often not pure but contains suspended particles. Saffman [17] has 
considered the stability of laminar flow of a dusty gas. Scanlon and Segel [18] have 
considered the effects of suspended particles on the onset of Bénard convection, whereas 
Sharma et al.[19] have studied the effect of suspended particles on the onset of Bénard 
convection  in hydromagnetics and found that the critical Rayleigh number was reduced 
because of the heat capacity of the particles. The separate effects of suspended particles, 
rotation and solute gradient on thermal instability of fluids saturating a porous medium 
have been discussed by Sharma and Sharma [20]. The suspended particles were thus 
found to destabilize the layer.  Palaniswami and Purushotham [14] have studied the 
stability of shear flow of stratified fluids with the fine dust and found that the presence of 
dust particles increases the region of instability. On the other hand, multiphase fluid 
systems are concerned with the motion of liquid or gas containing immiscible inert 
identical particles. 
The theoretical and experimental results of the onset of themal instability (Bénard 
convection) in a fluid layer under varying assumptions of hydromagnetics, has been 
depicted in a treatise by Chandrasekhar [4]. Lapwood [8] has studied the convective flow 
in porous medium using linearized stability theory. The Rayleigh instability in flow 
through a porous medium has been considered by Wooding [15]. The problem of thermal 
convection in a fluid in porous medium is of importance in geophysics, soil–science, 
ground–water, hydrology and astrophysics. The physical property of comets, meteororites 
and inter–planetary dust strongly suggests the importance of porosity in the astrophysical 
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context (McDonnel [12]). Moreover, Saffman and Taylor [16] have shown that the 
motion in a Hele–Shaw cell is mathematically analogous to two dimensional flow in 
porous medium. In recent years, there has been a considerable interest in the study of 
breakdown of the stability of a layer of a fluid subjected to a vertical temperature gradient 
in a porous medium and also in the possibility of convective flow.  
 When a fluid permeates a porous material, the gross effect is represented by Darcy’s law. 
As a result of this macroscopic law, the usual viscous term in the equations of motion of 
microscopic fluid is replaced by the resistance term   


  q   1

1
k , where   and   

are viscosity and dynamic microrotation viscosity respectively, 1k  is the medium 
permeability and q  is the Darcian (filter) velocity of the fluid. Sharma and Gupta [21] 
have studied the thermal convection in micropolar fluids in porous medium and have 
found that medium permeability has stabilizing effect on stationary convection and 
destabilizing effect on the overstable case. Sharma and Kumar [22] have studied the 
thermal instability of micropolar fluids in hydromagnetics in porous medium. Keeping in 
mind the importance and relevance of porosity and hydromagnetics in chemical 
engineering, geophysics and biomechanics, thermal instability of micropolar fluids in the 
presence of a uniform vertical magnetic field to include the effect of suspended particles 
(dust particles) in porous medium has been considered in the present paper. 
 Mathematical formulation and analysis 
 Consider an infinite, horizontal layer of an incompressible electrically conducting 
micropolar fluid of thickness d  permeated with suspended particles (or fine dust) in an 
isotropic and homogeneous medium of porosity   and medium permeability 1k . This 
fluid-particles layer is heated from below but convection sets in when the temperature 
gradient     dzdT   between the lower and upper boundaries exceeds a certain 
critical value. A uniform vertical magnetic field   H,0,0 H  pervades the system. This is 
the Rayleigh-Bénard instability problem in micropolar fluids.  Both the boundaries are 
taken to be free and perfect conductor of heat. The mass, momentum, internal angular 
momentum, internal energy balance equations using the Boussinesq approximation are 

0 q ,  (1) 
   quq 


 


 
  1ˆ 1    

11  
1

000100 





KNegkpq
t zq



  HH  


 4
1

0
e ,  (2) 
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     
  2    

2
10 


 
 qq
tj , (3) 

     TTkTct
Tcc Tvssv 
      1 2

00  q . 4)  
where  , and ,  , ,  ,  , , e0 ugq p denote the  filter (seepage) velocity, the spin, 
the pressure, the fluid density, the acceleration due to gravity, the reference density, 
magnetic permeability and velocity of the suspended particles, respectively.  tN ,x  
denotes the number density of dust particles and   is the dynamic microrotation 
viscosity.  zyx ,,x . rK    6  , r  being the particle radius, is the Stokes drag 
coefficient and Tk , ,  , s ptv ccc , 1j  denote, respectively, the thermal conductivity, the 
specific heat at constant volume, the heat capacity of solid matrix , the heat capacity of 
particles, the coefficient giving account of coupling between spin and heat flux , and 
microinertial constant.   ,,  are the coefficients of angular viscosity. 
Assuming dust particles of uniform size, spherical shape and small relative velocities 
between the two phases (fluid and particles), the net effect of the particles on the fluid is 
equivalent to an extra body force term per unit volume  vu KN , as has been taken in 
equation [2]. We also use the Boussinesq approximation by allowing the density to 
change only in the gravitational body force term. 
 The density equation of the state is 

  00  1 TT    , 
  
where 00 , T  are reference density, reference temperature  at the lower boundary and  
   is the coefficient of thermal expansion. 
 Since the force exerted by the fluid on the particles is equal and opposite to that exerted 
by the particles on the fluid.  The distance between the particles is assumed to be so large 
compared with their diameter that interparticle reactions are ignored. The buoyancy force 
on the particles is also neglected. If mN  is the mass of suspended particles per unit 
volume, then the equations of motion and continuity for the particles, under the above 
assumptions, are 

 uquu 


 
    KNtmN  ,  (5) 

  0 
 uNt

N   (6) 
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The Maxwell’s equations yield 
  HHqH 2    

  t ,  (7) 
0  H .  (8)                                             

where  4
1 


 

e
 is called resistivity and   is electrical conductivity. 

  In the quiescent state, the solution of equations [1] – [8] is  
                                             

,0 ,0,0  u q 0NN  (constant),  , 0 zTT    z  10   , 

 


  2
   2

00
zzgpp  ,  (9) 

where 0p  is the pressure at  0z  and  d
TT 10    10 TT   is the magnitude of 

uniform  
temperature gradient. 
Assume small perturbations around the basic state, and let       , ,  , , ,, ,,,  psrwvu ωuq   and  zyx hhh ,,  h   denote, respectively, 
the perturbations on fluid velocity q , particles velocity , u  spin , pressure ,p  
density  , temperature T  and magnetic field   H,0,0 H  , so that the change in density 
  caused by the perturbations   in temperature is given by 

  0 .  (10) 
Then the linearized perturbation equations of the microplar fluid become  

0 q ,  (11) 
     


 
 quωqqq  ˆ       1   

0
0

1
0 

 KNegkpt z

  Hh   4
 e ,  (12) 

    ωqωωωq 
  2     

2
10 


 

tj ,  (13)         
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          


 
 zTssv kshwtcc              1 2

10 ωωq , 
 (14) 

  hhqh 2   
  t , (15) 

0 h , (16) 
     00 uquu 


 
 KNtmN  , (17) 

 0 
 ut
M , (18) 

  where 
0

0111 , ,1 
mNfc

fchhH
v
pt   and   

0N
NM  . 

 Using the non–dimensional numbers  
,,, , **2

0** qq dtdtddzz T
  d

*   

*
2

*
2

* ,, ωωuu dpdpd
TTT   , *2

1

2  hh 


 d
T  (19) 

Equations [11] - [18] in the non-dimensional form are  
0 q ,  (20) 

   


 
 quωqqq   ˆ 11  

1 2
1

2
1

1 
NReKKkpt z

  Hh 

4

e , (21)   
    


 


 
 ωqωωωq 21    1012  KCCtj , (22) 

      zTshwtpEH ωωq 


 
  2

111    , (23)                      
  hhqh 2

2
   

 


pt
 , (24)  
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 0 h ,  (25) 
quq 


 


 
 1 ta , (26) 

where the following non-dimensional  parameters are introduced 
, , ,,, 21202

0
221 dCdCdcd
jjK

v 








   

    1  
0 v

ss
c
cE 

  , 2
11  d

kk  ,   
0

2
2

02     , 


 Kd
madKNN  ,                                 

,,, 
    

21
4

0 






  ppdgR

TT v
TT c

k
0  .  (27)      

  Eliminating s  between equations [23] and [26] and applying the curl operator twice to 
resulting equation, we obtain 

.   21
2

112 zΩLwHtatpEHL  


 



 

   (28) 
Eliminating u  between equations [21] and [26] and on linearizing, we obtain   
     


  Hhωqq 

 4ˆ 11 11
1

21
1 ezeRKKkpLL  ,(29) 

where 
 

1 ,  22
2

1 



 taLtFtaL  and

 
1 fF .  

 Applying the curl operator to equations [21], [22] and [24] taking z –component,   
we get  

    22
2

1
1

22
1

2
1

 4  111   Lz
HLKkLNtL ze

zzz 


  


 , (30) 




 


zz
z ΩwKΩCt

Ωj 21
 

2
1

2
02   , (31) 
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zzz
ptHt  2

2  


 , (32) 
where  zz h ,  zz q   are the z components of current density and  
vorticity, respectively. 1K  and 0C   account for coupling between vorticity and spin 
effects and spin diffusion, respectively. 
Taking the z –component of equations [24], we get 

. 
2

2
zz hpz

wHt
h 


   (33)            

Applying the curl operator twice to equations [21] and taking z –component, we get 
  


 


z

e
z hz

HΩKwKkRLwL 22
1

2
1

1
2
12

2
1

1
 411 

 , (34)  

where ,  2
2

2
22

1 yx 


 2
2

2
2

2
22

   zyx 



 ,   .zzΩ ω   (35)  

The boundaries are considered to be free. The case of two free boundaries is little 
artificial except in astrophysical situations but it enables us to find analytical solutions.  
Thus the boundary conditions appropriate to problem are  

      


   ,0  , 0    2
2

zzzzz
ww ωhq 0 


z
h z at 0z and dz  . 

  (36) 
Now we analyze the perturbations into a complete set of normal modes and then examine 
the stability of each of these modes individually. For the system of equations [28], [30]-
[34], the analysis can be made in terms of two dimensional periodic waves of assigned 
wave numbers. Thus we ascribe to all quantities describing the perturbation dependence 
on yx,  and t  of the form   ntykxki yx   exp ,  where xk , yk   are the wave numbers  
along the x- and y- directions, respectively,   2122 xx kkk   is the resultant wave 
number, n  is the stability parameter which can be, complex, in general. The solution of 
the stability problem requires the specifications of the state for each k . The above 
considerations allow us to suppose that the perturbation quantities have the form      
     ntyikxikzBzΘzGzZzΩzWhΩw yxzzzz    exp)(),(),(),(),(),(,,,,, 2 , (37) 
then the  equations [28], [30]-[34], become  
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He  4
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        ,2 221
2
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1 WkDAΩkDAn    (41) 

      DZHGkDpn  1 122
2
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


   , (42) 

      DWHBkDpn  1 122
2





   , (43) 

where   .  ,
1

21
0
1

K
AjC

KA    
The boundary conditions [36] transform to 

  0  ,0  ,0  ,0  ,0  ,0  ,0 2
2  DBΘΩGDZWDW at  0z  and 1. (44) 

Using boundary conditions (44), equations (38)–(43) transform to 
0  ,0  ,0  ,0  ,0 333

2
22  BDGDZDΩDD , (45) 

Differentiating [39] twice with respect to z  and using boundary conditions [45], it can be 
shown that .04 WD  It can be shown from equations.[38]–[43] and boundary conditions 
[44], [45] that all even order derivatives of W  vanish on the boundaries .The proper 
solution of  W  belonging to the  lowest mode is 

zWW  sin0  , (46) 
where  0W   is a constant.                                                 
Eliminating  2  ,  , ΩΓΘ   from   equations [38] - [43] and substituting the solution given 
by equation [46], we obtain the dispersion relation  
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where  22 kb   .  
 The case of oscillatory modes  
  Here we examine the possibility of oscillatory modes, if any, in the stability problem 
due to the presence of magnetic field intensity and suspended particles number density. 
Equating the imaginary parts of equation [47], we have  
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 (48)               
 It is evident from equation [48] that in  may be either zero or non-zero, meaning thereby 
that the modes may be non-oscillatory or oscillatory. In the absence of suspended 
particles and solute parameter equation [48] reduces to  

in   bAkRKbA    2 2
1

2  0 (49) 
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and term within  the  brackets is definitely positive, which implies that in 0. Therefore, 
the oscillatory modes are not allowed and principal of exchange of stabilities is satisfied 
for porous medium in the absence of suspended particles and magnetic field. The 
presence of the suspended particles number density, the magnetic field intensity and 
medium permeability bring oscillatory modes (as in  may not be zero) which were non–
existent in their absence. 
 The case of overstability 
  The present section is devoted to the possibility that instability may occur as 
overstability. Since we wish to determine the Rayleigh number for onset of instability via 
a state of pure oscillations, it suffices to find the conditions for which equation [47] will 
admit of solutions with in  real. Substituting iinn   in equation [47], and then equating 
the real and imaginary parts of equation [47] we obtain 
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Eliminating R  between equation (50) and (51), we get       
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 It is evident from the equation [52] that overstable modes will not be present for all 
values of parameters.  For example, in the absence of coupling between spin and heat 
flux  0 , magnetic field  0H , 1k  and in the absence of suspended particles  10 hfa  , equation [52] allows only  0in  and so overstable solution will not 
take place if 211 pEK .   
For stationary convection, the marginal state is characterized by 0in ; and the Rayleigh 
number is given by 
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In the absence of magnetic field intensity  0H  and suspended particles  10 hfa    equation [53] reduces to 
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 a result  in good agreement with  Sharma and  Gupta [21].   
 
 
Discussion of Results 
Equation [52] has been examined numerically using the Newton–Raphson method 
through the software Fortran 90. We have plotted the variation of Rayleigh number with 
respect to wave-number using equation [51] satisfying [52] for overstable case and 
equation [53] for stationary case, for the fixed permissible values of the dimensionless 
parameters ,005.1 ,10  ,1 ,5  1, 1,  .5,0  ,1  2111  FappAK 

,5.0,01.11  H ,9.0E  1k 2. Figures [1]–[3] correspond to three values of 
magnetic field intensity H  70, 100 and 120 Gauss, respectively. The graphs show that 
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Rayleigh number increases with increase in magnetic field intensity depicting thereby the 
stabilizing effect of magnetic field intensity. Moreover, the magnetic field introduces the 
oscillatory modes in the system. Figures [4]–[6] correspond to three values of medium 
permeability 1k 5, 10 and 30. The graphs show that the Rayleigh number for the 
stationary convection and for the case of overstability decreases with the increase in 
medium permeability depicting thereby destabilizing effect of medium 
permeability.Figures [7]–[9] correspond to three values of micropolar coefficient    0.5, 0.7 and 1.0, respectively, accounting for dynamic microrotation viscosity. The 
graphs  show that the Rayleigh number for the stationary convection and for the case of 
overstability decreases with the increase in micropolar coefficient    implying thereby 
the destabilizing effect  of  dynamic  microrotation  viscosity.   
Figures [10]–[12] correspond to three values of micropolar coefficient     =1.0, 1.2 and 
1.4, respectively. The graphs  show that the Rayleigh number for the stationary 
convection and for the case of overstability decreases with the increase in micropolar 
coefficient    implying thereby the destabilizing effect of coefficient of angular 
viscosity, therefore micropolar coefficients have destabilizing effects on the system.  
Conclusion 
 There is a s competition between  the  large enough stabilizing effect of magnetic 
intensity and the destabilizing effect of the micropolar coefficients. The presence of 
coupling between thermal and micropolar effects, magnetic field and suspended particles 
number density may bring overstability in the system. It is also noted from the figures 
[3], [4], [7] and [10] that the Rayleigh number for overstability is always less than the 
Rayleigh number for stationary convection, for a fixed wave-number. However, the 
reverse may also occur for large wave-numbers, as has been depicted in figures [1], [2], 
[5], [6], [8], [9], [11] and [12]. 
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Abstract   
An investigation of the effects of porosity, Hall current and radiation on unsteady 
hydromagnetic free convection flow of a viscous, incompressible, electrically conducting 
and optically thin radiating fluid past a heated moving vertical plate embedded in porous 
medium is carried out. The dimensionless governing coupled; partial differential 
equations are solved by using Laplace transform technique. The effects of various 
physical parameters, encountered in the problem, on the primary and secondary fluid 
velocities and fluid temperature are numerically evaluated and shown through graphs, 
while the effects on skin-friction and rate of heat transfer are numerically evaluated and 
discussed with the help of tables.  
Keywords: Hall current; Hydromagnetic flow; Porosity; Radiation; Free convection 
Mathematical subject classification (2010): 76D05, 76D10 
Introduction 
The problems of MHD free convection flow in porous media have drawn attention of 
many researchers due to significant effect of magnetic field on the boundary layer 
control. On account of their varied importance, these flows have been studied by several 
authors. Bejan and Khair [5] investigated the vertical free convection boundary layer 
flow with heat and mass transfer in a porous medium. The combined heat and mass 
transfer effects on MHD free convective flow through porous medium have been studied 
by Chaudhary and Jain [6]. Singh and Kumar [17] discussed the heat and mass transfer 
MHD flow through porous medium. Mishra et al. [13] considered free convective MHD 
flow of a viscous incompressible and electrically conducting fluid past a hot vertical 
porous plate embedded in a porous medium.  The effects of heat transfer on MHD free 
convective flow through porous medium with viscous dissipation have been analyzed by 
Poonia and Chaudhary [14].  
Radiation effects on free convection flow have numerous applications in Science and 
engineering. Israel-Cookey et al. [10] discussed the influence of viscous dissipation and 
radiation on an unsteady MHD free convective flow past an infinitely long heated vertical 
plate in a porous medium with time dependent suction. Shankar et al. [16] analyzed 
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radiation and mass transfer effects on MHD free convection fluid flow embedded in a 
porous medium with heat generation/absorption. Radiation effect on the natural 
convection flow of an optically thin viscous incompressible fluid near a vertical plate 
with ramped wall temperature in a porous medium has been studied by Das et al. [9]. 
Kishore et al. [12] considered the effects of thermal radiation and viscous dissipation on 
MHD heat and mass diffusion flow past an oscillating vertical plate embedded in a 
porous medium with variable surface conditions.  The effects of thermal radiation and 
chemical reaction on MHD unsteady mass transfer flow past a semi-infinite vertical 
porous plate embedded in a porous medium in a slip flow regime with variable suction 
have been analyzed by Ahmed and Das [1]. Balla and Naikoti [4] performed a numerical 
analysis to study the unsteady magnetohydrodynamic convective flow of a viscous, 
incompressible, electrically conducting Newtonian fluid along a vertical permeable plate 
in the presence of a homogeneous first order chemical reaction and taking into account 
thermal radiation effects. 
The magnetohydrodynamic free convection heat and mass transfer of a heat generating 
fluid past an impulsively started infinite vertical porous plate with Hall current and 
radiation absorption has been studied by Kinyanjui et al. [11]. Takhar et al. [18] 
investigated the unsteady free convective flow past an infinitely long vertical porous plate 
due to the combined effects of thermal and mass diffusion, magnetic field and Hall 
currents. Ahmed and Kalita [3] presented some model studies on the effect of Hall 
current on MHD convection flow. The problem of an MHD transient flow with Hall 
current past a uniformly accelerated horizontal porous plate in a rotating system has been 
discussed by Ahmed et al. [2]. Hall effects on an unsteady MHD free convective flow of 
a viscous incompressible electrically conducting fluid past a uniformly accelerated 
vertical plate in the presence of a uniform transverse applied magnetic field have been 
investigated by Sarkar et al. [15]. Das et al. [8] analyzed the effects of Hall currents and 
radiation on MHD flow of a viscous incompressible electrically conducting fluid past a 
moving vertical plate with variable temperature in the presence of a uniform transverse 
magnetic field. 
Objective of the present investigation is to extend the work of Das et al. [8] and to study 
the effects of porosity, Hall current and radiation on unsteady hydromagnetic free 
convection flow of a viscous, incompressible, electrically conducting and optically thin 
radiating fluid past a heated moving vertical plate embedded in porous medium. The 
Laplace transform technique is used to solve the governing equations in order to obtain 
the analytical results for velocity and temperature profile, rate of heat transfer and shear 
stresses.  
 
Formulation of the problem  
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                         Fig. 1 Physical model of the problem 

Initially, at time 0t  both the fluid and the plate are at rest and assumed to be at the 
same temperatureT . At time 0t  the plate at 0z   starts moving in its plane with 
uniform velocity 0U and is heated with temperature  

0
.w

tT T T t   Since the plate is 
infinitely long in x  and y  directions, therefore all the physical quantities except pressure 
depend upon z and t only. 
Under the usual Boussinesq approximation, equations governing the flow are given by 

0 0w wz
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r
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qT TC t z z               (4)   
In above equations , ,u v w  denote the components of velocity in the boundary layer in 

,x y  and z directions respectively; , ,x y zj j j  the current density components; T  the 
temperature of fluid in the boundary; T  the temperature of the free stream; wT   the 
temperature of the plate; t  the time; 0t   the characteristics time; p  the  fluid 
pressure;   the volumetric coefficient of thermal expansion;   the density of fluid; 
g  the acceleration due to  gravity;   the kinematic viscosity; K  the permeability of 

Consider unsteady hydromagnetic free 
convective flow of a viscous, incompressible, 
electrically conducting and optically thin 
radiating fluid past an infinite vertical plate 
embedded in porous medium by taking Hall 
current into account. Coordinate system is 
chosen in such a way that       x -axis is taken 
along the plate in the upward direction, y -axis 
normal to it and z -axis perpendicular to xy -
plane. A uniform magnetic field of strength 0B  
is applied perpendicular to the plate. 
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the medium; pC  the heat capacity of  fluid at constant pressure; 0B  the magnetic  field 
strength;   the thermal conductivity of the fluid; rq  the radiative  heat flux.                                                                       
The initial and boundary conditions for velocity and temperature profile are: 

0, 0,u v T T    for all z  and 0t   
 0

0
, 0, w

tu U v T T T T t       at 0z   for  0t       (5)    
0, 0,u v T T    as z   for 0t                        

Following Cogley et al. [7], it is assumed that fluid is optically thin with a relatively low 
density and radiative heat flux is given by 

 4rq T T Iz 
                                                     (6) 
where 

0
w
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w

eK dTI 
               (7) 

In equations (7) K  is the absorption coefficient,  is the wavelength, pe is the Plank’s 
function and the subscript ‘ w ’ pointed out that all quantities   have been evaluated at the 
temperature T  which is the temperature of the wall at time 0t  . Thus the study is 
limited to small difference of plate temperature to fluid temperature. 
On the use of the equation (6), the equation (4) becomes 

 ² 4²p
T TC T T It z  

            (8) 
To solve above equations, introducing following non-dimensional variables and 
parameters: 
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Using these dimensionless quantities, equations (2), (3) and (8) transform to 
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where 1, , , P rM K G r and R represents the magnetic parameter, the permeability 
parameter, the Grashof number, the Prandtl number and the radiation parameter 
respectively. In above   non-dimensionalisation process, the characteristics time 0t can be 
defined as 0 2

0
t U

  
The corresponding initial and boundary conditions are 

1 1 0, 0, 0 u v    for all   and 0       
1 11, 0,u v     at 0  for 0             (13)
1 10, 0, 0u v     as     for 0       

Method of solution 
To solve the system of equations (10) and (11), we combine these equations as follows 
and get  

2
12        F F a F G r 

               (14) 
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         and 1    
The corresponding initial and boundary conditions are 

0, 0F   for all   and 0      
1,F    at 0  for  0      

0, 0F   as    for 0          (15) 
Applying Laplace transformation and on using initial conditions, equations (12) and (14) 
become 

2
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The solution of equations (16) and (17) subject to boundary conditions (18) are given by 
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Taking inverse Laplace transform of equations (19) and (20), we get the following 
expressions for velocity and temperature profile: 
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when Pr = 1   (22) 

Some important characteristics of flow 
From the velocity field equation (21), the expression for the dimensionless shear stress 
(τ*) at the plate is given by 
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 From the temperature field equation (22) the expression for the dimensionless rate of heat 
transfer coefficient (Nu) at the plate is given by 
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Results and Discussion 
 
In order to analyze the effects of Hall current, thermal buoyancy force, thermal 

radiation and permeability of the medium on the flow field in the boundary layer region, 
numerical computations have been carried out for variations in the governing parameters 
such as the Hall parameter ( m ), the Grashof number (Gr ), the radiation parameter ( R ), 
the permeability parameter ( 1K ), the Prandtl number ( Pr ) and the magnetic field 
parameter ( M ). For illustration of these results, numerical values are plotted in figures 
(2-8). Our results agree with the results of Das et al. [8] in the absence of porous medium. 

 

                           
 
 
 
 
 
 
 

Fig.2 Velocity profile for 
different values of the 
Prandtl number ( Pr ) 
when Gr  = 5, M = 2, R = 
4,  m  = 0.4, 1K = 0.1,   
= 0.5  

Fig.3 Velocity profile 
for different values of  
the permeability 
parameter ( 1K ) when 
Gr  = 5, M = 2, R = 4, 
m  = 0.4, Pr  = 0.7, 
= 0.5  

Fig.4 Velocity profile for 
different values of  the 
magnetic parameter ( M ) when Gr = 5, 1K  = 0.1, 
R  = 4, m  = 0.4, Pr  = 
0.7,   = 0.5  
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From fig.2 it is observed that the primary velocity and the magnitude of the secondary 
velocity decrease with an increase in the Prandtl number. The fluids with high value of 
the Prandtl number have greater viscosity, which makes the fluid thick and hence move 
slowly. It is found from fig.3 that both the primary and the secondary fluid velocities 
increase with an increase in the permeability parameter ( 1K ) in the boundary layer 
region. This is due to the fact that the presence of a porous medium decreases the 
resistance to flow. Fig.4 shows that the primary velocity is diminished and the secondary 
velocity is increased when the magnetic parameter ( M ) is increased. When a transverse 
magnetic field is applied then the Lorentz force acts in a direction opposite to the flow 
which tends to resist the flow thereby reducing the primary velocity. On the other hand, 
for the secondary flow this force acts as an aiding force. This will serve to accelerate the 
secondary velocity. Fig. 5 displays the effect of the radiation parameter on the primary 
and the secondary velocities. It is noticed that increase in the radiation parameter 
decreases primary and secondary velocities. Increase in the radiation emission reduces 
the rate of heat transfer through the fluid, which results in the decrease in temperature in 
the boundary layer. The velocity decreases due to reduction in buoyancy forces 
associated with the decreased temperature. The effect of Hall current on the primary and 
the secondary velocities is depicted through fig. 6. It is inferred from the figure that the 
Hall current promotes the flow along the plate. This is because, the Hall current reduces 
the resistance offered by the Lorentz force. From fig.7 it is observed that the primary 
velocity and the magnitude of the secondary velocity increase with an increase in Grashof 

 Fig.5 Velocity profile 
for different values of  
the radiation parameter 
( R ) when Gr = 5, 1K  = 
0.1, M  = 2, m  = 0.4, 
Pr  = 0.7,   = 0.5 

Fig.6 Velocity profile 
for different values of  
the Hall parameter ( m ) when Gr = 5, 1K = 0.1, 
M = 2, R = 4, Pr = 
0.7,   = 0.5   

Fig.7 Velocity profile 
for different values of  
the Grashof number Gr when m = 0.4, 1K  
= 0.1, M = 2, R  = 4, Pr  
= 0.7,  = 0.5  
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number. There is a rise in the fluid velocity due to the enhancement of thermal buoyancy 
force 
 

.    
    Fig.8 Temperature profile for different values of Pr , R , m  and 1K for  = 0.5 
Fig.8  reveals that fluid temperature in the boundary layer decreases on increasing the 
Prandtl number and the radiation parameter. This result qualitatively agrees with 
expectations, since thermal diffusivity decreases with increase in the Prandtl number and 
the effect of radiation is to decrease the rate of energy transport to the fluid, thereby 
decreasing the temperature of the fluid. 

Table 1 Numerical values of shear stress  
0

x y
F


  

       at the plate  

Pr  Gr  R  M  1K  m  x   y  
0.7 5 2 2 0.1 0.4 3.2515  0.19956  
7.0 5 2 2 0.1 0.4 3.3921  0.19268 
0.7 10 2 2 0.1 0.4 2.831  0.21135 
0.7 5 4 2 0.1 0.4 3.2794  0.19816 
0.7 5 2 4 0.1 0.4 4.5585  0.58808 
0.7 5 2 2 0.5 0.4 1.8418  0.31122 
0.7 5 2 2 0.1 1.0 3.0433  0.30642 

 

 Pr  R  Gr  m  1K  M  
I 0.7 4 5 0.4 0.1 2 
II 7.0 4 5 0.4 0.1 2 
III 0.7 6 5 0.4 0.1 2 
IV 0.7 4 5 0.5 0.1 2 
V 0.7 4 5 0.4 0.5 2 
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Table 2 Numerical values of Rate of heat transfer coefficient 
0

Nu



 

      at the plate 

  R   Pr      Nu  
  4  0.7  0.5  1.1744 
  6  0.7  0.5  2.3065 
  4  7.0  0.5  1.3676 
  4  0.7  1.0  2.1750 
 
Numerical results of the shear stresses due to the primary and the secondary flow at the 
plate are expressed in the table 1 for different values of governing parameters. From table 
1 it is observed that the absolute value of shear stress x  increases with increase in the 
Prandtl number, the radiation parameter and the magnetic parameter but decreases with 
the Grashof number, the permeability parameter and the Hall parameter whereas the 
absolute value of the shear stress y  decreases with an increase in the Prandtl number and 
the radiation parameter whereas increases with remaining parameters. From table 2 it is 
noticed the rate of heat transfer at the plate increases with an increase in the radiation 
parameter, the Prandtl number and time. 
Conclusions 
From the study the following conclusions are drawn: 
 Porosity, Hall current and thermal buoyancy forces promote the flow throughout the 

boundary layer region by accelerating both the primary and secondary velocity 
components.  

 Primary and secondary velocity components decrease in the presence of thermal 
radiation. 

 Applied magnetic field retards the primary flow and supports the secondary flow.  
 Thermal buoyancy forces, Hall current and porosity reduce the shear stress at the 

plate.  
 There is an enhancement in rate of heat transfer at the plate with thermal radiation 

and thermal diffusion. 
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                                                              ABSTRACT  
Thermosolutal instability of Veronis(1965) type in a couple-stress fluid in the presence of 
uniform vertical magnetic field in a porous medium is considered. Following the 
linearized stability theory and normal mode analysis, the paper mathematically 
established the condition for characterizing the oscillatory motions which may be neutral 
or unstable, for any arbitrary combination of free and rigid boundaries at the top and 
bottom of the fluid. It is proved analytically that all non-decaying slow motions starting 
from rest, in a couple-stress fluid of infinite horizontal extension and finite vertical depth 
in a porous medium, which is acted upon by uniform vertical magnetic field opposite to 
force field of gravity and a constant vertical adverse temperature gradient, are necessarily 
non-oscillatory, in the regime established, the result is important since the exact solutions 
of the problem investigated are not obtainable in closed form, for any arbitrary 
combination of free and rigid boundaries. A similar characterization theorem is also 
established for Stern (1960) type of configuration. 
Key Words: Thermosolutal convection; couple-stress Fluid; Magnetic Field; Rayleigh 
number; Chandrasekhar number. 
MSC 2000 No.: 76A05, 76E06, 76E15; 76E07. 
1. INTRODUCTION 
         A detailed account of the theoretical and experimental study of the onset of thermal 
instability in Newtonian fluids, under varying assumptions of hydrodynamics and 
hydromagnetics, has been given by Chandrasekhar  1  and the Boussinesq approximation 
has been used throughout, which states that the density changes are disregarded in all 
other terms in the equation of motion, except in the external force term. The formation 
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and derivation of the basic equations of a layer of fluid heated from below in a porous 
medium, using the Boussinesq approximation, has been given in a treatise by Joseph  2 . 
When a fluid permeates through an isotropic and homogeneous porous medium, the gross 
effect is represented by Darcy’s law. The study of layer of fluid heated from below in 
porous media is motivated both theoretically and by its practical applications in 
engineering. Among the applications in engineering disciplines one can name the food 
processing industry, the chemical processing industry, solidification, and the centrifugal 
casting of metals. The development of geothermal power resources has increased general 
interest in the properties of convection in a porous medium. The problem of thermohaline 
convection in a layer of fluid heated from below and subjected to a stable salinity 
gradient has been considered by Veronis  3 . Double-diffusive convection problems arise 
in oceanography (salt fingers occur in the ocean when hot saline water overlies cooler 
fresher water which believed to play an important role in the mixing of properties in 
several regions of the ocean), limnology and engineering. The migration of moisture in 
fibrous insulation, bio/chemical contaminants transport in environment, underground 
disposal of nuclear wastes, magmas, groundwater, high quality crystal production and 
production of pure medication are some examples where double-diffusive convection is 
involved. Examples of particular interest are provided by ponds built to trap solar heat 
Tabor and Matz  4 and some Antarctic lakes Shirtcliffe  5 . The physics is quite similar 
in the stellar case in that helium acts like salt in raising the density and in diffusing more 
slowly than heat. The conditions under which convective motions are important in stellar 
atmospheres are usually far removed from consideration of a single component fluid and 
rigid boundaries, and therefore it is desirable to consider a fluid acted on by a solute 
gradient and free boundaries. 
  The flow through porous media is of considerable interest for petroleum 
engineers, for geophysical fluid dynamists and has importance in chemical technology 
and industry. An example in the geophysical context is the recovery of crude oil from the 
pores of reservoir rocks. Among the application in engineering disciplines one can find 
the food processing industry, chemical processing industry, solidification and centrifugal 
casting of metals. Such flows has shown their great importance in petroleum engineering 
to study the movement of natural gas, oil and water through the oil reservoirs; in 
chemical engineering for filtration and purification processes and in the field of 
agriculture engineering to study the underground water resources, seepage of water in 
river beds. The problem of thermosolutal convection in fluids in a porous medium is of 
importance in geophysics, soil sciences, ground water hydrology and astrophysics. The 
study of thermosolutal convection in fluid saturated porous media has diverse practical 
applications, including that related to the materials processing technology, in particular, 
the melting and solidification of binary alloys. The development of geothermal power 
resources has increased general interest in the properties of convection in porous media. 
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The scientific importance of the field has also increased because hydrothermal circulation 
is the dominant heat-transfer mechanism in young oceanic crust Lister  6 . Generally it is 
accepted that comets consists of a dusty ‘snowball’ of a mixture of frozen gases which in 
the process of their journey changes from solid to gas and vice - versa. The physical 
properties of comets, meteorites and interplanetary dust strongly suggest the importance 
of porosity in the astrophysical context Mc Donnel  7 . The effect of a magnetic field on 
the stability of such a flow is of interest in geophysics, particularly in the study of Earth’s 
core where the Earth’s mantle, which consists of conducting fluid, behaves like a porous 
medium which can become convectively unstable as a result of differential diffusion. The 
other application of the results of flow through a porous medium in the presence of a 
magnetic field is in the study of the stability of a convective flow in the geothermal 
region. Also the magnetic field in double-diffusive convection has its importance in the 
fields of engineering, for example, MHD generators and astrophysics particularly in 
explaining the properties of large stars with a helium rich core. Stommel and Fedorov  8  
and Linden  9  have remarked that the length scales characteristics of double-diffusive 
convective layers in the ocean may be sufficiently large that the Earth’s rotation might be 
important in their formation. Moreover, the rotation of the Earth distorts the boundaries 
of a hexagonal convection cell in a fluid through a porous medium and the distortion 
plays an important role in the extraction of energy in the geothermal regions. Brakke  10  
explained a double - diffusive instability that occurs when a solution of a slowly diffusing 
protein is layered over a denser solution of more rapidly diffusing sucrose. Nason et al.  11  found that this instability, which is deleterious to certain biochemical separations, 
can be suppressed by rotation in the ultracentrifuge.  
 The theory of couple-stress fluid has been formulated by Stokes  12 . One of the 
applications of couple-stress fluid is its use to the study of the mechanisms of lubrications 
of synovial joints, which has become the object of scientific research. A human joint is a 
dynamically loaded bearing which has articular cartilage as the bearing and synovial fluid 
as the lubricant. When a fluid film is generated, squeeze - film action is capable of 
providing considerable protection to the cartilage surface. The shoulder, ankle, knee and 
hip joints are the loaded – bearing synovial joints of the human body and these joints 
have a low friction coefficient and negligible wear. Normal synovial fluid is a viscous, 
non-Newtonian fluid and is clear or yellowish. According to the theory of Stokes  12 , 
couple-stresses appear in noticeable magnitudes in fluids with very large molecules. 
Since the long chain hyaluronic acid molecules are found as additives in synovial fluids, 
Walicki and Walicka  13  modeled the synovial fluid as a couple-stress fluid. The 
synovial fluid is the natural lubricant of joints of the vertebrates. The detailed description 
of the joint lubrication has very important practical implications. Practically all diseases 
of joints are caused by or connected with malfunction of the lubrication. The efficiency 
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of the physiological joint lubrication is caused by several mechanisms. The synovial fluid 
is due to its content of the hyaluronic acid, a fluid of high viscosity, near to gel. Goel et 
al.  14   have studied the hydromagnetic stability of an unbounded couple-stress binary 
fluid mixture under rotation with vertical temperature and concentration gradients. 
Sharma et al.  15   have considered a couple - stress fluid with suspended particles heated 
from below. In another study, Sunil et al.  16   have considered a couple- stress fluid 
heated from below in a porous medium in the presence of a magnetic field and rotation. 
Kumar et al.  17   have considered the thermal instability of a layer of couple-stress fluid 
acted on by a uniform rotation, and have found that for stationary convection the rotation 
has a stabilizing effect whereas couple-stress has both stabilizing and destabilizing 
effects. 
       Pellow and Southwell  18   proved the validity of PES for the classical 
Rayleigh-Bénard convection problem. Banerjee et al  19  gave a new scheme for 
combining the governing equations of thermohaline convection, which is shown to lead 
to the bounds for the complex growth rate of the arbitrary oscillatory perturbations, 
neutral or unstable for all combinations of dynamically rigid or free boundaries and, 
Banerjee and Banerjee  20  established a criterion on characterization of non-oscillatory 
motions in hydrodynamics which was further extended by Gupta et al  21 . However no 
such result existed for non-Newtonian fluid configurations in general and in particular, 
for Rivlin-Ericksen viscoelastic fluid configurations. Banyal  22   have characterized the 
oscillatory motions in couple-stress fluid.  
Keeping in mind the importance of non-Newtonian fluids, as stated above, this article 
attempts to study couple-stress fluid of Veronis and Stern type configuration  in the 
presence of uniform magnetic field in a porous medium, and it has been established that 
the onset of instability in a couple-stress fluid in a porous medium Veronis type 
configuration, cannot manifest itself as oscillatory motions of growing amplitude if the 
Thermosolutal Rayliegh number sR ,  the Chandrasekhar number Q, the magnetic Prandtl 
number 2p , the thermosolutal Prandtl number 3p ,  the medium permeability lP , the 
porosity  and the viscoelasticity parameter F satisfy the 
inequality 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s , for all wave numbers and for any arbitrary 
combination of free and rigid boundaries at the top and bottom of the fluid. A similar 
characterization theorem is also proved for Stern  23 type of configuration, for all wave 
numbers and for any arbitrary combination of free and rigid boundaries at the top and 
bottom of the fluid.  
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2. FORMULATION OF THE PROBLEM AND PERTURBATION EQUATIONS 
 Here we consider an infinite, horizontal, incompressible couple-stress fluid layer 
of thickness d, heated and soluted from below so that, the temperatures, densities and 
solute concentrations at the bottom surface z = 0 are T0, 0 and C0 and at the upper 
surface z = d are Td, d and Cd respectively, and that a uniform temperature gradient 
 


 dz

dT  and a uniform solute gradient / 


 dz
dC  are maintained. The gravity 

field ),0,0( gg   and a uniform vertical magnetic field ),0,0( HH  pervade the system. This 
fluid layer is assumed to be flowing through an isotropic and homogeneous porous 
medium of porosity  and medium permeability k1. 
 Let p, , T, C, , /, g, , e and ),,( wvuq denote respectively, the fluid pressure, 
density, temperature, solute concentration, thermal coefficient of expansion, an analogous 
solvent coefficient of expansion, gravitational  acceleration, resistivity, magnetic 
permeability and fluid velocity. The equations expressing the conservation of momentum, 
mass, temperature, solute concentration and equation of state of couple-stress fluid 
(Chandrasekhar  1 ; Joseph  2 ; Stokes  12 )   are 





 


 


 






 


 HHqkqqq e
0

2
0

/

100 4
1

ρ
δρ1gpρ

1).(1
t

1




 , 

  (1) 
0.  q ,    (2)  

TTqt
TE 2. 


 

   , (3) 

CCqt
CE 2// . 


 

   ,  (4) 
 = 0 [1 -  (T-T0) + / (C-C0)], (5) 
Where the suffix zero refers to values at the reference level z = 0 and in writing equation 
(1), use has been made of Boussinesq approximation. Here E = 




i
ss

C
C

0
)1( 
  is a 

constant and E/ is a constant analogous to E but corresponding to solute rather that heat; s, o , Cs and Ci stand for density and heat capacity of solid (porous matrix) material and 
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fluid, respectively. The magnetic permeability e, the kinematic viscosity, couple-stress 
viscosity /, the thermal diffusivity   and the solute diffusivity / are all assumed to be 
constants. 
 The Maxwell’s equations yield 

 



  HqHdt

Hd 2 ,   (6) 

and ,0 H    (7) 
where 

  qtdt
d 1  stands for the convective derivative. 

 The steady state solution is  
 ),,( wvuq (0,0,0), T = T0-z, C = C0  - /z,  

 = 0 (1+ z - //z).  (8) 
Here we use linearized stability theory and normal mode analysis method. Consider a 
small perturbation on the steady state solution, and let p, , ,  ,  ),,( zyx hhhh and 

),,( wvuq  denote, respectively, the perturbations in pressure p, density , temperature T, 
solute concentration C, magnetic field )0,0,0(H and velocity )0,0,0(q . The change in 
density, caused mainly by the perturbations  and  in temperature and concentration, 
is given by 

 = - 0 (   /). 9) 
Then the linearized perturbation equations become 





 


 


 Hhqkgpt
q e

0
2

0

/

1
/

0 4
1)(11





 , (10) 

 q.  = 0, (11) 
 2

 wtE ,  (12) 

 2/// 
 wtE ,   (13) 
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 



 

 hqHt
h 2 ,   (14) 

and  h. = 0.   (15)                                                                                                                       
3. NORMAL MODES ANALYSIS   
 Analyzing the disturbances into normal modes, we assume that the perturbation 
quantities are of the form 
      )(),(,,,,, zzKzzWhw z   exp(ikxx + ikyy + nt), (16) 
where kx, ky are the wave numbers along the x- and y- directions respectively, k= 
( 22 yx kk  ) is the resultant wave number and n is the growth rate which is, in general, a 
complex constant. )(),(),( zzKzW   and )(z  are the functions of z only. 
Using (16), equations (10)-(15), within the framework of Boussinesq approximations, in 
the non-dimensional form transform to 
     DKaDQaRRaWPaDP

FaD s
ll

22222222 1 


 


  
 ,  (17)                                                                                                                            

  WEpaD  122 ,   (18)        WpEaD  3/22 ,   (19) 
And   DWKpaD  222 ,  (20)                                                               
Where we have introduced new coordinates  ',',' zyx  = (x/d, y/d, z/d) in new units of 
length d and '/ dzdD  . For convenience, the dashes are dropped hereafter. Also we have 
substituted ,, 2

 ndkda  
1p , is the thermal Prandtl number;, '3 

p  is the 
thermosolutal Prandtl number; 

2p  is the magnetic Prandtl number; 2
1

d
kPl   is the 

dimensionless medium permeability, 
 )/( 2

0
' dF  , is the dimensionless couple-stress 

parameter;  
 4dgR  , is the thermal Rayleigh number; 


'

4'' dgRs   is the 
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thermosolutal Rayleigh number and 


0

22

4
dHQ e , is the Chandrasekhar number. Also 

we have Substituted WW ,  
 2d ,  /

2'


 d ,  KHdK   and dDD  , 

and dropped    for convenience. 
We now consider the cases where the boundaries are rigid-rigid or rigid-free or free-rigid 
or free-free at z = 0 and z = 1 respectively, as the case may be, and are perfectly 
conducting maintained at constant temperature and solute concentration. Then the 
perturbations in the temperature and solute concentration are zero at the boundaries. The 
appropriate boundary conditions with respect to which equations (17) -- (20), must 
possess a solution are 
     W  =  0 =  ,            on both the horizontal boundaries,                                                        
    DW = 0,                   on a rigid boundary,                                                                                
    02 WD ,              on a dynamically free boundary,                                                             
    K = 0,                     on both the boundaries as the regions outside the fluid  

                                   Are perfectly conducting, (21)                                          
   Equations (17)-(20), along with boundary conditions (21), pose an eigenvalue problem 
for   and we wish to characterize i , when 0r . 
We first note that sinceW , K , and   satisfy )1(0)0( WW  , 

)1(0)0( KK  , )1(0)0(  and )1(0)0(    in addition to satisfying to 
governing equations and hence we have from the Rayleigh-Ritz inequality Schultz  24  

  1

0

22
1

0

2 dzWdzDW  ,   1

0

22
1

0

2 dzKdzDK  ,   1

0

22
1

0

2 dzdzD  , 

and   1

0

22
1

0

2 dzdzD  ,   (22) 

Further, for )1(0)0( WW  , Banerjee et al  25   have shown that 

  1

0

22
1

0

22 dzDWdzWD  . (23) 
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4. MATHEMATICAL ANALYSIS 
We prove the following lemma: 
Lemma 1:  For any arbitrary oscillatory perturbation, neutral or unstable 
                                    1

0

2
222

1

0

222
)(

1 dzDWadzaD  . 

Proof: Multiplying equation (18) by   (the complex conjugate of  ), integrating by 
parts each term of the resulting equation on the right hand side for an appropriate number 
of times and making use of boundary condition on   namely )1(0)0(  , it follows 
that 
    1

0

2
1

1

0

222 dzpEdzaD r Real part of 



  Wdz

1

0
, 

                    1

0
Wdz  dzW  1

0
 dzW  1

0
, 

                 dzW  1

0
 2

1
1

0

22
1

1

0

2











   dzWdz , (24) 

                                    (Utilizing Cauchy-Schwartz-inequality), 
So that by using inequality (22) and the fact that 0r , we obtain from the above that 

  1

0

222 )( dza 2
1

1

0

22
1

1

0

2











   dzWdz ,                                                                                                   

 And thus, we get   
2
1

1

0

2
22

2
1

1

0

2
)(

1










   dzWadz  ,  (25) 

Since 0r  and 01p , hence inequality (24) on utilizing (25) and (22), gives 
    1

0

2
222

1

0

222
)(

1 dzDWadzaD  , (26)  
This completes the proof of lemma 1. 
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Lemma 2:  For any arbitrary oscillatory perturbation, neutral or unstable 
                                    1

0

2
222

1

0

222
)(

1 dzDWadzaD  . 

Proof: Multiplying equation (19) by   (the complex conjugate of  ), integrating by 
parts each term of the resulting equation on the right hand side for an appropriate number 
of times and making use of boundary condition on   namely )1(0)0(  , it follows 
that 
    1

0

2
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/
1

0

222 dzpEdzaD r Real part of 



  Wdz

1

0
, 

                    1

0
Wdz  dzW  1

0
 dzW  1

0
, 

                 dzW  1

0
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1
1

0

22
1

1

0

2
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








   dzWdz ,  (27) 

                                    (Utilizing Cauchy-Schwartz-inequality), 
So that by using inequality (22) and the fact that 0r , we obtain from the above that 

  1

0

222 )( dza 2
1

1

0

22
1

1

0

2











   dzWdz ,                                                                                                   

 And thus, we get   
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2
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1

1
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2
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1










   dzWadz  , (28) 

Since 0r  and 01p , hence inequality (27) on utilizing (28) and (22), gives 
    1

0

2
222

1

0

222
)(

1 dzDWadzaD  , (29)  
This completes the proof of lemma 2. 
Lemma 3:  For any arbitrary oscillatory perturbation, neutral or unstable 
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                                    1

0

2
2

1

0

222 1 dzDWdzKaDK   

Proof: Multiplying equation (20) by K  (the complex conjugate of K ), integrating by 
parts each term of the resulting equation on the left hand side for an appropriate number 
of times and making use of boundary conditions on K  namely )1(0)0( KK  , it 
follows that 
    1

0

2
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222 dzKpdzKaDK r Real part of 
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 DWdzK
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
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 (Utilizing Cauchy-Schwartz-inequality), 
Inequality (30) on utilizing (22), gives  
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2 1








  dzDWdzK  , (31) 

Since 0r  and 02 p , hence inequality (30) on utilizing (31), give 
  dzKaDK 1

0

222  1

0

2
2

1 dzDW , (32)  
This completes the proof of lemma 3. 
Now we prove the following theorems: 
Theorem 1: If  R  0 , 0sR  F  0, 0Q , 0lP , 01p , 02 p , 0r , 0i , 

12
2 

Qp and RRs    then the necessary condition for the existence of non-trivial solution  
 KW ,,,   of  equations  (17) – (20), together with boundary conditions (21)  is that 
                                  
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s  .  

Proof: Multiplying equation (17) by  W  (the complex conjugate of W) throughout and 
integrating the resulting equation over the vertical range of z, we get 
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    


  1

0
22*

1
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222 1 WdzaDWPWdzaDWP
F

ll 
              

KdzaDDWQdzWaRdzWRa s    )( 22*
1

0
*2

1

0
2 , (33)                                                                   

Taking complex conjugate on both sides of equation (18), we get     WEpaD 122 ,  (34) 
Therefore, using (34), we get  

        1

0

1

0
1

22 dzEpaDdzW  , (35) 
Taking complex conjugate on both sides of equation (19), we get     WpEaD 3'22 , (36) 
Therefore, using (36), we get  

    1
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1

0
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'22 dzpEaDdzW  ,  (37)                                   
Also taking complex conjugate on both sides of equation (20), we get     DWKpaD 222 , (38) 
Therefore, equation (38), using appropriate boundary condition (21), we get  
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22222222 dzKpaDaDKKdzaDDWKdzaDDW  , 
 (39)     
Substituting (35), (37) and (39), in the right hand side of equation (33), we get 
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  1

0
**

3
/222 )( dzpEaDaRs      1

0
**

2
2222 dzKpaDaDKQ  , (40) 

Integrating the terms on both sides of equation (40) for an appropriate number of times 
and making use of the appropriate boundary conditions (21), we get  
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    


  1

0

2221

0

242222 12 dzWaDWPdzWaDWaWDP
F

ll 
  

     1

0

2*
3

/2222
1

0

2*
1

2222 dzpEaDaRdzEpaDRa s   

     1

0

1

0

222*
2

242222 2 dzKaDKQpdzKaDKaKDQ  , (41)   
now equating real and imaginary parts on both sides of equation (41), and cancelling 

)0(i  throughout from imaginary part, we get 
    


  1

0

2221

0

242222 12 dzWaDWPdzWaDWaWDP
F

l
r

l 
  

     1

0

2
3

/2222
1

0

2
1

2222 dzpEaDaRdzEpaDRa rsr   

     1

0

1

0

222
2

242222 2 dzKaDKQpdzKaDKaKDQ r ,  (42) 
and 

     1

0

1

0

2
3

/221

0
1

22221 dzpEaRdzEpRadzWaDW s    1

0

222
2 dzKaDKQp , 

 (43)                                                                                               
of which the equation (42) can be rearranged in the form     


  1

0

2221

0

242222 12 dzWaDWPdzWaDWaWDP
F

l
r

l 
  

       1

0

222
1

0

2222
1

0

2222 dzKaDQdzaDaRdzaDRa s  

  


    1

0

1

0

222
2

2
3

/2
1

0

2
1

2 dzKaDKQpdzpEaRdzEpRa sr , (44) 

The equation (43) together with 0r , yields the inequality 
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  0
1

0

1

0

222
2

2
3

/2
1

0

2
1

2 


    dzKaDKQpdzpEaRdzEpRa sr , (45) 
Now, utilizing the inequality (22), we have 

    1

0

222
1

0

222 )( dzadzaD  , (46) 
While from the equation (43), we get 

   1

0

222

3
/2
2

1

0

2

3
/2

1

0

2 1 dzKaDKpEaR
QpdzDWpEaRdz

ss  ,   (47) 
So that using inequality (47), we can write the inequality (46) as 

     1

0

222

3
/2

22
2

1

0

2

3
/2

221

0

222 )()( dzKaDKpEaR
aQpdzDWpEaR

adzaD
ss 



 , 

 (48) 
Now, if permissible let RRs  , Then in that case we derive from equation (44) and 
utilizing the inequalities (23), (26), (32), (45) and (48), we get  

0)(11)( 1
1

0

2
222

2
2
2

3
/

22 









 


   IdzDWa

aRQp
pEP

Fa s
l  ,  (49)                                          

Where     


  1

0

222
1

0

2222
1

1 dzKaDQdzWaDWPP
FaI

l
r

l 
 , is positive 

definite. Therefore, we must have 
  



 


  2

2
3

/2
2222 11)(


 Qp

pEP
F

a
aR

l
s . (50) 

and thus we necessarily have 
  



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s   (51) 

Since the minimum value of  
2

2222

a
a  is 44 at 022  a . 

Hence, if 
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 0r  and 0i , then 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s , (52) 
And this completes the proof of the theorem. 
Presented otherwise from the point of view of existence of instability as stationary 
convection, the above Theorem 1, can be put in the form as follow:- 
Corollary 1: The sufficient condition for the onset of instability as a non-oscillatory 
motions of non-growing amplitude in a thermosolutal couple-stress viscoelastic fluid 
configuration of Veronis type  in the presence of uniform vertical magnetic field in a 
porous medium heated from below is that, 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s , where sR  
is the Thermosolutal Rayliegh number, Q is the Chandrasekhar number, 2p  is the 
magnetic Prandtl number, 3p  is the thermosolutal Prandtl number, lP  is the medium 
permeability,   is the porosity and F is the couple-stress parameter, for any arbitrary 
combination of free and rigid boundaries at the top and bottom of the fluid  
or 
The onset of instability in a thermosolutal couple-stress viscoelastic fluid configuration of 
Veronis type in the presence of uniform vertical magnetic field in a porous medium 
heated from below, cannot manifest itself as oscillatory motions of growing amplitude if 
the Thermosolutal Rayliegh number sR , the Chandrasekhar number Q, the magnetic 
Prandtl number 2p , the thermosolutal Prandtl number 3p ,  the medium permeability lP , 
the porosity  and the couple-stress parameter F, satisfy the inequality 





 


  2

2
3

/
4 114  Qp

pEP
FR
l

s  , for any arbitrary combination of free and rigid 
boundaries at the top and bottom of the fluid  
The sufficient condition for the validity of the ‘PES’ can be expressed in the form: 
Corollary 2: If  ,,W , ir i  , 0r  is a solution  of  equations  (17) – (20),  
with R  0  and,   
                                 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s  , 

Then 0i .  
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In particular, the sufficient condition for the validity of the ‘exchange principle’ i.e., 
00  ir   if 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s . 
In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability’ 
in the present configuration of Veronis type, we can state the above theorem as follow:- 
Corollary 3: The necessary condition for the existence of instability in ‘oscillatory 
modes’ and that of ‘overstability’ in a thermosolutal couple-stress fluid configuration of 
Veronis type in the presence of uniform vertical magnetic field in a porous medium 
heated from below is that the Thermosolutal Rayliegh number sR , the Chandrasekhar 
number Q, the magnetic Prandtl number 2p , the thermosolutal Prandtl number 3p ,  the 
medium permeability lP , the porosity  and the couple-stress parameter F must satisfy the 
inequality 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s , for any arbitrary combination of free and 
rigid boundaries at the top and bottom of the fluid.  
Special Cases: It follows from theorem 1 that an arbitrary neutral or unstable mode is 
non-oscillatory in character and ‘PES’ is valid for: 
(i). Thermal convection in couple-stress fluid heated from below, i. e. when   Q = 0 = sR .  
(Sunil et al  16 ) 
(ii). Magneto-thermal convection in couple-stress fluid heated from below ( sR =0), if  
     12

2 




Qp  ‘  

(iii) Thermosolutal convection of Veronis (1965) type in couple-stress fluid heated from 
below ( Q = 0), if 
      



  

3
/

4 14 pEP
FR
l

s . 
A similar theorem can be proved for thermosolutal convection in couple-stress fluid 
configuration of Stern type in a porous medium as follow:  
Theorem 2: If  R  0 , 0sR , F  0, 0lP , 01p , 03 p , 0r , 0i , 

12
2 

Qp and sRR   then the necessary condition for the existence of non-trivial 
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solution   ,,W  of  equations  (17) – (20), together with boundary conditions (21)  is 
that 
                                 



 


  2

2
1

4 114  Qp
EpP

FR
l

.   

Proof: Replacing R and sR  by  R   and  sR  , respectively in equations (17) – (20) 
and proceeding exactly as in Theorem 1 and utilizing the inequality (29), we get the 
desired result.   
Presented otherwise from the point of view of existence of instability as stationary 
convection, the above Theorem 2, can be put in the form as follow:- 
Corollary 4: The sufficient condition for the onset of instability as a non-oscillatory 
motions of non-growing amplitude in a thermosolutal couple-stress fluid configuration of 
Stern type in the presence of uniform vertical magnetic field in a porous medium is that, 





 


  2

2
1

4 114  Qp
EpP

FR
l

 , where R  is the Thermal Rayliegh number, Q is the 
Chandrasekhar number, 2p is the magnetic Prandtl number, 1p  is the thermal Prandtl 
number, lP  is the medium permeability,   is the porosity and F is the couple-stress 
parameter, for any arbitrary combination of free and rigid boundaries at the top and 
bottom of the fluid  
or 
The onset of instability in a thermosolutal couple-stress fluid configuration of Stern type 
in the presence of uniform vertical magnetic field in a porous medium, cannot manifest 
itself as oscillatory motions of growing amplitude if the Thermal Rayliegh number R , the 
Chandrasekhar number Q, the magnetic Prandtl number 2p ,  the thermal Prandtl 
number 1p ,  the medium permeability lP , the porosity  and the couple-stress parameter 
F, satisfy the inequality  



 


  2

2
1

4 114  Qp
EpP

FR
l

, for any arbitrary combination 
of free and rigid boundaries at the top and bottom of the fluid  
The sufficient condition for the validity of the ‘PES’ can be expressed in the form: 
Corollary 5: If  ,,W , ir i  , 0r  is a solution  of  equations  (17) – (20),  
with R  0  and,   
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                                 



 


  2

2
1

4 114  Qp
EpP

FR
l

 , 

Then 0i .  
In particular, the sufficient condition for the validity of the ‘exchange principle’ i.e., 

00  ir   if 



 


  2

2
1

4 114  Qp
EpP

FR
l

. 
In the context of existence of instability in ‘oscillatory modes’ and that of ‘overstability’ 
in the present configuration of Stern’s type, we can state the above theorem as follow:- 
Corollary 6: The necessary condition for the existence of instability in ‘oscillatory 
modes’ and that of ‘overstability’ in a thermosolutal couple-stress fluid configuration of 
Stern type in the presence of uniform vertical magnetic field in a porous medium is that 
the Thermal Rayliegh number R , the Chandrasekhar number Q, the magnetic Prandtl 
number 2p , the thermal Prandtl number 1p ,  the medium permeability lP , the porosity  
and the couple-stress parameter F must satisfy the 
inequality 



 


  2

2
1

4 114  Qp
EpP

FR
l

, for any arbitrary combination of free and rigid 
boundaries at the top and bottom of the fluid.  
Special Cases: It follows from theorem 1 that an arbitrary neutral or unstable mode is 
non-oscillatory in character and ‘PES’ is valid for: 
(i). Thermal convection in couple-stress fluid i. e. when   Q = 0 =R. 
(ii). Magneto-thermal convection couple-stress fluid (R=0), if  
     12

2 




Qp  .  

(iii). Thermosolutal convection of Stren  [23]  type in couple-stress fluid ( Q = 0), if 
   



  

1
4 14 EpP

FR
l

. 
 5. CONCLUSIONS 
Theorem 1 mathematically established that the onset of instability in a thermosolutal 
couple-stress fluid configuration of Veronis type in the presence of uniform vertical 
magnetic field in a porous medium, cannot manifest itself as oscillatory motions of 
growing amplitude if the Thermosolutal Rayliegh number sR , the Chandrasekhar number 
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Q, the magnetic Prandtl number 2p , the thermosolutal Prandtl number 3p ,  the medium 
permeability lP , the porosity  and the couple-stress parameter F satisfy the 
inequality 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s , for any arbitrary combination of free and 
rigid boundaries at the top and bottom of the fluid  
The essential content of the theorem 1, from the point of view of linear stability theory is 
that for the thermosolutal configuration of Veronis type of couple-stress fluid of infinite 
horizontal extension in the presence of uniform vertical magnetic field in a porous 
medium, for any arbitrary combination of free and rigid boundaries at the top and bottom 
of the fluid, an arbitrary neutral or unstable modes of the system are definitely non-
oscillatory in character if 



 


  2

2
3

/
4 114  Qp

pEP
FR
l

s , and in particular PES is 
valid.  
The similar conclusions can be drawn for the thermosolutal configuration of Stern type of 
couple-stress fluid of infinite horizontal extension in the presence of uniform vertical 
magnetic field in a porous medium, for any arbitrary combination of free and rigid 
boundaries at the top and bottom of the fluid from Theorem 2. 
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Abstract:In the present paper, the stability analysis of double-diffusive convection 
problems (Veronis and Stern Types) with cross-diffusions effects (Soret and Dufour 
effects) have been carried out mathematically with temperature dependent 
(variable)viscosity. The eigenvalues equations governing these problems have been 
casted into mathematically tractable forms for stability analysis using some linear 
transformations. The stability of the oscillatory modes and consequently the bounds for 
the complex growth rate for arbitrary neutral or unstable oscillatory perturbations are 
derived which are valid for each combinations of rigid (slip free) and dynamically free 
(stress-free) boundaries and are of general nature. Various consequences of the derived 
results are also worked out.  
Keywords: Double-Diffusive Convection; oscillatory motions;   complex growth rate; 
temperatre-dependent viscosity; eigenvalue problem; Soret effect; Dufour effect. 

1. INTRODUCTION 
A broader range of dynamical behaviour is observed in the convective motions that 

may occur in a gravitational field containing two components (for example, temperature 
and solute) of different diffusivities that affect the density of the fluid and the 
phenomenon is known as double-diffusive convection. The phenomena of double-
diffusive convection occur when the   temperature and concentration gradients are of 
comparable magnitude and operate on different scales and lead to large scale convection. 
These kinds of double-diffusion processes are found in astrophysics (big Helium-stars), 
the earth core, metal alloy, refilling of gas reservoirs, etc. Double-diffusive convection is 
also of importance in various other fields of practical interest such as high quality crystal 
production oceanography, production of pure medication, solidification of molten alloys, 
limnology and engineering. 

The double diffusive process was first recognized by Stommel et. al. [1] through his 
‘thought experiment’ with ocean flow/circulation in mind. Two fundamental 
configurations have been studied in the context of thermohaline instability problems, the 
first one by Stern [2], wherein the temperature gradient is stabilizing and the 
concentration gradient is destabilizing and the second one by Veronis [3], wherein the 



168  

temperature gradient is destabilizing and the concentration gradient is stabilizing. Stern 
found that the steady motion is the preferred mode of onset of instability whereas Veronis 
observed that oscillatory mode of instability is the preferred mode of convective 
instability.  Since then numerous authors have investigated the double diffusive 
convection problems under varying assumptions of hydrodynamics both numerically and 
analytically. For a broader view of the subject of double-diffusive convection one may 
refer to Turner [4 ], Brandt and Fernando [5], Schmitt [6 ] and Nield [7]. 

The stability properties of binary fluids are quite different from pure fluids because of 
Soret and Dufour effects. An externally imposed temperature gradient produces a 
chemical potential gradient and the phenomena known as the Soret effect, whereas the 
analogous effect that arises from a concentration gradient which produces a heat flux is 
called the Dufour effect. The stability of Dufour-Soret driven double-diffusive 
convection in a horizontal layer of a fluid subjected to thermal and solutal gradients has 
been investigated theoretically by means of a linear stability analysis by many authors 
including Groot and Mazur [8], Fitts [9] and McDougall [10]. It is well known fact that 
the viscosity is one of the properties of a fluid which are most sensitive to temperature 
and the variation of viscosity of liquids with temperature is extremely rapid (cf. 
Straughan [11]) which plays an important role in several physical situations wherein the 
fluid viscosity is a function of temperature and/or depth.  

Dhiman and Kumar [12] have investigated the stability of oscillatory modes for 
thermohaline configuration with temperature dependent viscosity and derived a condition 
for the stability of oscillatory modes and obtained the bounds for complex growth rate of 
arbitrary neutral or unstable perturbations. These results have been recently improved 
upon by Dhiman.et. al. [13] by eliminating the curious condition on ܦଶ݂(≥ 0), where,  ݂ 
is the temperature dependent viscosity function and ܦଶ represents the double derivative 
with respect to z. 

Motivated by the above analysis and discussions, the aim of the present paper is to 
extend the analysis of Dhiman et. al. [13] to a more general problem, namely Double-
Diffusive Convection with Cross-Diffusions, when viscosity of the fluid is temperature 
dependent. Here, we shall investigate the stability of the oscillatory motions and derive 
the bounds for complex growth rate, if they exists. In the present analysis, some non-
trivial integral estimates obtained from the governing eigenvalue equations are used to 
obtain these results, which are also free from the curious condition; ܦଶ݂ ≥ 0.The present 
analysis is thus an attempt to study the effects of viscosity variation and cross diffusions 
on the onset of double diffusive convection for general cases of boundary conditions. 
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2. PHYSICAL CONFIGURATION AND EIGEN VALUE PROBLEM 
Consider a viscous, incompressible (Boussinesq) fluid of infinite horizontal 

extension and finite vertical depth statically confined between two horizontal boundaries ݖ = 0 and ݖ = ݀ at constant temperatures ଴ܶ and ଵܶ( ଴ܶ > ଵܶ)  at the lower and upper 
boundaries respectively,and uniform concentrations ܵ଴ and ܵଵ (ܵ଴ > ܵଵ), in the force 
field of the gravity. The uniform temperature gradient ቀߚ = బ்ି భ்

ௗ ቁand concentration 
gradient (ߚᇱ = ஼బି஼భ

ௗ ) make opposing contributions to the vertical density ߩ =
଴ሾ1ߩ + ݖߚߙ +  ᇱ are respectively the coefficients of thermalߙ and ߙ ,ሿ, whereݖᇱߚᇱߙ
expansion and analogous concentration expansion. The extra effects that we have 
considered here are that of coupled fluxes of the two properties due to irreversible 
thermodynamic effects; namely Soret and Dufour effects. 

Following the usual steps of linear stability theory, the non-dimensional linearized 
perturbation equations and the boundary conditions governing the onset of Double-
Diffusive Convection in the presence of Soret and Dufour effects with temperature 
dependent (variable) viscosity are given by (cf. Dhiman and Kumar [12]); 
ଶܦ)݂ − ܽଶ)ଶݓ − p

σ ଶܦ) − ܽଶ)ݓ + ଶܦ)ܦ(݂ܦ)2 − ܽଶ)ݓ + ଶܦ)ଶ݂ܦ + ܽଶ)ݓ = 
= ்ܴܽଶߠ − ܴ௦ܽଶ߮  (1) 
ଶܦ) − ܽଶ − p)ߠ + ଶܦ)்ܦ − ܽଶ)߮ =  (2)  ݓ−
ቀܦଶ − ܽଶ − ୮

ఛቁ ߮ + ଶܦ)்ܵ − ܽଶ)ߠ = − ௪
ఛ   (3) 

The above equations must be solved subject to either of the boundary conditions; 
ݓ = 0 = ߠ = φ = ݖ at   ݓଶܦ = 0 and ݖ = 1 (4) 
(Both boundaries dynamically free) 
ݓ = 0 = ߠ = φ = ݖ at ݓܦ = 0 and ݖ = 1 (5) 
(Both boundaries rigid) 
ݓ = 0 = ߠ = φ = ݖ at ݓܦ = 0 and ݓ = 0 = ߠ = φ = ݖ at ݓଶܦ = 1  (6)  
 (Lower boundary rigid and upper boundary dynamical free)  
ݓ = 0 = ߠ = φ = ݖ at ݓଶܦ = 0 and ݓ = 0 = ߠ = φ = ݖ at ݓܦ = 1 (7) 
 (Lower boundary dynamical free and upper boundary rigid)    

The system of equations (1)-(3) together with either of the boundary conditions 
(4)-(7) thus constitutes an eigenvalue problem for ݌ for given values of other parameters; 
namely ܽଶ, ,ߪ ்ܴ , ܴௌ, ߬,  Further, a given state of the system is stable, neutral .்ܦ ݀݊ܽ ்ܵ
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or unstable according as ݌௥ (real part of ݌) is negative, zero or positive respectively. 
Further, if ݌௥ = 0 implies ݌௜ = 0 for every wave number ܽ, then the principle of 
exchange of stabilities (PES) is valid, which means that instability sets in as stationary 
convection, otherwise we shall have overstability at least when instability sets in as 
certain modes. 

Further, we note that the mathematical structure of the system of equations (1)-(3) 
governing Double-Diffusive Convection in the presence of coupled Soret and Dufour 
effects with temperature dependent viscosity is qualitatively different from those 
governing double diffusive convection problems in the absence of these effects, since the 
latter involves the coupling amongst the eigen-functions ݓ, ,ߠ ܽ݊݀ ߮ and thus obstructs 
any attempt for the elegant extension of the results derived in double diffusive convection 
problems. The nasty behaviour of these equations is arrested by introducing some 
indigenous linear transformations. 
Let us introduce the transformations; 
ݓ = ఛ௪ᇲ

ௌ೅ି௄;ߠ = ௄ఏᇲ
(௄ாାௌ೅ிఛ) + ఛிఝᇲ

(௄ாାௌ೅ிఛ); and߮ = ఛௌ೅
(௄ாାௌ೅ிఛ) ᇱߠ − ாఛ

(௄ாାௌ೅ிఛ) ߮ᇱ 
where,   
ܤ = − ௄

ఛ ܧ, = ቀௌ೅ା஻
஽೅ା௄ቁ ,ܭ ܨ = ቀௌ೅ା஻

஽೅ା௄ቁ  ்ܦ
and K is any positive root of the equation ܭଶ + ߬)ܭ − 1) − ்ܦ்ܵ߬ = 0. 
Now, using the above transformations in equations (1)-(3) and in boundary conditions 
(4)-(7) and dropping the dashes for convenience in writing, we have the following 
reduced forms of equations 
ଶܦ)݂ − ܽଶ)ଶݓ − ௣

ఙ ଶܦ) − ܽଶ)ݓ + ଶܦ)ܦ(݂ܦ)2 − ܽଶ)ݓ + ଶܦ)ଶ݂ܦ + ܽଶ)ݓ = ܴ′்ܽଶߠ −
ܴ′ௌܽଶ߮ (8)                                                                                                                          
ሾܭଵ(ܦଶ − ܽଶ) − ߠሿ݌ =  (9)  ݓ−
ቂܭଶ(ܦଶ − ܽଶ) − ௣

ఛቃ ߮ = − ௪
ఛ  (10) 

together with either of the boundary conditions (4)-(7). 
where,ܴ′் = (஽೅ା௄)(ோ೅஻ାோೄௌ೅)

஻௄ିௌ೅஽೅ , ܴ′ௌ = (ௌ೅ା஻)(ோೄ௄ାோ೅஽೅)
஻௄ିௌ೅஽೅ are respectively the effective 

thermal and Salinity Rayleigh numbers and  ܭଵ = 1 + ఛௌ೅஽೅
௄ ଶܭ     ,  = 1 − ௌ೅஽೅

௄   are non-
negative constants since ௌ೅஽೅

௄ ≥ 0 as ்ܵ ,்ܦ > 0 and K is also positive constants, as 
defined earlier. 
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Remark 1: The above system of equations (8)-(10) and boundary conditions (4)-(7) 
governing the eigenvalue problem of the present problem yields eigenvalue problem 
governing; 

i) Double Diffusive Convection (DDC) with variable viscosity, if we take ்ܦ = ்ܵ = 0.Consequently,ܭଵ = 1 = ଶ and ்ܴᇱܭ = ்ܴ(the usual thermal 
Rayleigh number), and ܴௌᇱ = ܴௌ(the usual solutal Rayleigh number). 

ii) Soret Driven Double-Diffusive Convection (SDDDC) with variable 
viscosity, if we take ்ܦ = 0. Consequently, ܭଵ = ଶܭ = 1 and ்ܴᇱ = ்ܴ −ఛோೄௌ೅

ଵିఛ  is the modified thermal thermal Rayleigh number, and ܴௌᇱ = ்ܴ − ఛோೄௌ೅
ଵିఛ  

is the modified solutal Rayleigh number. 
iii) Dufour Driven Double-Diffusive Convection (DDDDC) with variable 

viscosity, if we take ்ܵ = 0. Consequently, ܭଵ = ଶܭ = 1 and ்ܴᇱ = ்ܴ +ோ೅஽೅
ଵିఛ   is the modified thermal Rayleigh number, and ܴௌᇱ = ்ܴ + ఛோ೅஽೅

ଵିఛ  is the 
modified solutal Rayleigh number. 

iv) Further, when ݂ = 1, the above eigenvalue problems refer to the respective 
configurations with constant viscosity. 

v) The system of equations (8)-(10) together with boundary conditions (4)-(7) 
describes the Veronis Type Configuration, when  ܴ′் > 0 ܽ݊݀ ܴᇱௌ > 0, 
whereas it describes the Stern Type Configuration, when  ܴ′் <0 ܽ݊݀ ܴᇱௌ < 0. 
 

3. MATHEMATICAL ANALYSIS 
Stability of The Oscillatory Modes 

In the following theorem, we shall investigate the stability of the oscillatory modes for 
Veronis type configuration; 
Theorem 1. If (݌, ,ݓ ,ߠ ߮), ݌ = ௥݌ + ௜݌݅ , ௜݌  ≠ 0, is a non-trivial solution of equations 
(8)-(10) together with one of the boundary conditions (4)-(7), ்ܴᇱ > 0 , ܴௌᇱ >
0 ܽ݊݀   ்ܴᇱ ≤ ଶ଻గర௄భ

ସ ቂ ௠݂௜௡ + ఛ௄మ
ఙ ቃ, then ݌௥ < 0. 

Proof: Multiplying both sides of the equation (8) by ݓ∗ and integrating the resulting 
equation over the range of ݖ, we get  
׬ ଵ∗ݓ

଴ ቂ݂(ܦଶ − ܽଶ)ଶݓ − ௣
ఙ ଶܦ) − ܽଶ)ݓ + ଶܦ)ܦ(݂ܦ)2 − ܽଶ)ݓ + ଶܦ)ଶ݂ܦ + ܽଶ)ݓቃ ݖ݀ =

்ܴᇱܽଶ ׬ ଵݖ݀∗ݓߠ
଴ − ܴௌᇱܽଶ ׬ ଵ∗ݓ߮

଴  (11) ݖ݀
Taking complex conjugate of both sides of equations (9) and (10) and using the resulting 
equations respectively in the first two terms in the right hand side of equation (11), we 
get 
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׬ ଵ∗ݓ
଴ ቂ݂(ܦଶ − ܽଶ)ଶݓ − ௣

ఙ ଶܦ) − ܽଶ)ݓ + ଶܦ)ܦ(݂ܦ)2 − ܽଶ)ݓ + ଶܦ)ଶ݂ܦ + ܽଶ)ݓቃ ݖ݀ =
−்ܴᇱܽଶ ׬ ଶܦ)ଵܭሾߠ − ܽଶ) − ݖ݀∗ߠሿ∗݌ +ଵ

଴ ܴௌᇱܽଶ ׬ ߮ ቂܭଶ(ܦଶ − ܽଶ) − ௣∗
ఛ ቃଵ

଴  (12) ݖ݀∗߮
 Now, integrating the various terms of equation (12) by parts an appropriate number of 
times and using the relevant boundary conditions (4)-(7), we have 
׬ ݂ሾ|ܦଶݓ|ଶ + ܽସ|ݓ|ଶ + 2ܽଶ|ݓܦ|ଶሿ݀ݖଵ

଴ + ௣
ఙ ׬ ଶ|ݓܦ|) + ܽଶ|ݓ|ଶ)݀ݖଵ

଴ + ܽଶ ׬ ଶ|ݓܦ|) +ଵ
଴

ܽଶ|ݓ|ଶ)݀ݖ + ܽଶ ׬ ݖଶ݀|ݓ|ଶ݂ܦ =ଵ
଴்ܴᇱܽଶ ׬ ଶ|ߠܦ|ଵሾܭ + ܽଶ|ߠ|ଶሿ݀ݖ − ܴ௦ᇱଵ

଴ ܽଶ ׬ ଶ|߮ܦ|ଶሾܭ߬ + ܽଶ|߮|ଶሿ ଵ
଴  ݖ݀

+ܽଶ݌∗ ቂ்ܴᇱ ׬ ݖଶ݀|ߠ| − ܴௌᇱ ׬ |߮|ଶ݀ݖଵ
଴

ଵ
଴ ቃ = 0  (13) 

Equating the real and imaginary parts of equation (13) to zero and cancelling ݌௜(≠ 0) 
throughout from the imaginary part, we get 
׬ ݂ሾ|ܦଶݓ|ଶ + ܽସ|ݓ|ଶ + 2ܽଶ|ݓܦ|ଶሿଵ

଴ ݖ݀ +
௣ೝ
ఙ ׬ ଶ|ݓܦ|) + ܽଶ|ݓ|ଶ)݀ݖ + ܽଶଵ

଴ ׬ ଶଵܦ
଴ ݖଶ݀|ݓ|݂ − ்ܴᇱܽଶܭଵ ׬ ሾ|ߠܦ|ଶ + ܽଶ|ߠ|ଶሿଵ

଴ ݖ݀ +
ܴௌᇱܽଶ߬ܭଶ ׬ ଶ|߮ܦ|) + ܽଶ|߮|ଶ)݀ݖଵ

଴ − ܽଶ݌௥ ቂ்ܴᇱ ׬ ݖଶ݀|ߠ| − ܴௌᇱ ׬ |߮|ଶଵ
଴

ଵ
଴ ቃݖ݀ = 0 (14) 

and 
 ଵ
ఙ ׬ ଶ|ݓܦ|) + ܽଶ|ݓ|ଶ)݀ݖ + ்ܴᇱଵ

଴ ܽଶ ׬ ଵݖଶ݀|ߠ|
଴ − ܴ௦ᇱܽଶ ׬ |߮|ଶଵ

଴ ݖ݀ = 0 (15) 
If permissible, let p୰ ≥ 0 
Now, multiplying equation (15) by ݌௥ and adding the resulting equation to equation (14), 
we obtain 
׬ ݂ሾ|ܦଶݓ|ଶ + ܽସ|ݓ|ଶ + 2ܽଶ|ݓܦ|ଶሿଵ

଴ ݖ݀ +
ଶ௣ೝ

ఙ ׬ ଶ|ݓܦ|) + ܽଶ|ݓ|ଶ)݀ݖ + ܽଶଵ
଴ ׬ ଶଵܦ

଴ − ݖଶ݀|ݓ|݂ ்ܴ
ᇱܽଶܭଵ ׬ ሾ|ߠܦ|ଶ + ܽଶ|ߠ|ଶሿଵ

଴ +   ݖ݀
  ܴௌᇱܽଶ߬ܭଶ ׬ ׬ ሾ|߮ܦ|ଶ + ܽଶ|߮|ଶሿଵ

଴ ଵ  ݖ݀
଴ = 0 (16)    

Equation (15) implies that  
ଵ
ఙ ׬ ଶ|ݓܦ|) + ܽଶ|ݓ|ଶ)݀ݖ < ܴ௦ᇱܽଶ ׬ |߮|ଶଵ

଴ ଵݖ݀
଴  (17)  

Since,w, θ and φ  vanish at z = 0 and z = 1, therefore Rayleigh Ritz inequality (Schultz 
[14]) yields 
׬ ଵݖଶ݀|ݓܦ|

଴ ≥ ଶߨ ׬ ଶଵ|ݓ|
଴  (18) ݖ݀

׬ ݖଶ݀|ߠܦ| ≥ ଶଵߨ
଴ ׬ ଶଵ|ߠ|

଴  (19) ݖ݀
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׬ ଶଵ|߮ܦ|
଴ ݖ݀ ≥ ଶߨ ׬ |߮|ଶଵ

଴                                                                                                                      (20) ݖ݀
Now, combining inequalities (17) and (18), we have 
൫గమା௔మ൯

ఙ ׬ ଶଵ|ݓ|
଴ ݖ݀ < ܴ௦ᇱܽଶ ׬ |߮|ଶଵ

଴  (21) ݖ݀
Also, upon using inequality (20), we can have  
ܴௌᇱܽଶ ׬ ሾ|߮ܦ|ଶ + ܽଶ|߮|ଶሿଵ

଴ ݖ݀ ≥ ൫గమା௔మ൯మ
ఙ ׬ ଶଵ|ݓ|

଴  (22) ݖ݀
Now, utilizing Schwartz inequality, we have 

ଶߨ න ݖଶ݀|ݓ| ≤ଵ
଴

න ݖଶ݀|ݓܦ| ≤ଵ
଴

ቤ− න ଵݓଶܦ∗ݓ
଴

ቤ ݖ݀ ≤ න ሾ|ݓ|ଶ݀ݖሿభ
మ

ଵ
଴

න ሾ|ܦଶݓ|ଶ݀ݖሿభ
మ

ଵ
଴

 
which on simplification yields 
׬ ሾ|ܦଶݓ|ሿଶ݀ݖଵ

଴ ≥ ସߨ ׬ ଶଵ|ݓ|
଴  (23) ݖ݀

Using inequalities (18) and (23), we have 
׬ ݂ሾ|ܦଶݓ|ଶ + 2ܽଶ|ݓܦ|ଶ + ܽସ|ݓ|ଶሿଵ

଴ ݖ݀ ≥ ௠݂௜௡(ߨଶ + ܽଶ)ଶ ׬ ଵݖଶ݀|ݓ|
଴  (24) 

where, ௠݂௜௡. is the minimum value of ݂ in the closed intervalሾ0,1ሿ. 
Now, multiplying  equation (9) by its complex conjugate  and integrating the various 
terms on left hand side of the resulting equation by parts an appropriate number of times  
and making use of relevant boundary conditions; (0)ߠ = (1)ߠ = 0, we obtain 
න ଵଶଵܭ

଴
ଶܦ)| − ܽଶ)ߠ|ଶ݀ݖ + ଵܭ௥݌2 න ሾ|ߠܦ|ଶ + ܽଶ|ߠ|ଶሿଵ

଴
ݖ݀ + ଶ|݌| න ݖଶ݀|ߠ| = න ଶଵ|ݓ|

଴
ଵ

଴
 ݖ݀

  (25) 
Since, ௥݌ ≥ 0, therefore equation (25) gives 
ଵଶܭ ׬ ଶܦ)| − ܽଶ)ߠ|ଶ݀ݖ ≤ ׬ ଵݖଶ݀|ݓ|

଴
ଵ

଴  (26) 
Further, emulating the derivation of inequalities (23) and (24), we have the following 
inequality 
׬ ଶܦ)| − ܽଶ)ߠ|ଶ = ׬ ሾ|ܦଶߠ|ଶ + 2ܽଶ|ߠܦ|ଶ + ܽସ|ߠ|ଶ݀ݖሿଵ

଴
ଵ

଴ ≥ ଶߨ) + ܽଶ)ଶ ׬ ଶଵ|ߠ|
଴  (27)  ݖ݀

Now, combining inequalities (26) and (27) 
׬ ଵݖଶ݀|ݓ|

଴  ≥ (πଶ + aଶ)ଶKଵଶ ׬ |θ|ଶଵ
଴ dz (28) 

Again, we know that 



174  

׬ ݖଶ݀|ݓ| = ׬ ሾ|ݓ|ଶ݀ݖሿభ
మଵ

଴
ଵ

଴ ׬ ሾ|ݓ|ଶ݀ݖሿభ
మଵ

଴  (29) 
which upon using inequalities (26)and  (28), we have 

න ଶଵ|ݓ|
଴

ݖ݀ ≥ ଶߨ) + ܽଶ)ܭଵଶ ቊන ଶܦ)| − ܽଶ)ߠ|ଶ݀ݖଵ
଴

ቋ
భ
మ ቊන ଵݖଶ݀|ߠ|

଴
ቋ

భ
మ 

≥ ଶߨ) + ܽଶ)ܭଵଶ ቚ− ׬ ଶܦ)∗ߠ − ܽଶ)ߠଵ
଴ ቚ   (using Schwartz inequality) 

≥ ଶߨ) + ܽଶ)ܭଵଶ ׬ ሾ|ߠܦ|ଶ + ܽଶ|ߠ|ଶሿଵ
଴  (30) 

Let us consider the integral   
׬ ݖ݀ݓଶܦ(∗ݓ݂) = − ׬ ∗ݓܦ݂) + ଵ(∗ݓ݂ܦ

଴
ଵ

଴    ݖ݀ݓܦ
= − ׬ ଶଵ|ݓܦ|݂

଴ ݖ݀ − ׬ ଵݖ݀ݓܦ݂ܦ∗ݓ
଴  (31) 

Let, ܫ = ׬ ݖ݀ݓܦ݂ܦ∗ݓ = − ׬ ଶ݂ܦ∗ݓ) + ଵݖ݀ݓ(∗ݓܦ݂ܦ
଴

ଵ
଴ = − ׬ ݖଶ݀|ݓ|(ଶ݂ܦ) − ଵ∗ܫ

଴ (32) 
which implies that 
ܫ + ∗ܫ = (ܫ) 2ܴ݁ = − ׬ ଵݖଶ݀|ݓ|ଶ݂ܦ

଴  (33) 
Where ܴ݁ stands for  real part  of the quantity. 
Also, from inequalities (31) and (33), we have 
׬ ݖଶ݀|ݓ|ଶ݂ܦ = 2ܴ݁ ׬ ݖ݀ݓଶܦ(∗ݓ݂) + ׬ ଵݖଶ݀|ݓܦ|݂

଴
ଵ

଴
ଵ

଴  (34) 
Also,  ׬ ଶܦ)|݂ + ܽଶ)ݓ|ଶଵ

଴ ݖ݀ = ׬ ݓଶܦ)݂ + ܽଶܦ)(ݓଶݓ∗ + ܽଶݖ݀(∗ݓଵ
଴  

= න ሾ|ܦଶݓ|ଶ + ܽସ|ݓ|ଶሿଵ
଴

ݖ݀ + 2ܽଶܴ݁ ቆන ଵݖ݀ݓଶܦ(∗ݓ݂)
଴

ቇ 
which yields 
׬ ሾ|ܦଶݓ|ଶ + ܽସ|ݓ|ଶሿଵ

଴ ݖ݀ = ׬ ଶܦ)|݂ + ܽଶ)ݓ|ଶଵ
଴ ݖ݀ − 2ܽଶܴ݁ ቀ׬ ଵݖ݀ݓଶܦ(∗ݓ݂)

଴ ቁ (35) 
Further, in view of equations (34) and (35), we can have 

න ݂ሾ|ܦଶݓ|ଶ + 2ܽଶ|ݓܦ|ଶ + ܽସ|ݓ|ଶሿ݀ݖ + ܽଶ න ଶଵ|ݓ|(ଶ݂ܦ)
଴

ଵ
଴

 ݖ݀

= න ଶܦ)|݂ + ܽଶ)ݓ|ଶଵ
଴

ݖ݀ + 4ܽଶ න ଵݖଶ݀|ݓܦ|݂
଴

≥ ௠݂௜௡. න ସߨ) + ܽସ + 2ܽଶߨଶ)|ݓ|ଶ݀ݖଵ
଴

 



175  

≥ ௠݂௜௡.(ߨଶ + ܽଶ)ଶ ׬ ଶଵ|ݓ|
଴  (36) ݖ݀

Using inequalities (22), (30), (36), in equation (16) and the fact that ݌௥ ≥ 0, we have 
௄భ൫గమା௔మ൯య

௔మ ቀ ௠݂௜௡. + ఛ௄మ
ఙ ቁ ׬ ଶଵ|ݓ|

଴ ݖ݀ < ்ܴᇱ ׬ ଶଵ|ݓ|
଴  (37) ݖ݀

Since, the minimum value of ൫గమା௔మ൯య 
௔మ with respect to ܽଶ is ଶ଻గర

ସ , therefore inequality (37) 
gives 

ቈܭଵ
ସߨ27

4 ൬ ௠݂௜௡. + ଶܭ߬
ߪ ൰ − ்ܴᇱ቉ න ଵݖଶ݀|ݓ|

଴
< 0 

The above inequality clearly implies that 
ଶ଻గర௄భ(ఛ௄మାఙ௙೘೔೙.)

ସோ೅ᇲఙ < 1 (38) 
which is a contradiction to the hypothesis of the theorem. 
Hence, we must have ݌௥ < 0. 
This completes the proof of the theorem. 
 The above theorem clearly implies that the oscillatory modes of system are stable, 
when ்ܴᇱ ≤ ଶ଻గర௄భ

ସ ቀ ௠݂௜௡ + ఛ௄మ
ఙ ቁ. Alternatively, one can also say that the oscillatory 

modes of growing amplitude are not allowed in Double-Diffusive convection problem 
(Veronis type) in the presence of coupled effects and with variable viscosity,  if ்ܴᇱ ≤
ଶ଻ ర௄భ

ସ ቀ ௠݂௜௡ + ఛ௄మ
ఙ ቁ. 

 It is to note that this sufficient condition for the stability of the oscillatory modes 
is independent of the condition; ܦଶ݂ ≥ 0 on the double derivative of the temperature 
dependent viscosity function (cf. Dhiman et. al [14 ]).  
Further, in view of Remark 1 above, we have the following corollaries; 
Corollary 1: Under the hypothesis of Theorem 1, for DDC with variable viscosity, if 
்ܴ ≤ ቀ ௠݂௜௡ + ఛ

ఙቁ, then ݌௥ < 0. 
Corollary 2: Under the hypothesis of Theorem 1, for SDDDC with variable 
viscosity, ்ܴ ≤ ቀ ௠݂௜௡ + ఛ

ఙ + ఛோೄௌ೅
ଵିఛ ቁ, then ݌௥ < 0. 

Corollary 3: Under the hypothesis of Theorem 1, for DDDDC with variable 
viscosity, ்ܴ ≤ ቀ ௠݂௜௡ + ఛ

ఙ − ோ೅஽೅
ଵିఛ ቁ,then ݌௥ < 0. 
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It is to note that when the viscosity is constant or varying linearly or exponentially, we 
have ௠݂௜௡ = 1, and Corollary 1 implies that for DDC problem if ்ܴ ≤ ቀ1 + ఛ

ఙቁ, then 
௥݌ < 0, a result obtained by Gupta et.al. [15]. 
We shall now derive an analogous result for Stern’s type configuration. 
Theorem 2. If (݌, ,ݓ ,ߠ ߮), ݌ = ௥݌ + ௜݌݅ , ௜݌ ≠ 0  is a nontrivial solution of equation (8)-
(10) together with one of the boundary conditions (4)-(7) and ்ܴᇱ < 0, ܴௌᇱ < 0 
and |ܴௌᇱ| ≤ ଶ଻ ర௄భ

ସ ቂ ௠݂௜௡ + ఛ௄మ
ఙ ቃ, then ݌௥ < 0. 

Proof. Following the analysis adopted in the derivation of the result for the case of 
Veronis type configuration, analogous result can be easily derived for the case of Stern’s 
type Double-Diffusive Convection in the presence of coupled effects with temperature 
dependent viscosity, just by replacing  R୘ᇱand Rୗᇱ  with−|்ܴᇱ|and −|ܴௌᇱ|respectively in 
Theorem 1.  
Further, we can easily obtain the analogous results contained in Corollaries 1-3 Stern type 
configuration. 
In the following analysis, we have derived bounds which arrest the complex growth rate 
of the arbitrary neutral or unstable (݌௥ ≥ 0) oscillatory motions (݌௜ ≠ 0). 

Bounds for the Complex Growth Rate 
Theorem 3: If (p, w, θ, φ) p = p୰ + ip୧, p୰ ≥ 0, p୧ ≠ 0 is a non-trivial solution of 
equations (8)-(10) together with one of the boundary conditions (4)-(7), R୘ᇱ > 0 , Rୗᇱ >0, then 
|݌| < ோ೅ᇲఙ√ெమିଵ

(ఙ௙೘೔೙.ାఛ௄మ) , where, ܯ = ସோ೅ᇲఙ
ଶ଻గర௄భ(ఛ௄మାఙ௙೘೔೙.). 

Proof: Proceeding exactly as in Theorem1, utilizing the fact that  ݌௥ ≥ 0, we have from 
equation (25), the following inequality 
ଵଶܭ ׬ ଶܦ)| − ܽଶ)ߠ|ଶଵ

଴ ݖ݀ + ଶ|݌| ׬ ݖଶ݀|ߠ| < ׬ ଶଵ|ݓ|
଴

ଵ
଴  (39) ݖ݀

Using inequality (27), inequality (39) gives 
ଶߨ)ଵଶܭ + ܽଶ)ଶ ቂ1 + |௣|మ

௄భమ(గమା௔మ)మቃ ׬ ଶଵ|ߠ|
଴ ݖ݀ ≤ ׬ ଶଵ|ݓ|

଴  (40) ݖ݀
Now,  

න ሾ|ߠܦ|ଶ + ܽଶ|ߠ|ଶሿ݀ݖଵ
଴

= ቤ− න ଶܦ)∗ߠ − ܽଶ)ݖ݀ߠଵ
଴

ቤ ≤ ቤන θ(Dଶ − aଶ)θdzଵ
଴

ቤ 



177  

≤ ቚ׬ Dଶ)||ߠ| − ܽଶ)ݖ݀|ߠଵ
଴ ቚ ≤ ቂ׬ ଶଵ|ߠ|

଴ ቃ
భ
మ ቂ׬ ଶܦ)| − ܽଶ)|ଶ݀ݖଵ

଴ ቃ
భ
మ    (using Schwartz inequality)   

which upon using inequality (40) yields 
׬ ሾ|ߠܦ|ଶ + ܽଶ|ߠ|ଶሿ݀ݖଵ

଴ < ଵ
௄భమ(గమା௔మ)మ ቂ1 + |௣|మ

௄భమ(గమା௔మ)మቃ
షభ
మ ׬ ଵݖଶ݀|ݓ|

଴  (41) 
 Now, making use of inequalities (22), (37) and (41) and using the fact that ݌௥ ≥ 0, equation (16) implies that 

൫గమା௔మ൯య
௔మ

ێۏ
ێێ
ۍ
ቀ ௠݂௜௡.ܭଵ + ఛ௄భ௄మ

ఙ ቁ − ோ೅ᇲ

ቈଵା |೛|మ
಼భమ൫ഏమశೌమ൯మ቉

భమ
ۑے
ۑۑ
ې

׬ ଶଵ|ݓ|
଴ ݖ݀ < 0 (42) 

Utilizing the minimum value of ൫గమା௔మ൯య
௔మ  with respect to ܽଶ as ଶ଻ ర

ସ  in inequality (42), we 
get 
ቂ1 + |௣|మ

௄భమ(గమା௔మ)మቃ
భ
మ < ସோ೅ᇲఙ

௄భଶ଻గర(ఙ௙೘೔೙.ାఛ௄మ)   
which can be written as  
|݌| < ଶߨ)ଵܭ + ܽଶ)√ܯଶ − 1 (43)  
where, ܯ = ସோ೅ᇲఙ

ଶ଻గర௄భ(ఛ௄మାఙ௙೘೔೙.). 

Since, ቂ1 + |௣|మ
௄భమ(గమା௔మ)మቃ

భ
మ ≥ 0, therefore it follows from inequality (42) that 

ଶߨ) + ܽଶ) < ோ೅ᇲ௔మఙ
௄భ(గమା௔మ)మ(ఙ௙೘೔೙.ାఛ௄మ)  (44) 

which upon using the minimum value of  ൫గమା௔మ൯మ
௔మ  with respect to ܽଶ is 4ߨଶ, yields 

ଶߨ) + ܽଶ) < ோ೅ᇲఙ
௄భ(ఙ௙೘೔೙.ାఛ௄మ)ସగమ (45) 

Using inequality (45) in inequality (43), we obtained 
|݌| < ோ೅ᇲఙ

(ఙ௙೘೔೙.ାఛ௄మ)ସగమ ଶܯ√ − 1 . (46) 
This completes the proof of the theorem. 
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From the point of view of hydrodynamic theory, we may state the above theorem 

as; 
The complex growth rate ݌ = ௥݌ +  ௜ of an arbitrary oscillatory perturbation of growing݌݅
amplitude (݌௥ ≥ 0) lies inside a semi-circle in the right half of the p୰p୧ − plane whose 
centre is at the origin and whose radius is given by|݌| < ோ೅ᇲఙ

(ఙ௙೘೔೙.ାఛ௄మ)ସగమ ଶܯ√ − 1. 
Further, in view of Remark 1 above, we have the following corollaries; 
Corollary 4: Under the hypothesis of Theorem 3, for DDC with variable viscosity, 
|݌| < ோ೅ఙ

(ఙ௙೘೔೙ାఛ)ସగమ ඥܯᇱଶ − 1, where, ܯᇱ = ସఙఒோೄ
ଶ଻ ర(ఛାఙ௙೘೔೙). 

Corollary 5: Under the hypothesis of Theorem 3, for SDDDC with variable 
viscosity, |݌| < ቀோ೅ିഓೃೄೄ೅భషഓ ቁఙ

(ఙ௙೘೔೙ାఛ)ସగమ ඥܯᇱᇱଶ − 1 , where,  ܯᇱᇱ = ସఙቀோ೅ିഓೃೄೄ೅భషഓ ቁ
ଶ଻ ర௄భ(ఛ௄మାఙ௙೘೔೙). 

Corollary 6: Under the hypothesis of Theorem 3, for DDDDC with variable 
viscosity, |݌| < ቀோ೅ାೃ೅ವ೅భషഓ ቁఙ

(ఙ௙೘೔೙ାఛ)ସగమ ᇱᇱ′ଶܯ√ − 1 , where, ܯᇱᇱᇱ = ସఙቀோ೅ାೃ೅ವ೅భషഓ ቁ
ଶ଻ ర௄భ(ఛ௄మାఙ௙೘೔೙). 

It is to note that when the viscosity is constant or varying linearly or exponentially, we 
have ௠݂௜௡ = 1, and Corollary 4 yields the bound for DDC problem as derived by Gupta 
et.al. [15]. 
We shall now derive the analogous bound for Stern’s type configuration. 
Theorem 4. If (݌, ,ݓ ,ߠ ߮), ݌ = ௥݌ + ௜݌݅ , ௜݌ ≠ 0  is a non-trivial solution of equations 
(8)-(10) together with one of the boundary conditions (4)-(7) and ்ܴᇱ < 0, ܴௌᇱ < 0, then 
|݌| < หோೄᇲหఙඥேᇲమିଵ

ସగమ(௄భାఙ௙೘೔೙) , where,ܰᇱ = ସหோೄᇲหఙ
ଶ଻గరఛ௄మ(௄భାఙ௙೘೔೙). 

Proof. Proceeding exactly as in Theorem 3, we can easily prove the theorem. 
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Abstract  
Condition for characterizing non oscillatory motions, which may be neutral or unstable, 
for triply diffusive convection analogous to Stern type in a porous medium is derived by 
using Darcy-Brinkman model. It is analytically proved that the principle of the exchange 
of stabilities, in triply diffusive convection in a porous medium, is valid in the regime 
|ோ|ாఙ
ଶగర ≤ 1 , where ܴ is the thermal Rayleigh number, σ is the Prandtl number, E is a 

constant. It is further proved that this result is uniformly valid for all combinations of 
rigid and dynamically free boundaries. 
Keywords: Triply diffusive convection, Porous medium, Darcy-Brinkman model, The 
principle of the exchange of stabilities, Concentration Rayleigh number. 
Introduction                 
Research on convective fluid motion in porous media under the simultaneous action of a 
uniform vertical temperature gradient and a gravitationally opposite uniform vertical 
concentration gradient (known as double diffusive convection) has been an area of great 
activity due to its importance in the predication of ground water movement in aquifers, in 
assessing the effectiveness of fibrous materials, in engineering geology and in nuclear 
engineering. Double diffusive convection is now well known. For a broad view of the 
subject one may be referred to Nield and Bezan [12], Murray and Chen [10], Nield [11], 
Taunton et al. [29], Kuznetsov and Nield [8], Lombardo and Mulone [9], Basu and 
Layek[2]. 

 All these researchers have considered double diffusive convection. However, it 
has been recognized later that there are many fluid systems, in which more than two 
components are present. For example, Degens et al. [3] reported that the saline waters of 
geothermally heated Lake kivu are strongly stratified by heat and a salinity which is the 
sum of comparable concentrations of many salts. Similarly the oceans contain many salts 
having concentrations less than a few percent of the sodium chloride concentration. 
Multi-component concentrations can also be found in magmas and substratum of water 
reservoirs. The subject with more than two components (in porous and non porous 
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medium) has attached the attention of many researchers Grifiths [4, 5], Poulikakos [15], 
Pearlstein et al. [14], Terrones and Pearlstein [26], Rudraiah and Vortmeyer [20], Lopez 
et al. [7], Tracey [27, 28], Rionero [17], Straughan and Tracey [24]. The essence of the 
works of these researchers is that small salinity of a third component with a smaller mass 
diffusivity can have a significant effect upon the nature of convection; and ‘oscillatory’ 
and direct ‘salt finger’ modes are simultaneous possible under a wide range of conditions, 
when the density gradients due to components with greatest and smallest diffusivity are 
of same signs. Terrones [25] studied the effects of cross-diffusion on the onset of 
convective instability in a horizontally infinite triply diffusive and triply stratified fluid 
layer. Ryzhkov and Shevtsova [21] investigated the long-wave instability of a vertical 
multicomponent fluid layer induced by the Soret effect. Rionero [18] investigated a triply 
convective diffusive fluid mixture saturating a porous layer and derived sufficient 
conditions for inhibiting the onset of convection. Rionero [19] further studied the 
multicomponent diffusive convection in porous layer salted by m salts partly from above 
and partly from below. 

The validity of the principle of the exchange of stabilities (PES) (i.e. 
nonoccurence of oscillatory motions) in stability problems removes the unsteady terms 
from the linear perturbation equations which results in notable mathematical simplicity 
since the transition from stability to instability occurs via a marginal state which is 
defined by the vanishing of both real and imaginary parts of the complex time eigenvalue 
associated with the perturbation. Pellew and southwell [13] proved the validity of PES for 
Rayleigh-Benard problem. However no such result exists for other more complex 
hydrodynamic configurations. Banerjee et al. [1] derived a sufficient condition for the 
validity of PES for hydromagnetic Rayleigh-Benard problem. Gupta et al. [6] extended 
Banerjee et al.’s [1] criterion to rotatory hydromagnetic thermohaline convection 
problem. To the author’s knowledge no such result exists for triply diffusive convection 
analogous to Stern [23] type in porous medium. Thus the present paper provides a 
sufficient condition for the validity of PES in triply diffusive convection analogous to 
Stern [23] type in porous medium may be regarded as a first step in this scheme of 
extended investigations. The following result is obtained in this direction: 

For triply diffusive convection in porous medium, if  |ோ|ாఙ
ଶగర ≤ 1 , then an arbitrary 

neutral or unstable mode of system is definitely nonoscillatory in character and in 
particular PES is valid where ܴ is the Raleigh number, σ is the Prandtl number, E   is a 
constant. It is further proved that this result is uniformly valid for all combinations of 
rigid and dynamically free boundaries and the results for Rayleigh-Benard convection in 
porous medium and double diffusive convection of Stern [23] type in porous medium 
follow as a consequence  
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Mathematical Formulation and Analysis  
A viscous finitely heat conducting Boussinesq fluid layer, saturating a porous medium, of 
infinite horizontal extension is statically confined between two horizontal boundaries z = 0 and z = d which are respectively maintained at uniform temperatures T଴ and Tଵ(>T଴) and uniform concentrations Sଵ଴, Sଶ଴ and Sଵଵ(> Sଵ଴), Sଶଵ(> Sଶ଴)(as shown in Fig.1). 
It is assumed that the saturating fluid and the porous layer are incompressible and that the 
porous medium is a constant porosity medium. It is further assumed that the cross-
diffusion effects of the stratifying agencies can be neglected. The Darcy- Brinkman 
model has been used to investigate the triple diffusive convection in porous medium. 
Non-dimensional hydrodynamical equations that govern the problem are given by Vafai 
[30], Prakash et al. [16]  
 Λ(Dଶ − aଶ)ଶw − (p + Dୟି ଵ)(Dଶ − aଶ)w =  −|ܴ|aଶ ׬ w∗ଵ

଴ θ dz + | ܴଵ|aଶ ׬ w∗ଵ
଴  ଵ dz +

| ܴଶ|aଶ ׬ w∗ଵ
଴  ଶ dz.                                                                           

(1) 
(Dଶ − aଶ − E σp)θ = −w ,                                      (2) 
ቀDଶ − aଶ − ୉భσ ୮

τభ ቁ  ଵ =  − ୵
τభ ,                                     (3) 

ቀDଶ − aଶ − ୉మσ ୮
τమ ቁ  ଶ =  − ୵

τమ .                                                                                           (4) 
The equations (1) – (4) are to be solved by using the following boundary conditions: 
w = θ =  ଵ =  ଶ= Dw = 0 at z = 0 and at z = 1, (when both the boundaries are rigid)       
(5)   
or  w = θ =  ଵ=  ଶ= D2w = 0 at z = 0 and at z = 1, (when both the boundaries are free)   
(6) 
  or    w =  θ =   ଵ =  ଶ =  Dw =  0 at z =  0,   (when lower boundary is rigid)
and   w =  θ =   ଵ =  ଶ =  Dଶw =  0 at z =  1,   (when upper boundary is free)ൠ   
(7) 
 or      w =  θ =   ଵ =  ଶ =  Dଶw =  0 at z =  0,   (when lower boundary is free)
and     w =  θ =   ଵ =  ଶ = Dw =  0 at z =  1,   (when upper boundary is rigid)ൠ   
(8) 
where z is the real independent such that 0 ≤  z  ≤ 1, D is the differentiation w.r.t. z,  a2 is 
square of the wave number, σ = ν 

κ  is the Prandtl number, τଵ =  κభ
κ  and   τଶ =  κమ

κ  are the 
Lewis numbers, R =  ୥ α β ୢర

κ ν  is the thermal Rayleigh number, Rଵ =  ୥ αభβభ ୢర
κ ν  and Rଶ =
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 ୥ αమβమ ୢర
κ ν  are the two concentration Rayleigh numbers, p =  p୰ +  ip୧ is the complex 

growth rate where  p୰ and  p୧ are the real constants, w is the vertical velocity, θ, is the 
temperature,  ଵ and  ଶ are the two concentrations. It may further be noted that in Eqs. 
(1)-(4) together with the boundary conditions (5)-(8)  describe an eigenvalue problem for 
p and govern triply diffusive convection in porous medium for any combination of 
dynamically free and rigid boundaries. 
Now we prove the following theorem  
Theorem. If (w, θ,  ଵ,  ଶ, p), p =  p୰  +  ip୧,  p୰  ≥ 0 is a solution of Eqs. (1) – (8) with 
R < 0,  Rଵ < 0, Rଶ < 0 and |ோ|ாఙ

ଶగర ≤ 1  then p୧ = 0. In particular p୰ = 0 implies  p୧ = 0, if 
 |ோ|ாఙ

ଶగర ≤ 1 .   
Proof:Multiplying equation (1) by w* (the superscript * henceforth denotes complex 
conjugation) on both sides and integrating over vertical range of z, we obtain 

 
Λ ׬ w∗ଵ

଴ (Dଶ − aଶ)ଶw dz − (p + Dୟି ଵ) ׬ w∗ଵ
଴ (Dଶ − aଶ)w dz =  −|ܴ|aଶ ׬ w∗ଵ

଴ θ dz +
| ܴଵ|aଶ ׬ w∗ଵ

଴  ଵ dz + | ܴଶ|aଶ ׬ w∗ଵ
଴  ଶ dz.   (9)         

Making use of Eqs. (2) – (4) and the fact that w (0) = 0 = w (1), we can write 
|ܴ| aଶ ׬ w∗ଵ

଴ θ dz = |ܴ|aଶ ׬ θଵ
଴ (Dଶ − aଶ −  E σ p∗)θ∗dz,  (10)  

| ܴଵ|aଶ ׬ w∗ଵ
଴  ଵdz = −| ܴଵ|aଶτଵ ׬  ଵଵ

଴ ቀDଶ − aଶ −  ୉భσ ୮∗
τభ ቁ  ଵ∗dz,                                 

(11) 
 | ܴଶ|aଶ ׬ w∗ଵ

଴  ଶdz = −| ܴଶ|aଶτଶ ׬  ଶଵ
଴ ቀDଶ − aଶ −  ୉మσ ୮∗

τమ ቁ  ଶ∗ dz.                               
(12)                     Combining Eqs. (9) – (12), we obtain 
 Λ ׬ w∗ଵ

଴ (Dଶ − aଶ)ଶw dz − (p + Dୟି ଵ) ׬ w∗ଵ
଴ (Dଶ − aଶ)w dz =  |ܴ|aଶ ׬ θଵ

଴ (Dଶ − aଶ −
 E σ p∗)θ∗dz − | ܴଵ|aଶτଵ ׬ ϕଵଵ

଴ ቀDଶ − aଶ −  ୉భσ ୮∗
τభ ቁ ϕଵ∗dz − | ܴଶ|aଶτଶ ׬ ϕଶଵ

଴ ቀDଶ − aଶ −
 ୉మσ ୮∗

τమ ቁ ϕଶ∗ dz.                                  (13) 
Integrating various terms of equation (13), by parts, for an appropriate number of times 
and making use of either of the boundary conditions (5) – (8), it follows that 



184  

Λ ׬ (|Dଶw|ଶ + 2aଶ|Dw|ଶ + aସ|w|ଶ)ଵ
଴  dz + (p + Dୟି ଵ) ׬ (|Dw|ଶ + aଶ|w|ଶ)ଵ

଴ dz =
 −|R|aଶ ׬ (|Dθ|ଶ + aଶ|θ|ଶ + Eσp∗|θ|ଶ)ଵ

଴ dz + |Rଵ|aଶτଵ ׬ ቀ|D ଵ|ଶ + aଶ| ଵ|ଶ +ଵ
଴

 ୉భσ ୮∗
τభ | ଵ|ଶቁ dz + | Rଶ|aଶτଶ ׬ ቀ|Dϕଶ|ଶ +  aଶ|ϕଶ|ଶ +  ୉మσ ୮∗

τమ |ϕଶ|ଶቁ dz.ଵ
଴                         (14)  

Equating imaginary parts on both sides of equation (14) and cancelling p୧(≠ 0) 
throughout, we have 
׬ (|Dw|ଶ + aଶ|w|ଶ) dz = ଵ

଴ |R|aଶEσ ׬  |θ|ଶdzଵ
଴ − |Rଵ|aଶEଵσ ׬ | ଵ|ଶdzଵ

଴ −
|Rଶ|aଶEଶσ ׬ | ଶ|ଶdzଵ

଴  .        (15)                                                                   
Now, multiplying equation (2) by its complex conjugate and integrating the resulting 
equation for a suitable number of times and use the boundary condition on θ namely, 
θ(0) = 0 = θ(1), we obtain 
׬ (|Dଶθ|ଶ + 2aଶ|Dθ|ଶ +  aସ|θ|ଶ)ଵ

଴  dz + 2Eσp୰ ׬ (|Dθ|ଶ +  aଶ|θ|ଶ)dzଵ
଴ +

 Eଶσଶ|p|ଶ ׬  |θ|ଶdzଵ
଴ = ׬  |w|ଶdzଵ

଴ .                                                                                 (16) 
Since p୰ ≥ 0, it follows from equation (16), that  
  2aଶ ׬  |Dθ|ଶdzଵ

଴ < ׬  |w|ଶdzଵ
଴ .  (17) 

Now, since θ and w satisfy the boundary conditions θ(0) = 0 = θ(1) and w(0) = 0 = w(1) 
respectively, we have by Rayleigh-Ritz inequality (Schultz [22])  
׬  |Dθ|ଶdz ≥ πଶଵ

଴ ׬ |θ|ଶdzଵ
଴ ,    (18) 

 and   ׬ |Dw|ଶdz ≥ πଶଵ
଴ ׬ |w|ଶdzଵ

଴ .                                                         
 (19)
Utilizing inequality (18) and (19) in inequality (17), we get 
 aଶ ׬  |θ|ଶdzଵ

଴ < ଵ
ଶπర ׬  |Dw|ଶdzଵ

଴ .                                                            
 (20)
Utilizing inequality (20) in Eq. (16), we obtain 
ቂ1 −  |ோ|ாఙ

ଶగర ቃ ׬  |Dw|ଶdz +ଵ
଴

aଶ ׬  |w|ଶdz + |Rଵ|aଶEଵσ ׬ | ଵ|ଶdzଵ
଴ + |Rଶ|aଶEଶσ ׬ | ଶ|ଶdzଵ

଴  < 0 ଵ
଴ .       (21) 

which, clearly implies that 
 |ோ|ாఙ

ଶగర > 1.   (22) 
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Hence if  |ோ|ாఙ
ଶగర  ≤ 1, then we must have p୧ = 0. 

This proves the theorem. 
The essential content of the theorem from the physical point of view are that for 

the problem of triply diffusive convection analogous to Stern type in porous medium, an 
arbitrary neutral or unstable mode of the system is definitely nonoscillatory in character 
and in particular the  principle of the exchange of stabilities is valid if  |ோ|ாఙ

ଶగర ≤ 1 . Further 
this result is uniformly valid for any combination of rigid and / or free boundaries. 
Special Cases: It follows from theorem1 that an arbitrary neutral or unstable mode is non 
oscillatory in character and in particular PES is valid for: 
1. Rayleigh-Benard convection in porous medium (ܴଵ = ܴଶ = 0).  

  2. Thermohaline convection of Stern (1960) type in porous medium  (ܴ < 0, ܴଵ <
0, ܴଶ < 0) if  |ோ|ாఙ

ଶగర ≤ 1  . 
Conclusion    
          Linear stability theory is used to derive a sufficient condition for the validity of the 
‘PES’ in triply diffusive convection in porous medium. It is further proved that this result 
is uniformly valid for any combination of rigid and / or free boundaries. 
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Abstract  

Thermal instability in a horizontal layer of a porous medium saturated by 
viscoelastic fluid in electrohydrodynamics is studied both analytically and 
numerically.  Rivlin-Ericksen fluid model is used to describe the behaviour of a 
viscoelastic fluid and for the porous medium, Brinkman model is employed.  The fluid 
layer is induced by the dielectrophoretic force due to the variation of dielectric 
constant with temperature. By applying perturbation solutions and linear stability 
theory, we derive the dispersion relation describing the influence of viscolasticity, 
Brinkman-Darcy number, Darcy number and electric Rayleigh number. It is observed 
that Rivlin-Ericksen viscoelastic fluid behaves like an ordinary Newtonian fluid in the 
stationary convection. The effects Brinkman-Darcy number, Darcy number and AC 
electric field studied both analytically and numerically for free-free boundaries on the 
stationary convection. The present results are in good agreement with the earlier 
published results. 
Key words: Rivlin-Ericksen fluid, AC electric field, Viscosity, Viscoelasticity, Porous 
medium. 
 
1. Introduction 

Electrohydrodynamics (EHD) can be regarded as branch of fluid mechanics which 
deal with the dynamics of electrically charged fluids, also known as electro-fluid-
dynamics (EFD) or electrokinetics. EHD covers the fluid transport mechanisms such as 
electrophoresis, electrokinetics, dielectrophoresis, electro-osmosis, and electrorotation. 
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Recently, the study of electrohydrodynamic instability in dielectric fluid attracts many 
researchers because it has various applications in climatology, oceanography, EHD 
enhanced thermal transfer, EHD pumps, EHD in microgravity, micromechanic systems, 
drug delivery, micro-cooling system, nanotechnology etc. Chen et al. [1] discussed the 
applications of electrohydrodynamics in brief. They said that EHD heat transfer came out 
as an alternative method to enhance heat transfer, which is known as 
electrothermohydrodynamics (ETHD). Many researchers have been studied the effect of 
AC or DC electric field on natural convection in a horizontal dielectric fluid layer by 
taking different types of fluids. The onset of electrohydodynamic convection in a 
horizontal layer of dielectric fluid was studied by Landau [2], Robert [3], Castellanos [4], 
Lin [5], Gross and Porter [6], Turnbull [7], Maekawa et al. [8], Smorodin and Velarde [9], 
Galal [10], Rudraiah and Gayathri [11] and Chang et al. [12]. Takashima and Ghosh [13] 
studied the electrohydrodynamic instability in a viscoelastic liquid layer and found that 
oscillatory modes of instability exist only when the thickness of the liquid layer is smaller 
than about 0.5 mm and for such a thin layer the force of electrical origin is much more 
important than buoyancy force while Takashima and Hamabata [14] studied the stability 
of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal 
AC electric field.  

The study of Newtonian fluid heated from below saturating a porous medium has 
attracted many researchers for the last few decades since it has various applications in 
geophysics, food processing, oceanography, soil sciences, ground water hydrology and 
astrophysics etc. Chandrasekher [15] discussed in detail the thermal instability of 
Newtonian fluid under the various assumptions of hydrodynamics and hydromagnetics. A 
good account of thermal instability problems in a porous medium is given by Wooding 
[16], Ingham and Pop [17], Vafai and Hadim [18] and Nield and Bejan [19]. 

Reiner [20] and Rivlin and Ericksen [21] developed the non-linear constitutive 
equations for non-Newtonian compressible and incompressible fluid respectively. Green 
[22] was the first who studied the problem of convective instability of a viscoelastic fluid 
heated from below while Vest and Arpaci [23] studied the problem of overstability of a 
viscoelastic fluid. With the growing importance of non-Newtonian fluids having 
applications in geophysical fluid dynamics, chemical technology and petroleum industry 
attracted widespread interest in the study on non-Newtonian fluids. There are many 
common materials such as paints, polymers, coolants, plastics, magma, saturated soils 
and Earth’s lithosphere which behave as viscoelastic fluid. There are many elastico-
viscous fluids that cannot be characterized by Maxwell's constitutive relations or by 
Oldroyd's constitutive relations.  One such type of fluids is Rivlin-Ericksen viscoelastic 
fluid having relevance in chemical technology and industry. Rivlin-Ericksen viscoelastic 
fluid forms the basis for the manufacture of many important polymers and useful 
products. Such polymers are used in agriculture, communication appliances and in bio 
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medical applications. Examples of these applications are filtration processes, packed bed 
reactors, insulation system, ceramic processing, enhanced oil recovery, chromatography. 

In the case of Rivlin-Ericksen fluid, the term  q2  in the equations of motion is 
replaced by the term 


 





 qtk

'
1

1  , where μ and  ' are the viscosity and 
viscoelasticity of the incompressible Rivlin-Ericksen fluid, k1 is the medium permeability 
and q is the Darcian (filter) velocity of the fluid. Also the constitutive equation is one of 
the simplest viscoelastic laws that accounts for normal stress effects responsible for the 
periodic phenomena arising in viscoelastic fluids. Because of these reasons, the model 
has been widely accepted for experimental measurements and flow visualization on the 
instability of viscoelastic flows. A good account of thermal instability problems of 
Rivlin-Ericksen fluid in porous medium has been studied by Sharma et al. [25], Rana and 
Thakur [26], Chand and Rana [27], Rana and Sharma [28] and Chand et al. (2015). 

Shivakumara et al. [29] studied the electrothermoconvection in a rotating Brinkman 
porous layer while Rana et al. [30] studied the electrohydrodynamic instability of Rivlin-
Ericksen viscoelastic dielectric fluid layer. In the present paper thermal instability in a 
Brinkman porous medium layer saturated by a viscoelastic fluid in electrohydrodynamics 
is studied which include an additional parameter Brinkman-Darcy number. The Darcy-
Brinkman equation is a governing equation for flow through a porous medium with an 
extra Laplacian (viscous) term (Brinkman term) is added to the classical Darcy equation. 
The equation has been widely applied to examine high-porosity porous media.  
2. Theoretical Model    and Mathematical Analysis 

We consider an infinite horizontal layer of an incompressible Rivlin-Ericksen 
viscoelastic fluid of thickness d saturating a porous medium, bounded by the planes z = 0 
and z = d as shown in fig.1. The fluid layer is acted upon by a gravity force g = (0, 0, -g) 
aligned in the z direction and the uniform vertical AC electric field applied across the 
layer. The temperature T at the lower and upper boundaries is assumed to take constant 
values T0 and T1 (< T0) respectively. The Darcy-Brinkman law is assumed to hold and the 
Oberbeck-Boussinesq approximation is employed. 
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Fig. 1 Physical configuration 

2.1 Governing Equations 
Let ,,,, ,~,ρ, ' Kp  q(u, v, w), g, T,  , A and E denote respectively, the 

density,  viscosity, effective viscosity, viscoelasticity, medium porosity, pressure, 
dielectric constant, Darcy velocity vector, acceleration due to gravity, temperature, 
thermal diffusivity, ratio of heat capacity and the root-mean-square value of electric 
field. The equations of conservation of mass, momentum and thermal energy for Rivlin-
Ericksen elastico-viscous fluid (Chandrasekhar [15], Rivlin-Ericksen [21], Takashima 
and Ghosh [13], Rana and Sharma [27], Shivakumara [29] and Rana et al. [30]) are    

0,=q           (1) 
  K,tμμkρ+P=dt

d ' 




 EEqqgq

2
11~

1
2


  (2) 

  T,2
 =Tt
TA q  (3) 

where  
 qε

1
tdt

d    stands for convection derivative  

and  EE 
 

 Kp 2P     (4) 
 is the modified pressure. 
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The Coulomb force term Ee , where e is the free charge density, is of negligible order 
as compared with the dielectrophoretic force term for most dielectric fluids in a 60Hz AC 
electric field. Thus, we retain only the dielectrophoretic term, i. e. last term in equation 
(2) and neglect the Coulomb force term. Furthermore, the electrical relaxation times of 
most dielectric liquids appear to be sufficient long to prevent the build up of free charge 
at standard power line frequencies. At the same time, dielectric loss at these frequencies 
is very low that it makes no significant contribution to the temperature field. It is also 
seen that the dielectrophoretic force term depends on  EE  rather than E. As the 
variation of E is so speedy, the root-mean-square value of E is used as effective value in 
determining the motion of fluids. So we can consider the AC electric field as the Dc 
electric field whose strength is equal to the root mean square value of the AC electric 
field. 

A charged body in an electric field tends to along the electric field lines and 
impart momentum to the surrounding fluid. The Maxwell equations are  

0 E ,   (5) 
  0 EK .   (6) 

In view of Eq. (5), E can be expressed as 
VE ,   (7) 

where V is the root mean square value of electric potential. The dielectric constant is 
assumed to be linear function of temperature and is of the form 

  00 1 TTKK   ,  (8) 
where 0 , is the thermal coefficient of expansion of dielectric constant and is assumed 
to be small. 
The equation of state is 

  ,1 00 TT    (9)    
where α is coefficient of thermal expansion and  the suffix zero refers to values at the 
reference level z = 0. 
2.2 Basic State  
The basic state of the system is taken to be quiescent layer (no settling) and is given by 

)(),(),(),(),(),( zzKKzzTTzPPz bbbbbb   EEqq ,  (10) 
where the subscript b denotes the basic state.  
Substituting equations given in (10) in Eqs. (1) – (9), we obtain 
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      K,zρ+zP= bb  2
000 2

1)(0 Eg    (11) 

,0)(
2

2 =dz
zTd b   (12) 

  ,1)( 00 TTKzK bb     (13) 
  ,1)( 00 TTz bb    (14) 

  .0.  bb EK   (15) 
Solving Eq. (12) by using the following boundary conditions 

0)( TzTb   at z = 0 and 1)( TzTb   at z =  1            (16) 
we obtain 

./0 dTzTTb              (17) 
In view of Eq. (15) and noting that  .0 bybx EE  It follows that 

 00 EKEK bzb constant (say).  (18) 
Then  

dTz
Ezb /1)( 0 EE .  (19) 

Hence  dTzT
dEzVb /1log)( 0   , (20) 

where  T
dTVE 

 

1log

/10   (21) 
is the root-mean-square value of the electric field at z = 0. 
2.3 Perturbation Solutions 
To study the stability of the system, we superimposed infinitesimal perturbations on the 
basic state, so that  

P+P=PKT=T= bbbb   ,KK,,  ,T , bEEEqq   ( 22) 
where 
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PK   ,,, ,T , Eq  be the perturbations in PKT   ,,,  , , Eq  respectively. Substituting 
Eq. (10) in Eqs. (1) – (9), linearizing the equations by neglecting the product of primed 
quantities, eliminating the pressure from the momentum Eq. (2) by operating curl twice 
and retaining the vertical component and non-dimensionalising the resulting equations by 
introducing the dimensionless variables as follows: 

,d
zy,x,),z,y,x( 


 ,qq 
d t,d

κt 2 T,1T T VTd
0E
1V   

Neglecting the primes for simplicity, we obtain the linear stability equations in the form 
,~11

Pr
1 2222 








 








z
VTRaTRawaDtFDat heht  (23) 

,2 wTt 


 
   (24) 

,2
z
TV 
   (25) 

where we have used dimensionless parameters as: 
,Pr 

          
 

,
F  

 
,2

1
d
kDa 

 
,~~

2
1

d
kaD 

                                                                                26a, b, c, d) 

,3


 TdgRat
  (27) 

  ,222
00

2


 dTEKRae

  (28) 
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The parameter Pr is the Prandtl number, F is the viscoelasticity parameter, Da is the 
Darcy number, tRa  is the familiar thermal Rayleigh number and eRa  is the AC electric 
Rayleigh number.  
Now we assume that the temperature at the boundaries is kept fixed, the fluid layer is 
confined between two boundaries. The boundary conditions appropriate (Chandrasekhar 
[15], Takashima and Ghosh [13], Rana and Sharma [27] and Rana et al. [30]) to the 
problem are 

0,02
2 


 Tz

V
z
ww  or DT = 0.   

                          
(29) 
2. Linear stability analysis 
Using normal mode analysis method, we assume that the perturbation quantities have x, y 
and t dependence of the form   
        ,t+imy+ilxzzΘzW=Tw exp)( , ,V, ,   (30) 
where l and m are the wave numbers in the x and y direction, respectively, and  is the 
complex growth rate of the disturbances. 
Substituting Eq. (30) in Eqs. (23) – (25) and (29), we get 

       ,~11
Pr

222222 


  DaRaaRaWaDaDaDFDa et  (31) 
   ,22 WaDA    (32)   ,22  DaD  (33) 

0,02  DWDW  or 0D , (34) 
where dz

dDmla  ,222 . 
Eqs. (31) – (33) form an eigenvalue problem for tRa  or eRa and ω with respect to the 
boundary conditions (34). 
We assume the solution to W, Θ, Ф and Z of the form 

zWW sin0 , zsin0 , zcos0 ,  (35) 
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which satisfy the boundary conditions of Eq. (34). Substituting Eq. (35) into Eqs. (31) – 
(33), we obtain the following matrix equation 

   
,0

0
0

0
01

~11
Pr

0
0
0

2
2

2222




















































  W

J
JA

aRaRaRaaJaJDFDa eet





                  

 (36) 
where 22 a+π=J 2 is the total wave number. 
The linear system (36) has a non-trivial solution if and only if 

   
,0

0
01

~11
Pr

2
2

2222





 

J
JA

aRaRaRaaJaJDFDa eet





 

which yields 
                                 .~11

Pr 2
22

2
22

et RaJ
aaJDFDaa

AJJRa 


                   
(37) 

Eq. (37) is the dispersion relation accounting for the effect of Prandtl number, 
electric Rayleigh number, Darcy number, Brinkman-Darcy number and kinematic 
viscoelasticity parameter in a layer of Rivlin-Ericksen viscoelastic dielectric fluid in 
porous medium. 
3. Stationary convection 
For stationary convection, putting  = 0 in equation (37) reduces it to 

    .
~

22
2

2
1222322

et Raa
a

a
DaaaDaRa  


    

 (38) 
Eq. (38) expresses the thermal Rayleigh number as a function of the dimensionless 
resultant wave number a, the parameters electric Rayleigh number eRa and Darcy number 
Da. It is found that the kinematic viscoelasticity parameter F vanishes with ω and the 
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Rivlin-Ericksen viscoelastic dielectric fluid behaves like an ordinary Newtonian 
dielectric fluid. Eq. (38) is in good agreement with the equation obtained by Roberts [3]. 
In the absence of AC electric field (i. e., when 0eRa ), Eq. (38) reduces to 

    .
~

2
1222322

a
DaaaDaRat

    (39) 
To study the effect of AC electric field on electrohydrodynamic stationary convection, 
we examine the behaviour of  

e
t

Ra
Ra

 ,  Da

Rat
 , aD

Rat~
 analytically and numerically. 

From Eq. (38), we obtain 
,22

2

a
a

Ra
Ra

e
t 


   (40) 

which is negative implying thereby AC electric field has destabilizing effect on the 
system which is in an agreement with the results derived by Takashima and Ghosh [24], 
Shivakumara et al. [29] and Rana et al. [30]. 
Also Eq. (38) yields 

  ,2
2222

a
Daa

Da
Rat


    (41) 
which is negative implying thereby Darcy number has destabilizing effect on the system 
which is in good agreement with the results derived by Rana and Sharma [27], Rana and 
Thakur [25],  Shivakumara et al. [29] and Rana et al. [30]. 
From Eq. (38), we get 
 

 
2

322
~ a

a
aD

Rat 
  , (42) 
which is positive implying thereby Brinkman-Darcy number has stabilizing effect on the 
system which is in good agreement with the results derived by Chand and Rana [26], 
Shivakumara et al. [29].  
The dispersion relation (38) is analysed numerically. Graphs have been plotted by giving 
some numerical values to the parameters, to depict the stability characteristics. 

 



198 
 

 
Fig. 2: Variation of thermal Rayleigh number (Rat) with wave number (a) for different 
values of electric Rayleigh number (Rae). 

In fig.2, the thermal Rayleigh number tRa   is plotted against dimensionless wave 
number a for different values of electric Rayleigh number eRa as shown.  This shows that 
as )( eRa increases the thermal Rayleigh number tRa   decreases. Thus, AC electric field 
has destabilizing effect on stationary convection which is in good agreement with the 
result obtained analytically in Eq. (40).   

 
Fig. 3: Variation of thermal Rayleigh number (Rat) with wave number (a) for different 
values of Darcy number (Da) 
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In fig.3, the thermal Rayleigh number tRa   is plotted against dimensionless wave 
number a for different values of Darcy number Da as shown.  This figure depicts that as 
Darcy number Da increases the thermal Rayleigh number tRa   decreases. Therefore, 
Darcy number has destabilizing effect on the stationary convection which is in good 
agreement with the result obtained analytically in Eq. (41).   

 
Fig. 4: Variation of thermal Rayleigh number (Rat) with wave number (a) for different 
values of Brinkman-Darcy Number ( aD~ ) 

In fig.4, the thermal Rayleigh number tRa   is plotted against dimensionless wave 
number a for different values of Brinkman-Darcy number ( aD~ ) as shown.  This figure 
depicts that as Darcy number ( aD~ ) increases the thermal Rayleigh number tRa   also 
increases. Therefore, Brinkman-Darcy number has stabilizing effect on the stationary 
convection which is in good agreement with the result obtained analytically in Eq. (42).   
4. Conclusions 

Thermal instability in a Darcy-Brinkman porous medium layer saturated by a Rivlin-
Ericksen viscoelastic fluid layer heated from below in electrohydrodynamics has been 
investigated for the case of free-free boundaries by using perturbation theory and linear 
stability analysis. For the case of stationary convection, the non-Newtonian 
electrohydrodynamic Rivlin-Ericksen viscoelastic fluid behaves like an ordinary 
Newtonian fluid. AC electric field and Darcy number both have destabilizing influence 
while Brinkman-Darcy number has stabilizing influence on the onset of stationary 
convection.  
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List of Symbols 
q Velocity vector  
a  Wave number   
d Thickness of the horizontal layer  
E  Root-mean-square value of the electric field 

0E  Root-mean-square value of the electric field at z = 0 
g Acceleration due to gravity 
k1 Medium permeability  
K Dielectric constant 

0K  Reference dielectric constant at T0 

l, m Wave numbers in x and y directions 
P Modified pressure, defined by Eq. 4 
Pr Prandtl number, defined by Eq. 26a 
F Viscoelasticity parameter, defined by Eq. 26b 
Da Darcy number, defined by Eq. 26c 

aD~  Brinkman-Darcy number, defined by Eq. 26d 
tRa  Thermal Rayleigh number, defined by Eq. 27 

 eRa  AC electric Rayleigh number, defined by Eq. 28 
t Time  
T Temperature 
T0 Temperature at the lower boundary  
T1 Temperature at the upper boundary 
V Root-mean-square value of the electric potential 
W Amplitude of vertical component of perturbed velocity 
k Thermal conductivity  
(x,y,z) space co-ordinates 
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Greek symbols 
μ Viscosity of fluid 
  Viscoelastisity of fluid 
  Coefficient of thermal expansion 
  Coefficient of thermal expansion of dielectric constant 
κ Thermal diffusivity of the fluid 
  Medium porosity 
ρ Density of fluid 

e   Free charge density 
  Electrical conductivity of fluid 
 Growth rate of disturbances 

22222 yxh   Horizontal Laplacian operator 
222 yh   Laplacian operator 

Φ Amplitude of perturbed dielectric potential V 
Θ Amplitude of perturbed temperature T 
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Abstract 
 The effect of heat and mass transfer on free convective flow of a visco-elastic 
incompressible and electrically conducting fluid past a vertical porous plate through a 
porous medium with time dependent oscillatory permeability and suction in presence of a 
uniform transverse magnetic field, radiation, chemical reaction and Soret effect in slip 
flow regime have been analysed.The coupled nonlinear partial differential equations are 
turned to ordinary by super imposing a solution with steady and time dependent transient 
component. Numerical value of velocity, temperature, skin friction, Nusselt number and 
Sherwood number for different value of the parameters involved in the problem are 
expressed through the graphs and table and discussed. 
Keywords:  MHD, Viscoelastic, Radiation, Soret effect, Variable permeability, Suction, 
Slip flow regime. 
Introduction 
An important study of two dimensional time dependent flow problem dealing with the 
response of boundary layer to external unsteady fluctuations of the free stream velocity 
about a mean value attracted the attention of many researchers Mishra et al. [10]. MHD 
flow with heat and mass transfer has been a subject of interest of many researchers 
because of its varied application in science and technology. Such phenomena are 
observed in buoyancy induced motions in the atmosphere, in water bodies, quasi-solid 
bodies such as earth, etc. In natural processes and industrial applications many 
transportation processes exist where transfer of heat and mass takes place simultaneously 
as a result of thermal diffusion and diffusion of chemical species. Several researchers 
have analyzed the free convective and mass transfer flow of a viscous fluid through 
porous medium. The permeability of the porous medium is assumed to be constant while 
the porosity of the medium may not be necessarily constant. Kim [8] studied the unsteady 
MHD convective heat past a semi infinite vertical porous moving plate with variable 
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suction. The problem of three dimensional free convective flow and heat transfer through 
porous medium with periodic permeability has been discussed by Singh and Sharma [19]. 
Singh and Singh [18] have analyzed the heat and mass transfer in MHD flow of a viscous 
fluid past a vertical plate under oscillatory suction velocity. The study of viscoelastic 
fluids through porous medium has become the basis of many scientific and engineering 
applications. This type of flow is of great importance in the petroleum engineering 
concerned with the movement of oil, gas and water through reserviour of oil and gas field 
and to the hydrologist in the study of the migration of underground water, to the chemical 
engineers for the purification and filteration process and in the case of drug permeation 
through human skin.The principle of this subject are very useful in recovering the water 
for drinking and irrigation purpose. Gorla et al. [5] studied mixed convection effect on 
melting from a vertical plate in a porous medium. Narayana and Sibanda [13] presented 
influence of the Soret effect and double dispersion on MHD mixed convection along a 
vertical flat plate in non-darcy porous medium. Unsteady MHD flow of a visco-elastic 
fluid along vertical porous surface with chemical reaction was investigated by Nayak et 
al. [14]. Jha and Choudhary [7] studied influence of Soret effect on MHD mixed 
convection flow of viscoelastic fluid past a vertical surface with Hall current. Radiative 
convective flows are frequently encountered in many scientific and enviromental process, 
such as astrophysical flows, water evaporation from open reservoirs, heating and cooling 
of chambers and solar power technology. Several researchers have investigated radiative 
effects on heat transfer in non porous and porous medium utilizing the radiative heat flux 
model. Garg [6] studied magneto hydrodynamics and radiation effects on the flow due to 
moving vertical porous plate with variable temperature. Effects of chemical reaction and 
radiation on an unsteady MHD flow past an accelerated infinite vertical plate with 
variable temperature and mass transfer is presented by Ahmed et al. [1]. Rana [15] 
studied free convection effects on the oscillatory flow past a vertical porous plate in the 
presence of radiation for an optically thin fluid. Lavanya and Kesavaiah [9] presented 
radiation and Soret effects to MHD flow in vertical surface with chemical reaction and 
heat generation through a porous medium. Reddy [16] investigated unsteady heat and 
mass transfer MHD flow of a chemically reacting fluid past an impulsively started 
vertical plate with radiation. Visco-elastic MHD free convective flow through porous 
media in presence of radiation and chemical reaction with heat and mass transfer 
analysed by Choudhury and Das [2]. The problem of slip flow regime is very important 
in the era of modern science, technology and vast ranging industrialization. Rao et al. 
[17] analysed MHD transient free convection and chemically reactive flow past a porous 
vertical plate with radiation and temperature gradient dependent heat source in slip flow 
regime. Mukhopadhyay et al. [11] studied MHD mixed convection slip flow and heat 
transfer over a vertical porous plate. The objective of the present study is to analyze the 
variable permeability and Sorret effect on MHD radiative and reacting flow of 
viscoelastic fluid past an infinite porous plate in slip flow regime. 
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  Mathematical formulation and analysis   
The unsteady free convective flow of a visco-elastic (Walters B′) fluid past an infinite 
vertical porous plate in a porous medium with time dependent oscillatory suction as well 
as permeability in presence of a transverse magnetic field is considered. Let ݔ′ −  is ݏ݅ݔܽ
assumed to be oriented vertically upwards along the plate and ݕ′ −  is taken normal ݏ݅ݔܽ
to the plane of the plate. It is assumed that plate is electrically non-conducting and a 
uniform magnetic field of strength B₀ is applied normal to the plane of the plate. 
    The plate is subjected to a variable suction 
ݒ ′ = − ଴ܸ൫1 + ௜ఠ′௧݁ߝ ′൯             (1)  
and the permeability of the porous medium is asssumed to be of the form 
  ݇ ′ = ݇௣′ ൫1 + ௜ఠ′௧݁ߝ ′൯                  (2)  
Under usual Boussinesq's approximation, the governing equations and boundary 
conditions relevant to the physical model is given by  
Equation of continuity 
డ௩′
డ௬′ = 0              (3) 
Equation of motion 
డ௨′
డ௧ ′ + ݒ ′ డ௨′

డ௬′ = − ଵ
ఘ

డ௣′
డ௫′ + ߥ డమ௨′

డ௬′మ − ݇଴ డయ௨′
డ௧′డ௬′మ + ܶ)ߚ݃ ′ − ∞ܶ′ ) + ′ܥ)௖ߚ݃ − ′∞ܥ ) − ఔ

௞′ ′ݑ − ఙ஻బమ
ఘ   ′ݑ

(4) 
Equation of energy 
డ்′
డ௧′ + ݒ ′ డ்′

డ௬′ = ఑
ఘ௖೛

డమ்′
డ௬′మ − ଵ

ఘ௖೛
డ௤′
డ௬′          (5) 

Equation of mass transfer 
డ஼ ′
డ௧′ + ݒ ′ డ஼ ′

డ௬′ = ܦ డమ஼ ′
డ௬′మ − ܥ)ଵܭ ′ − ′∞ܥ ) + ଵܦ డమ்′

డ௬′మ       (6) 
Boundary conditions relevant to problem are: 
ݕ  ′ = 0, ′ݑ = ′ܮ డ௨′

డ௬′ , ܶ ′ = ௪ܶ′ + )ߝ ௪ܶ′ − ∞ܶ′ )݁௜ఠ′௧ ′ , ܥ ′ = ′௪ܥ + ′௪ܥ)ߝ − ′∞ܥ )݁௜ఠ′௧ ′

ݕ ′ → ∞, ′ݑ → 0, ܶ ′ → ∞ܶ′ , ܥ ′ → ′∞ܥ
ൡ   (7) 
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Where ܮ′ = ቀଶି௙భ
௙భ ቁ ܮ with ଵ݂ Maxwell reflexion coefficient ,ܮ = ߤ ቀ గ

ଶ௣ఘቁ
భ
మ is mean free 

path and is a constant for an incompressible fluid, ܮ′ is the characterstics length of the 
plate. 
Following Cogley et al. [3] the radiative heat flux is taken be of the form 
డ௤′
డ௬′ = ߙ4 ′(ܶ′ − ∞ܶ′ )          (8) 
Outside the boundary layer, the pressure term is assumed to be constant i.e. 
− ଵ

ఘ
డ௣′
డ௫′ = 0             (9) 

Using equation (9), then equation (4) becomes, 
డ௨′
డ௧ ′ + ݒ ′ డ௨′

డ௬′ = ߥ డమ௨′
డ௬′మ − ݇଴ డయ௨′

డ௧′డ௬′మ + ܶ)ߚ݃ ′ − ∞ܶ′ ) + ܥ)௖ߚ݃ ′ − ′∞ܥ ) − ఔ
௞′ ′ݑ − ఙ஻బమ

ఘ  (10)   ′ݑ
Introducing the following non-dimensional quantities, 

 
ݕ = ௏బ௬′

ఔ , ݐ = ௏బమ௧ ′
ସఔ , ݑ = ௨′

௏బ , ߠ = ்′ି ∞்′
்ೢ′ ି ∞்′ , ௥ܩ = ௚ఉ൫்ೢ′ ି ∞்′ ൯

௏బయ
,

ܰ = ଶఈ′ఔ
௏బ√఑ , ܯ = ఙఔ஻బమ

ఘ௏బమ , ௥ܲ = ఓ௖೛
఑ , ߙ = ௞బ௏బమ

ఔమ , ݇௣ = ௞೛′ ௏బమ
ఔమ , ߱ = ସఔఠ′

௏బమ

ℎ = ௏బ௅′
ఔ , ܵ௖ = ఔ

஽ , ଵܭ = ௄భ′ ఔ
஽ , ܵ௥ = ஽భ൫்ೢ′ ି ∞்′ ൯

ఔ൫஼ ′ೢ ି஼∞′ ൯ , ௖ܩ = ௚ఉ೎൫஼ ′ೢ ି஼∞′ ൯
௏బయ ۙۖ

ۘ
ۖۗ

    (11) 

Using above non-dimensional quantities in equations (5), (6) and (9) the governing 
equations in non dimensional form, 
ଵ
ସ

డ௨
డ௧ − ൫1 + ௜ఠ௧൯݁ߝ డ௨

డ௬ = డమ௨
డ௬మ − ଵ

ସ ߙ ቀ డయ௨
డ௧డ௬మቁ + ߠ௥ܩ + ܥ௖ܩ − ଵ

௞೛൫ଵାఌ௘೔ഘ೟൯ ݑ −  (12)  ݑܯ
ଵ
ସ ௥ܲ డఏ

డ௧ − ൫1 + ௜ఠ௧൯݁ߝ ௥ܲ డఏ
డ௬ = డమఏ

డ௬మ − ܰଶ(13)       ߠ 
ଵ
ସ

డ஼
డ௧ − ൫1 + ௜ఠ௧൯݁ߝ డ஼

డ௬ = ଵ
ௌ೎

డమ஼
డ௬మ − ܥଵܭ + ܵ௥ డమఏ

డ௬మ      (14)  
The non-dimensional boundary conditions are 
ݕ  = 0, ݑ = ℎ డ௨

డ௬ , ߠ = 1 + ,௜ఠ௧݁ߝ ܥ = 1 + ௜ఠ௧݁ߝ
ݕ → ∞, ݑ → 0, ߠ → 0, ܥ → 0 ൡ      (15) 
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Method of solution  
In view of periodic suction and permeability at the plate, following Das et al. [4] and 
Mishra et al. [12] and the velocity temperature concentration in the neighbourhood of the 
plate is assumed to be of the form: 

ቐ
.ݕ)ݑ (ݐ = (ݕ)଴ݑ + (ݕ)ଵݑ௜ఠ௧݁ߝ
.ݕ)ߠ (ݐ = (ݕ)଴ߠ + (ݕ)ଵߠ௜ఠ௧݁ߝ
.ݕ)ܥ (ݐ = (ݕ)଴ܥ + (ݕ)ଵܥ௜ఠ௧݁ߝ

ቑ        (16) 

Using equation (16) in equations (12) to (14) and equating the harmonic and non-
harmonic terms on both sides of equations, we get the following set of equations, 
′′଴ݑ + ′଴ݑ − ൬ܯ + ଵ

௞೛൰ ଴ݑ = ଴ߠ௥ܩ− −  ଴       (17)ܥ௖ܩ
ቀ1 − ఈ(௜ఠ)

ସ ቁ ′′ଵݑ + ′ଵݑ − ൬ܯ + ଵ
௞೛ + ݅߱൰ ଵݑ = ′଴ݑ2− − ′′଴ݑ + ଴ݑܯ − ଴ߠ௥ܩ − ଴ܥ௖ܩ − ଵߠ௥ܩ −

 ଵ            (18)ܥ௖ܩ
′′଴ߠ + ௥ܲߠ଴′ − ܰଶߠ଴ = 0         (19) 
′′ଵߠ + ௥ܲߠଵ′ − ቂܰଶ + ቀ௜ఠ

ସ ቁ ௥ܲቃ ଵߠ = − ௥ܲߠ଴′        (20) 
′′଴ܥ + ܵ௖ܥ଴′ − ଴ܥଵܭ = −ܵ௖ܵ௥ߠ଴′′        (21) 
′′ଵܥ + ܵ௖ܥଵ′ − ܵ௖ ቂܭଵ + ቀ௜ఠ

ସ ቁቃ ଵܥ = −ܵ௖ܵ௥ߠଵ′′ − ܵ௖ܥ଴′       (22) 
The transform boundary conditions are, 
ݕ  = 0, ଴ݑ = ℎ డ௨బ

డ௬ , ଵݑ = ℎ డ௨భ
డ௬ , ଴ߠ = 1, ଵߠ = 1, ଴ܥ = 1, ଵܥ = 1

ݕ → ∞, ଴ݑ → 0, ଵݑ → 0, ଴ߠ → 0, ଵߠ → 0, ଴ܥ → 0, ଵܥ → 0 ൡ    (23) 
Solving differential equations (17) to (22) under the boundary conditions (23), we get the 
following expression for velocity, temperature and concentration profile, 

,ݕ)ݑ (ݐ = ቐ
଼ܺ݁ି஺ఱ௬ + ܺ଺݁ି஺భ௬ − ܺ଻݁ି஺య௬

௜ఠ௧݁ߝ+ ൤ ܺଽ݁ି஺భ௬ + ܺଵ଴݁ି஺మ௬ + ܺଵଵ݁ି஺య௬
− ଵܺଶ݁ି஺ర௬ + ܺଵଷ݁ି஺ఱ௬ + ܺଵସ݁ି஺ల௬൨ቑ    (24) 

,ݕ)ߠ (ݐ = ݁ି஺భ௬ + ௜ఠ௧ሾ(1݁ߝ − ܺଵ)݁ି஺మ௬ + ܺଵ݁ି஺భ௬ሿ     (25) 

,ݕ)ܥ (ݐ = ቐ
(1 + ܺଶ)݁ି஺య௬ − ܺଶ݁ି஺భ௬

௜ఠ௧݁ߝ+ ൤−ܺହ݁ି஺భ௬ − ܺଷ݁ି஺మ௬ + ܺସ݁ି஺య௬
+(1 + ܺଷ − ܺସ + ܺହ)݁ି஺ర௬ ൨ቑ     (26) 
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Some important characteristics of the flow field 
From the velocity profile the skin friction at the plate in terms of amplitude and phase 
angle in non dimensional form is given by, 
߬ = ቀడ௨బ

డ௬ ቁ௬ୀ଴ + ௜ఠ௧݁ߝ ቀడ௨భ
డ௬ ቁ௬ୀ଴ = ቀడ௨బ

డ௬ ቁ௬ୀ଴ + ݐ߱)ݏ݋ܿ|ܦ|ߝ + ߰)   (27)   

where ,|ܦ| = ටܦ௥ଶ + ߰  ,௜ଶܦ = ଵି݊ܽݐ ቀ஽೔
஽ೝቁ 

From the velocity profile the rate of heat transfer in terms of amplitude and phase in non-
dimensional form is given by, 

௨ܰ = ቀడఏబ
డ௬ ቁ௬ୀ଴ + ௜ఠ௧݁ߝ ቀడఏభ

డ௬ ቁ௬ୀ଴ = ቀడఏబ
డ௬ ቁ௬ୀ଴ + ݐ߱)ݏ݋ܿ|ܩ|ߝ +  (28)   (ߛ

where, |ܩ| = ටܩ௥ଶ + ߛ  ,௜ଶܩ = ଵି݊ܽݐ ቀீ೔
ீೝቁ 

From the velocity profile the mass transfer coefficient, i.e, the Sherwood number at the 
plate in terms of amplitude and phase in non-dimensional form is given by, 
௛ݏ = ቀడ஼బ

డ௬ ቁ௬ୀ଴ + ௜ఠ௧݁ߝ ቀడ஼భ
డ௬ ቁ௬ୀ଴ = ቀడ஼బ

డ௬ ቁ௬ୀ଴ + ݐ߱)ݏ݋ܿ|ܪ|ߝ +  (29)   (ߜ

where, |ܪ| = ටܪ௥ଶ + ߜ  ,௜ଶܪ = ଵି݊ܽݐ ቀு೔
ுೝቁ 

Results and discussion 
 The problem of MHD free convection flow under the effect of thermal radiation and 
Soret number through porous medium with infinite vertical porous plate in the presence 
of chemical reaction is analysed.The closed form solutions for the velocity, temperature 
and concentration profile are obtained analytically and then evaluated numerically for 
different value of governing parameters. To have better insight of physical problem the 
variations of physical quantities with flow parameters are shown graphically. To be 
realistic the value of Prandtl number ( ௥ܲ) are chosen to be 0.71 and 7 which correspond 
to air and water respectively. The values of Schmidt number (ܵ௖) are chosen to represent 
hydrogen (ܵ௖ = 0.66).The value of Grashoff number (ܩ௥ > 0) are taken for cooling the 
plates. The values of Soret number, Hartmann number and radiation parameter are chosen 
arbitrary with ߝ = 0.0001, ݐ߱ = గ

ଶ . It is clear from figure 1 that Grashoff number (ܩ௥) 
and modified Grashoff number(ܩ௖) enhance the fluid velocity. This figure also reveals 
that fluid velocity reduces with the increase of Hartmann number (M) and Prandtl 
number( ௥ܲ). From figure 2 we observed that fluid velocity increases with slip parameter 
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(h), Soret number(ܵ௥), porosity parameter ൫݇௣൯ and dimnishes with the increase of visco-
elastic parameter (α). Figure 3 illustrate that fluid temperature decreases with the increase 
of Prandtl number ( ௥ܲ) and radiation parameter (N). It is clear from figure 4 that with 
increase in Schmidt number and chemical reaction parameter the concentration profile 
decreases. Figure 4 also illustrate that fluid concentration increases with increase in Soret 
number (ܵ௥). Table 1 present the variations in skin friction coefficient (τ), its amplitude 
and phase angle with ߱ݐ = గ

ଶ and ߝ = 0.0001. It observed from this table that an increase 
in Grashoff number modified Grashoff number, permeability of porous medium and 
Soret number lead to an increase in the value of amplitude and coefficient of skin friction, 
while an increase in Hartmann number, viscoelastic parameter, slip parameter and Prandtl 
number leads to decrease the amplitude and coefficient of skin friction. The value of 
phase angle increases due to increase in Hartmann number and Grashoff number, while 
decreases with increase in modified Grashoff number, viscoelastic parameter, 
permeability of porous medium, slip parameter, Soret number and Prandtl number. The 
variation in Nusselt number, its amplitude and phase angle with ߱ݐ = గ

ଶ and ߝ = 0.0001 
is listed in Table 2. It is noticed from this table that with the increase in radiation 
parameter and frequency of oscillation amplitude of Nusselt number increases. The rate 
of heat transfer and phase angle is small but amplitude is very large in case of water ( ௥ܲ = 7.0) than in case of air ( ௥ܲ = 7.0). The values in the table clearly show that rate of 
heat transfer decreases and phase angle increase with the increase in radiation parameter. 
It is interesting to note that the amplitude, phase angle and rate of heat transfer all 
decreases with the increase in the frequency of oscillation. The numerical values of 
Sherwood number, its amplitude and phase angle with ߱ݐ = గ

ଶ and ߝ = 0.0001 are listed 
in table 3. From the table it is clear that amplitude and Sherwood number enhances with 
increase of Schmidt number, chemical reaction parameter and Soret number, while phase 
angle decreases with increase in these parameters.                                                                    
Conclusion 
The main conclusion of this study is: 
    1.   The Soret number and permeability of porous medium enhance the fluid velocity. 
    2.   Slip parameter has a tendency to increase the velocity of fluid. 
    3.   Viscoelastic parameter reduces the fluid velocity. This is due to the fact that, elastic 
property in visco-elastic fluid reduces the frictional drag. 
    4.   Hartmann number retards the flow due to the magnetic pull of Lorentz force. 
    5.   Combined effect of increasing values of Prandtl number and radiation parameter is 
to reduce the temperature. 
    6.   Skin friction is diminished with enhancement in Hartmann number. 
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    7.   The rate of heat transfer is more in case of air than in water. 
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Table 1. Variation of skin friction(τ), its amplitude|D| and phase angle. 
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Table 2. Variations in Nusselt number ( ௨ܰ), its amplitude |G| and phase angle. 
 

 
Table 3. Variations in Sherwood number(ܵ௛), its amplitude |H| and phase angle. 
 

 
 
 
 

 
       
 

 
 
Fig.1. Variation 
of amplitude of  

velocity. 
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  Fig.2. Variation of amplitude of velocity. 

 
Fig.3. Variation of amplitude of 
temperature. 
 

 
Fig.4. Variation of amplitude of 
concentration. 
 
 

Appendix 

ଵܣ = ௉ೝାට௉ೝమାସேమ
ଶ ଶܣ , = ௉ೝାට௉ೝమାସቀேమା(೔ഘ)ುೝర ቁ

ଶ ଷܣ  , = ௌ೎ାටௌ೎మାସௌ೎௄భ
ଶ , 

ସܣ = ௌ೎ାටௌ೎మାସௌ೎ቀ௄భା೔ഘ
ర ቁ

ଶ ହܣ , =
ଵାඨଵାସ൬ெା భ

ೖ೛൰
ଶ ଺ܣ , =

ଵାඨଵାସቀଵିഀ(೔ഘ)
ర ቁ൬ெା భ

ೖ೛ା௜ఠ൰
ଶ  

ܺଵ = ஺భ௉ೝ
஺భమି஺భ௉ೝିቂேమା(೔ഘ)ುೝర ቃ, ܺଶ = ௌೝௌ೎஺భమ

஺భమି஺భௌ೎ିௌ೎௄భ, ܺଷ = ௌೝௌ೎஺మమ(ଵି௑భ)
஺మమି஺మௌ೎ିௌ೎ቀ௄భା೔ഘ

ర ቁ 
ܺସ = ௌ೎஺య(ଵା௑మ)

஺యమି஺యௌ೎ିௌ೎ቀ௄భା೔ഘ
ర ቁ, ܺହ = ௌ೎஺భ(஺భௌೝ௑భା௑మ)

஺భమି஺భௌ೎ିௌ೎ቀ௄భା೔ഘ
ర ቁ, ܺ଺ = ௑మீ೎ିீೝ

஺భమି஺భି൬ெା భ
ೖ೛൰, 
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A SUFFICIENT CONDITION FOR THE VALIDITY OF THE 
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Abstract: Condition for characterizing nonoscillatory motions, which may be neutral or 
unstable, for triply diffusive convection in a porous medium is derived. It is analytically 
proved that the principle of the exchange of stabilities, in triply diffusive convection in a 
porous medium, is valid in the regime   ୖభ୉భ஢

ଶதభమ஠ర + ୖమ୉మ஢
ଶதమమ஠ర ≤ 1, where Rଵ and Rଶ are the 

concentration Raleigh numbers, and τଵ and τଶ are the Lewis numbers for the two 
concentration components respectively, σ is the Prandtl number, Eଵ and Eଶ are constants. 
It is further proved that this result is uniformly valid for all combinations of rigid and 
dynamically free boundaries. 
Keywords: Triply diffusive convection, Porous medium, Darcy-Brinkman model, The 
principle of the exchange of stabilities, Concentration Rayleigh number. 

1. INTRODUCTION                 
Research on convective fluid motion in porous media under the simultaneous action of a 
uniform vertical temperature gradient and a gravitationally opposite uniform vertical 
concentration gradient (known as double diffusive convection) has been an area of great 
activity due to its importance in the predication of ground water movement in aquifers, in 
assessing the effectiveness of fibrous materials, in engineering geology and in nuclear 
engineering. Double diffusive convection is now well known. For a broad view of the 
subject one may be referred to Nield and Bezan (2006), Murray and Chen (1989), Nield 
(1968), Taunton et al. (1972), Kuznetsov and Nield (2008), Lombardo and Mulone 
(2002), Basu and Layek (2013). 

All these researchers have considered double diffusive convection. However, it 
has been recognized later that there are many fluid systems, in which more than two 
components are present. For example, Degens et al (1973) reported that the saline waters 
of geothermally heated Lake kivu are strongly stratified by heat and a salinity which is 
the sum of comparable concentrations of many salts. Similarly the oceans contain many 
salts having concentrations less than a few percent of the sodium chloride concentration. 
Multi-component concentrations can also be found in magmas and substratum of water 
reservoirs. The subject with more than two components (in porous and non porous 
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medium) has attached the attention of many researchers Grifiths (1979a, 1979b), 
Poulikakos (1985), Pearlstein et al. (1989), Terrones and Pearlstein (1989), Rudraiah and 
Vortmeyer (1982), Lopez et al (1990), Tracey (1996, 1998), Rionero (2010), Straughan 
and Tracey (1999). The essence of the works of these researchers is that small salinity of 
a third component with a smaller mass diffusivity can have a significant effect upon the 
nature of convection; and ‘oscillatory’ and direct ‘salt finger’ modes are simultaneous 
possible under a wide range of conditions, when the density gradients due to components 
with greatest and smallest diffusivity are of same signs. Terrones (1993) studied the 
effects of cross-diffusion on the onset of convective instability in a horizontally infinite 
triply diffusive and triply stratified fluid layer. Ryzhkov and Shevtsova (2009) 
investigated the long-wave instability of a vertical multicomponent fluid layer induced by 
the Soret effect. Rionero (2013a) investigated a triply convective diffusive fluid mixture 
saturating a porous layer and derived sufficient conditions for inhibiting the onset of 
convection. Rionero (2013b) further studied the multicomponent diffusive convection in 
porous layer salted by m salts partly from above and partly from below. 

The validity of the principle of the exchange of stabilities (PES) (i.e. 
nonoccurence of oscillatory motions) in stability problems removes the unsteady terms 
from the linear perturbation equations which results in notable mathematical simplicity 
since the transition from stability to instability occurs via a marginal state which is 
defined by the vanishing of both real and imaginary parts of the complex time eigenvalue 
associated with the perturbation. Pellew and southwell (1940) proved the validity of PES 
for Rayleigh-Benard problem. However no such result exists for other more complex 
hydrodynamic configurations. Banerjee et al (1985) derived a sufficient condition for the 
validity of PES for hydromagnetic Rayleigh-Benard problem. Gupta et al (1986) 
extended Banerjee et al’s (1985) criterion to rotatory hydromagnetic thermohaline 
convection problem. To the author’s knowledge no such result exists for triply diffusive 
convection in porous medium. Thus the present paper which provides a sufficient 
condition for the validity of PES in triply diffusive convection in porous medium may be 
regarded as a first step in this scheme of extended investigations. The following result is 
obtained in this direction: 

For triply diffusive convection in porous medium, if  ୖభ୉భ஢
ଶதభమ஠ర + ୖమ୉మ஢

ଶதమమ஠ర ≤ 1, then an 
arbitrary neutral or unstable mode of system is definitely nonoscillatory in character and 
in particular PES is valid where Rଵ and Rଶ are the concentration Raleigh numbers, and τଵ 
and τଶ are the Lewis numbers for two concentration components respectively, σ is the 
Prandtl number, Eଵ and Eଶ are constants. It is further proved that this result is uniformly 
valid for all combinations of rigid and dynamically free boundaries and the results for 
Rayleigh-Benard convection in porous medium and double diffusive convection in 
porous medium follow as a consequence  
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2. MATHEMATICAL FORMULATION AND ANALYSIS  

A viscous finitely heat conducting Boussinesq fluid layer, saturating a porous medium, of 
infinite horizontal extension is statically confined between two horizontal boundaries z = 0 and z = d which are respectively maintained at uniform temperatures T଴ and Tଵ(<T଴) and uniform concentrations Sଵ଴, Sଶ଴ and Sଵଵ(< Sଵ଴), Sଶଵ(< Sଶ଴)(as shown in Fig.1). 
It is assumed that the saturating fluid and the porous layer are incompressible and that the 
porous medium is a constant porosity medium. It is further assumed that the cross-
diffusion effects of the stratifying agencies can be neglected. The Brinkman extended 
Darcy model has been used to investigate the triple diffusive convection in porous 
medium. 
 
                                                                        

 
                                                Fig.1  

The governing equations of triply diffusive convection in porous medium (Darcy-
Brinkman model), in the non-dimensional form are given by ( Vafai (2006))                                                                                                                                          
   Λ(Dଶ − aଶ)ଶw − (p + Dୟି ଵ)(Dଶ − aଶ)w =  R aଶθ − Rଵaଶϕଵ −  Rଶaଶϕଶ ,                   (1) 
 (Dଶ − aଶ − E σp)θ = −w ,                          (2) 
 ቀDଶ − aଶ − ୉భσ ୮

தభ ቁ ϕଵ =  − ୵
தభ ,                                    (3) 

 ቀDଶ − aଶ − ୉మσ ୮
தమ ቁ ϕଶ =  − ୵

தమ .                                                                              (4) 
The equations (1) – (4) are to be solved by using the following boundary conditions: 
w = θ = ϕଵ = ϕଶ= Dw = 0 at z = 0 and at z = 1,(when both the boundaries are rigid)     (5)   
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or  w = θ = ϕଵ= ϕଶ= D2w = 0 at z = 0 and at z = 1,(when both the boundaries are free)         
                    (6) 
  or    w =  θ =  ϕଵ = ϕଶ =  Dw =  0 at z =  0,   (when lower boundary is rigid)
and   w =  θ =  ϕଵ = ϕଶ =  Dଶw =  0 at z =  1,   (when upper boundary is free)ൠ            

        (7) 
 or      w =  θ =  ϕଵ = ϕଶ =  Dଶw =  0 at z =  0,   (when lower boundary is free)
and     w =  θ =  ϕଵ = ϕଶ = Dw =  0 at z =  1,   (when upper boundary is rigid)ൠ            

        (8) 
where z is the real independent such that 0 ≤  z  ≤ 1, D is the differentiation w.r.t. z,  a2 is 
square of the wave number, σ > 0 the Prandtl number, τ > 0 is the Lewis number, R > 0 
is the Rayleigh number, Rଵ > 0 and Rଶ > 0 are the two concentration Rayleigh numbers, p =  p୰ +  ip୧ is the complex growth rate where  p୰ and  p୧ are the real constants, w is the 
vertical velocity, θ, is the temperature, ϕଵ and ϕଶ are the two concentrations. It may 
further be noted that in Eqs. (1)-(4) together with the boundary conditions (5) or (6) or (7) 
or (8)  describe an eigenvalue problem for p and govern triply diffusive convection in 
porous medium for any combination of dynamically free and rigid boundaries. 
Now we prove the following theorem  
Theorem. If (w, θ, ϕଵ, ϕଶ, p), p =  p୰  +  ip୧,  p୰  ≥ 0 is a solution of Eqs. (1) – (8) with 
R > 0, Rଵ > 0, Rଶ > 0 and ୖభ୉భ஢

ଶதభమ஠ర + ୖమ୉మ஢
ଶதమమ஠ర ≤ 1 then p୧ = 0.In particular p୰ = 0 implies  

p୧ = 0, if  ቀୖభ୉భ஢
ଶதభమ஠ర + ୖమ୉మ஢

ଶதమమ஠ర  ቁ ≤ 1.   
Proof: Multiplying equation (1) by w* (the superscript * henceforth denotes complex 
conjugation) on both sides and integrating over vertical range of z, we obtain 
 Λ ׬ w∗ଵ

଴ (Dଶ − aଶ)ଶw dz − (p + Dୟି ଵ) ׬ w∗ଵ
଴ (Dଶ − aଶ)w dz = 

                                      R aଶ ׬ w∗ଵ
଴ θ dz − Rଵaଶ ׬ w∗ଵ

଴ ϕଵ dz − Rଶaଶ ׬ w∗ଵ
଴ ϕଶ dz.       (9) 

Making use of Eqs. (2) – (4) and the fact that w (0) = 0 = w (1), we can write 
R aଶ ׬ w∗ଵ

଴ θ dz = −Raଶ ׬ θଵ
଴ (Dଶ − aଶ −  E σ p∗)θ∗dz,                                (10) 

            Rଵaଶ ׬ w∗ଵ
଴ ϕଵdz = −Rଵaଶτଵ ׬ ϕଵଵ

଴ ቀDଶ − aଶ − ୉భ஢ ୮∗
தభ ቁ ϕଵ∗dz,                         (11) 

            Rଶaଶ ׬ w∗ଵ
଴ ϕଶdz = −Rଶaଶτଶ ׬ ϕଶଵ

଴ ቀDଶ − aଶ −  ୉మ஢ ୮∗
தమ ቁ ϕଶ∗ dz.                         (12)   
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Combining Eqs. (9) – (12), we obtain 
 
 Λ ׬ w∗ଵ

଴ (Dଶ − aଶ)ଶw dz − (p + Dୟି ଵ) ׬ w∗ଵ
଴ (Dଶ − aଶ)w dz = 

−Raଶ ׬ θଵ
଴ (Dଶ − aଶ −  E σ p∗)θ∗dz + Rଵaଶτଵ ׬ ϕଵଵ

଴ ቀDଶ − aଶ −  ୉భ஢ ୮∗
தభ ቁ ϕଵ∗dz +

 Rଶaଶτଶ ׬ ϕଶଵ
଴ ቀDଶ − aଶ −  ୉మ஢ ୮∗

தమ ቁ ϕଶ∗ dz.                                      (13) 
Integrating various terms of equation (13) by parts for an appropriate number of times and 
making use of either of the boundary conditions (5) – (8), it follows that 
 Λ ׬ (|Dଶw|ଶ + 2aଶ|Dw|ଶ + aସ|w|ଶ)ଵ

଴  dz + (p + Dୟି ଵ) ׬ (|Dw|ଶ + aଶ|w|ଶ)ଵ
଴ dz =

  Raଶ ׬ (|Dθ|ଶ + aଶ|θ|ଶ + Eσp∗|θ|ଶ)ଵ
଴ dz− Rଵaଶτଵ ׬ ቀ|Dϕଵ|ଶ +  aଶ|ϕଵ|ଶ +ଵ

଴
 ୉భ஢ ୮∗

தభ |ϕଵ|ଶቁ dz − Rଶaଶτଶ ׬ ቀ|Dϕଶ|ଶ +  aଶ|ϕଶ|ଶ + ୉మ஢ ୮∗
தమ |ϕଶ|ଶቁ dzଵ

଴                             (14)  
Equating imaginary parts on both sides of equation (14) and cancelling p୧(≠ 0) 
throughout, we have 
׬ (|Dw|ଶ + aଶ|w|ଶ) dz = − ଵ

଴ RaଶEσ ׬  |θ|ଶdzଵ
଴ + RଵaଶEଵσ ׬ |ϕଵ|ଶdzଵ

଴ +
RଶaଶEଶσ ׬ |ϕଶ|ଶdzଵ

଴  .                                                                                                       (15) 
Now, multiplying equation (3) by its complex conjugate and integrating the resulting 
equation for a suitable number of times and use the boundary condition on ϕଵ namely, ϕଵ(0) = 0 = ϕଵ(1), we obtain 
׬ (|Dଶϕଵ|ଶ + 2aଶ|Dϕଵ|ଶ +  aସ|ϕଵ|ଶ)ଵ

଴  dz + ଶ୉భ஢୮౨
தభ ׬ (|Dϕଵ|ଶ +  aଶ|ϕଵ|ଶ)dzଵ

଴ +
୉భమ஢మ|୮|మ

தభమ ׬  |ϕଵ|ଶdzଵ
଴ = ଵ

தభమ ׬  |w|ଶdzଵ
଴ .                                                                               (16) 

Since p୰ ≥ 0, it follows from equation (16), that  
                                 2aଶ ׬  |Dϕଵ|ଶdzଵ

଴ < ଵ
தభమ ׬  |w|ଶdzଵ

଴ ,                                       (17) 
Now, since ϕଵ, ϕଶ and w satisfy the boundary conditions ϕଵ(0) = 0 = ϕଵ(1), ϕଶ(0) = 0 = ϕଶ(1) and w(0) = 0 = w(1) respectively, we have by Rayleigh-Ritz inequality (Schultz 
(1973))  
׬                                         |Dϕଵ|ଶdz ≥ πଶଵ

଴ ׬ |ϕଵ|ଶdzଵ
଴ ,                               (18) 

׬                                         |Dϕଶ|ଶdz ≥ πଶଵ
଴ ׬ |ϕଶ|ଶdzଵ

଴ ,                                                 (19) 
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׬                                          |Dw|ଶdz ≥ πଶଵ
଴ ׬ |w|ଶdzଵ

଴ .                                                   (20) 
Utilizing inequalities (18) and (20) in inequality (17), we get 
                                    aଶ ׬  |ϕଵ|ଶdzଵ

଴ < ଵ
ଶதభమ஠ర ׬  |Dw|ଶdzଵ

଴ ,                                           (21) 
In the same manner, by using inequalities (19) and (20), we obtain from Eq. (4), that 
                                   aଶ ׬  |ϕଶ|ଶdzଵ

଴ < ଵ
ଶதమమ஠ర ׬  |Dw|ଶdzଵ

଴ .                                            (22) 
Utilizing inequalities (21) and (22) in Eq. (15), we obtain 
ቂ1 −  ቀୖభ୉భ஢

ଶதభమ஠ర + ୖమ୉మ஢
ଶதమమ஠ర  ቁቃ ׬  |Dw|ଶdz + aଶ ׬  |w|ଶdz + RaଶEσ ׬  |θ|ଶdzଵ

଴ < 0 ଵ
଴

ଵ
଴ .           (23) 

which, clearly implies that 
                                                      ୖభ୉భ஢

ଶதభమ஠ర + ୖమ୉మ஢
ଶதమమ஠ర > 1.                                                    (24) 

Hence if  ୖభ୉భ஢
ଶதభమ஠ర + ୖమ୉మ஢

ଶதమమ஠ర  ≤ 1, then we must have p୧ = 0. 
This proves the theorem. 

The essential content of the theorem from the physical point of view is that for the 
problem of triply diffusive convection in porous medium, an arbitrary neutral or unstable 
mode of the system is definitely nonoscillatory in character and in particular the  
principle of the exchange of stabilities is valid if  ୖభ୉భ஢

ଶதభమ஠ర + ୖమ୉మ஢
ଶதమమ஠ర  ≤ 1. Further this result is 

uniformly valid for any combination of rigid and / or free boundaries. 
Special Cases: It follows from theorem1 that an arbitrary neutral or unstable mode is non 
oscillatory in character and in particular PES is valid for: 

1. Rayleigh-Benard convection in porous medium (ܴଵ = ܴଶ = 0) 
2. Thermohaline convection in porous medium (ܴଶ = 0) if  ோభ୉భఙ

ଶఛభమగర ≤ 1. 
3.  CONCLUSION 

Linear stability theory is used to derive a sufficient condition for the validity of 
‘the PES’ in triply diffusive convection in porous medium. It is further proved that this 
result is uniformly valid for any combination of rigid and / or free boundaries. 
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ABSTRACT: In this paper, we study primary fuzzy ideals and the effect of group action 
on primary fuzzy ideals of a semiring R with finite group action on it and show that the 
results derived in [12] and [13] concerning these ideals is of wider generality. 
Keywords: Semirings; Primary fuzzy ideals; G- primary fuzzy ideals. 
1. INTRODUCTION 

 In [12], we generalized the primary ideals from commutative rings to non 
commutative rings by replacing the role of elements by ideals. This definition of primary 
ideals coincides with the definition of primary ideals given in [14] through their 
associated primes under the assumption that the ring is Noetherian. In [13] we consider 
the group action of a finite group G on a semiring R and define G-primary ideals of R. 
Then results proved for primary ideals in [12] are carried over to G-primary ideals in 
[13]. The theory of fuzzy sets developed by Lotfi A. Zadeh [15] some 40 years ago has 
useful and important applications. Since the pioneering paper of Zadeh, research on the 
theory of fuzzy sets has been growing steadily. Many mathematicians have applied the 
concept of fuzzy subsets to the theory of groups and rings in algebra [3-7]. 

In this paper, after introducing the notions for primary ideals in [12] and G-
primary ideals in [13] of a non commutative semiring, we achieve their fuzzyfication by 
proving a theorem that characterizes primary fuzzy ideals in terms of primary ideals of 
non commutative semirings. 

Since the presentation in this paper is general towards the non commutative case, 
the results we obtain here are also valid for the commutative case. 
2. PRELIMINARIES 

Throughout this paper, (R, +, .) represents a semiring. First we recall some 
definitions of the basic concepts of semirings that we need in sequel.  
Definition 2.1. A semiring is a nonempty set R  on which operations of addition and 
multiplication have been defined such that the following conditions are satisfied: 
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(i)     ( R , +) is a commutative monoid with identity element 0. 
(ii)    (R ,  .) is a monoid with identity element 1. 
(iii)   Multiplication distributes over addition from either side. 
(iv)  0.0.0 rr   for all Rr   
(v)    01  . 
Definition 2.2. A nonempty subset (ideal) A of a semiring R is subtractive if and only if 

Aa and Aba  implies that Ab  
Example 2.3. The set 2N of all nonnegative even integers is a subtractive ideal of the 
semiring (N, +, ⋅), where N is a set of all non negative integers. 
Definition 2.4. An ideal P  of a semiring R  is prime if and only if whenever PAB   , 
for ideals A and B of R , we must have either PA   or PB   
Definition 2.5. A G-invariant ideal I of a semiring R is said to be G-maximal if RI  and 
for any G-invariant ideal J of R, RJI  implies that either IJ  or RJ   
Definition 2.6. A G -invariant ideal A  of a semiring R  is a G -prime ideal if and only if 
for G -invariant ideals 1A , 2A  of a semiring R, AAA 21  implies that either 

AA 1 or AA 2 . 
Definition 2.7. Let X be a nonempty set.  A function  1,0: X  is called a fuzzy set of 
X. 
Example2.8.  Let Z be the set of integers and λ function from set Z into [0,1] defined by 

Zxxx  ,2
1)( 2  Then λ is a fuzzy set of Z. 

Definition 2.9. Let λ be a fuzzy set of X. Then for  1,0t , the set  txXxt  )(  
is called a t-level set of λ. 
Definition 2.10. Let I be a nonempty index set and let Iit )(  be a family of fuzzy sets of 
X.  Then the union

Ii
i

  and the intersection
Ii

i
 of the family Iit )(  is defined by 

 
Ii

ii Iixx


 )(sup)(    and  Iixx i
Ii

i 


)(inf)(    for all Xx .  Here sup and 
inf denote the suprimum and the infimum respectively. 
Definition 2.11. Let ( R , +, .) be a semiring. If   and   are two fuzzy subsets of R , 
then the product    is defined by 
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  )(),(minsup))(( yxz
xyz




  for all Rz  . The sum of two fuzzy subsets is defined 
analogously. 
 
The fuzzy ideals and prime fuzzy ideals are defined in semirings as follows: 
Definition 2.12. Let S be a semi group (monoid) and   a fuzzy subset of S then   is 
called a fuzzy subsemigroup (fuzzy submonoid) of S if and only 
if  )(),(min)( yxxy   . 
Definition 2.13. Let R  be a semiring.  A fuzzy subset  of R  is called fuzzy right (left) 
ideal of R  if 
(i)   ))(),(min()( yxyx    
(ii)  ))()((),()( yxyxxy   . 
  is said to be fuzzy ideal of R  if it is both a left and a right fuzzy ideal of R . 
Definition 2.14. A fuzzy ideal P  of R  is called a prime fuzzy ideal if either RP   or 
P  is a nonconstant function and for any two fuzzy ideals   and   in R , P)(    
implies that either P  or P . 
 
3. PRIMARY FUZZY IDEALS 
We define the fuzzy analogue of a primary ideal in a semiring as follows: 
Definition 3.1. Let R be a semiring and P a fuzzy ideal of R. Then P is said to be primary 
fuzzy ideal if either RP   or P  is a nonconstant function and for any two fuzzy ideals 
  and   in R , P)(    implies that either P  or P . 
Definition 3.2. Let λ be a fuzzy ideal of a semiring R.  The fuzzy radical of λ, denoted 
by  , is defined by    PP  where  denotes the family of all prime fuzzy 
ideals P of R such that P and   P where  )0()(   xRx  and  )0()( PxPRxP  . 
Note that (i)    as  R . 
(ii)  If 1)0(  , then every prime fuzzy ideal P containing λ is in  . 
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The following theorem describes primary fuzzy ideals of a semiring R in terms of 
primary ideals of R. 

 
Theorem 3.3. Let R be a semiring and P a nonconstant fuzzy ideal of R.  Then P is a 
primary fuzzy ideal of R if and only if  RPr , , for all  1,0r , where  R is a 
primary ideal of R. 
Proof. Let )(RI  consist of the empty set   together with all the ideals of R. Since P is 
nonconstant, the decreasing function )(]1,0[: RI given by rPr )( takes on at least 
one nonempty set other than R. 
In fact, we show that it takes on exactly two values tP and RPu  , for all 

]1,0[r where )1()0( PuPt  . If this is not the case, then there exists ]1,0[s  with 
st  such that RPP st   . Define two fuzzy ideals λ and μ of R by 





 0...................

]1,0[...................
rR
rPs

r             and                       


 srR
srPr

r .........................
........................    . 

As in (c.f. [10], Proposition 3.3), P)(     and   is not contained in P, 
since tst PP  . We here show that P , which will contradict the fact that P is 
primary. Since RPs  , there exist m, 0<m<s  such that RPm  .  
For if RPm   for all 0<m<s, then for any Rx , we have     ssmmPxixP i  0]1,0[sup]1,0[sup)( , implying that sPx . This 
contradicts the fact that RPs  . Moreover sm  implies that ms PP   so that mP  as 

sP  . Since RPm  and mP is an ideal of R, therefore there exists a prime 
ideal )( RI  ) of R such that IPm  . Define a fuzzy ideal P′ of R 
by 



 mrR
mrIP r ..................

..................../    . The characterization Theorem (c.f. [10], Theorem 3.4) 
for prime fuzzy ideals implies that P′ is a prime fuzzy ideal of R, since I is a prime ideal 
of R. Moreover mr  implies that /

rmr PIPP  and mr  implies that RPr / , so 
that /

rr PP  .Thus /PP  . Also since mP , we have /
  PIPP m . 

Further RIPs / , since mr  . Now the fact that P′ is a prime fuzzy ideal of R, /PP   
  PP / and RPs / , coupled with the fact that for any family   Iii  of fuzzy ideals of 

R, we have     ,riri     ]1,0[r , it follows that   RP s  . However Rs  . 
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Therefore  Ps  and consequently  P  .Thus there exist an ideal  R  with  RPr , for all ]1,0[r . It remains to prove that   is primary. Let 
α and β be two ideals of R with   . Then the characteristic functions   and   
satisfy P    , because   



 0.....................................

10..................................
rR
r

r
 . 

Now the primary character of P yields that either P or P . If P  , 
then   . Suppose P , then P . Let /  be any prime ideal of R 
containing . Since  RPr , for all ]1,0[r , we have 





 nrR
nrPr ..................................

...................................         ,  for some  )1,0[n .                 (1)      

Define a prime fuzzy ideal P′ of R by 



 nrR
nrPr ..................................

...................................//      .     (2) 

Since /  , it is clear from (1) and (2) that PP / and   PP / . Therefore 
P implies that P ′. This gives     //    II P , which by virtue of 

the fact that / is any prime ideal of R containing   yields that   .This completes 
the proof that   is primary. Now for the converse, assume that  RPr , for 
all ]1,0[r ,where   is a primary ideal of R. Suppose that P is not primary .Then there 
exist fuzzy ideals   and   of R with P  , but P and P .The later 
statements imply that ss P and  Pt  for some ]1,0[, sr .Since every ideal is 
contained in R, ss P implies that sP . Further,  Pt  implies that there exists 
a prime fuzzy ideal /P  of R with PP / and   PP / such that tt P / , this again 
implies that //

 PPt .Thus there exists a prime ideal /
P containing   such that 

/
 Pt Consequently ,  t  . Let ),( tsm  .Then ms  and mt   implies that 
 m and  m . But     implies that ))(),(min()( baabP  .Thus for 

any  ii yxz in mm where ix  gives  mm , which contradicts the primary 
character of . Hence P is primary. 
 
We now, use the Characterization Theorem 3.3 to derive the fuzzy analogous of various 
results proved in [12]. 
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Theorem 3.4. (i)  Let ,..,.........,, 321 nPPPP be primary fuzzy ideals of a semiring R such 
that iP  (i=1, 2,…, n). Then 

n

i
iPP

1
 is primary and P  . 

(ii)   Let R and R′ be two semirings and /: RRT   is an onto homomorphism.  Let  be 
a fuzzy ideal of R such that both  and  are subtractive and  K  where  )()(, bTaTbaxRxK  .  If   is primary, then )(T ) is primary. Moreover, if 
range  is finite and )(T is primary, then   is primary. 
Proof.(i) By the characterization of primary fuzzy ideals ,..,.........,, 321 nPPPP , there exist 
primary ideals ,..,.........,, 321 n of semiring R and )1,0[..,.........,, 321 nmmmm  such 
that   





i
i

ri mrR
mrP ..................................

...................................  . It is to be noted that 
nPPPP  .........321 implies that mmmmm n  ...........321 . 

For if ji mm  for some ji  , then choose a prime ideal i  and define a prime fuzzy 
ideal Q by 





i
i

r mrR
mrQ ..................................

...................................  . Clearly, iPQ  . But 
for ,ji mrm  rQ ,    rjPR . The later implies that there exists Rx such 
that )()( xPxQ j and the former implies that   )()( xQxPi    so that     )()()()( xPxPxQxP jji  , contradicting that ji PP  . Therefore we 

have 




 
mrR

mrP
n

ir
..................................

..................................
1
  . Also, using      ii PP , we get 

n  .........321 . Now, using (c.f.[12],Theorem3.19(i)(a)) and 
consequently by Theorem 3.3, P is primary. Moreover, using (c.f. [12], Proposition 3.9 
(iv)) and the fact  

n

i
ri

r

n

i
i PP

11 



  and  

n

i
ri

r

n

i
i PP

11 




 , we have 




n

i
i

n

i
i PPP

11
. 
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(ii)   Let /: RRT  ′ be an onto homomorphism and ]1,0[: R be a fuzzy ideal of R. 
If   is primary, then obviously by Theorem 3.3 range λ is finite. We first show that     rr TT   for all ]1,0[r ] if range λ is finite.  For this, let  rTy  . Then there 
exists rx  such that yxT )( .  Now, rx   implies rx )( and therefore     rxyT

yxT



)(sup)()(

)(
 .Thus   rTy  . Hence     rr TT   . To show 

that    )( rr TT   , let   rTy  . Then ,))(( ryT   that is yz
yzT




)(sup
)(
 . Since 

range of   is finite, therefore   possesses the sup property, that is )()(sup 0xx
Ex

 


, 
where E is any subset of R and Ex 0 .Thus, there exists Rz 0 such that yzT )( 0 and 

rzz
yzT




)(sup)(
)(0  . Hence )( rTy  and therefore    )( rr TT   .  Thus we have 

shown that    )( rr TT   . Now if   is a primary fuzzy ideal of R, it follows by 
Characterization Theorem 3.3 that 



 mrR
mr

r ..................................
...................................  , where   is a 

primary ideal of R and   Rim i  1,0sup . Thus 
    )( rr TT  




mrR
mrT

..................................
.....................).........(

/
  . Since K  , by assumption 

both   and   are subtractive. Thus it follows from (c.f.[12], Theorem 3.21) that 
)(T is primary and conversely, if )(T is primary then   is primary.  Hence repeal to 

the characterization Theorem 3.3 yields the required result. 
Definition 3.5. Let R be a semiring.  A fuzzy ideal   of R is said to be a maximal fuzzy 
ideal of R if 
(i)     is not constant. 
(ii)   For any fuzzy ideal   of R, if   then either    or R  , where 

 )0()(   xRx ,  )0()(   xRx  
Theorem 3.6. Let R be a semiring and P a nonconstant fuzzy ideal of R. Then P is a 
maximal fuzzy ideal of R if and only if there exists a maximal ideal  of R such that 

 RPr , , for all  1,0r . 
Proof.  Let P be a maximal fuzzy ideal of R. Let I(R) consist of the empty set   together 
with all the ideals of R. We first note that since P is nonconstant, the decreasing function   )(1,0: RI ) given by rPr )(  takes on at least one nonempty level set other than 
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R. In fact, we show that it takes exactly two values tP  and RPu  for all  1,0r , 
where )1()0( PuPt  . If this is not the case, then there exists )1,0(s such that 

RPP st  . Define a fuzzy ideal   of R by 



 trR
trPs

r ..................................
...................................   . Then 

P since rrP  for all ]1,0[r ,   st PPP and R  .This contradicts the 
maximal character of P. Thus there exists an ideal )( R of R such that  RPr , , for 
all  1,0r . It now remains to prove that   is maximal ideal of R .Let M be an ideal of R 
such that RM  . Define a fuzzy ideal μ of R by 





 srR

rsM
r 0..................................

1................................... , where  RPrs r  ]1,0[sup1 . Clearly, 
  PMP ,  and R  . This again contradicts the maximal character of P. 

Thus   is a maximal ideal of R. Conversely assume that  RPr ,  for all  1,0r , 
where  is a maximal ideal of R. Suppose that   is a fuzzy ideal of R such that 

P .Then 1)0()0(  P , so that 1)0(  . It now follows that    P , which by 
virtue of the maximal character of   implies that either   P  or R . The later 
alternative yields that R  , since 1)0(  . Hence P is a maximal fuzzy ideal of R. 
This completes the proof of the theorem. 
Lemma 3.7. Let R be a semiring and P a fuzzy ideal of R such that    





 arR
arPr ..................................

...................................   . Then for any positive integer n, 

  



 arR
arP n

r
n

..................................
...................................    , where PPPPP n  ................ . 

Proof. This follows easily by induction on n using (c.f. [10], Lemma 3.1). 
Theorem 3.8.  Let R be a Noetherian semiring and P any primary fuzzy ideal of R.  Then 
P  is a prime fuzzy ideal of R. 

Proof: Let P be a primary  fuzzy ideal of R. Then 



 mrR
mrPr .......................

.......................     , where 
10  m and )( R  is a primary ideal of R. Now,   being primary and R being 

Noetherian, it follows that   is the smallest prime ideal containing  (c.f. [12] , 
Theorem 3.20(iii)). Define a fuzzy ideal Q of R by 



 mrR
mrQr .......................

.......................  . Then 
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Q is prime (c.f. [10], Theorem 3.4). In fact Q is the smallest prime fuzzy ideal containing 
P and   QP .Hence QP  is prime. 
 

3. CHARACTERIZATION OF G-PRIMARY/G-MAXIMAL FUZZY IDEALS 
OF A SEMIRING 
 
In this section, we characterize G-primary/G-maximal fuzzy ideals of R in terms of 

G-primary/G-maximal ideals of R and derive the fuzzy analogous of the results proved in 
[13]. 

Throughout this section, R  is a semiring and G  a finite group acting on R .  For 
any Gg  the action of Gg on Rr  is denoted by grr  . For any subset 

RA  and Gg ,  AaaA gg  .  Any ideal A  of a semiring R  is said to be G-
invariant if AAg  , where 

Gg
gG AA


 . More generally, GA is the largest G -invariant 

ideal contained in A . 
Definition 4.1. A G-invariant fuzzy ideal   is said to be a G-prime fuzzy ideal of R if 
either R  or   is nonconstant and for any two G-invariant fuzzy ideals   and   of 
R,   implies that either   or   . 
Lemma 4.2.  Let   and   be two G-invariant fuzzy ideals of a semiring R.  Then 
(i)    )()(  GPPG   ,  )G(  w here is the family of all G-prime fuzzy ideals 
of R such that  P and P   
(ii)    GG )()(    . 
(iii)    1)( xG , for all  


 Gx  . 

(iv)      GGG  


 . 

(v)    G  } if and only if    . 
Proof. Results (ii) - (v) are easy consequences of result (i) and result (i) follows in a 
manner analogous to the proof of (c.f.[13] , Lemma 3.2) upon using (c.f. [10], Theorem 
3.4). 
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In order to define G-primary fuzzy ideal, we first state a Lemma which is a direct 
consequence of ( c.f. [13], Lemma 3.2(vi)) and Lemma 4.2 (v). 

 
Lemma 4.3.  Let R be a semiring and G finite group acting on R.  Then for any G-
invariant fuzzy ideal P, the following conditions are equivalent: 
(i)   For any two G-invariant fuzzy ideals   and   of a semiring R, P  implies 
that either P or  GP  
(ii)   For any two G-invariant fuzzy ideals   and   of R, P  implies that either 

P or  P  
Definition 4.4. A G-invariant fuzzy ideal   is called G-primary if either R  or   is 
nonconstant fuzzy ideal of R satisfying either of the equivalent conditions of Lemma 5.3. 
Obviously, if P is a primary fuzzy ideal of R, then GP is a G-primary fuzzy ideal of R. 
Theorem 4.5.  Let R be a semiring and P a nonconstant fuzzy ideal of R. Then P is a G-
primary fuzzy ideal of R if and only if  RPr , , for all  1,0r ., where )( R  is a 
G-primary ideal of R. 
Proof. This follows exactly making necessary changes in Theorem 3.3 as (c.f. [10], 
Theorem 4.3) follows from (c.f. [10], Theorem 3.4). 
 
We now, use the characterization Theorem 4.5 to derive the fuzzy analogous of various 
results proved in above section 4.  We append these results as 
 
Theorem 4.6. (i)  Let ,..,.........,, 321 nPPPP be G-primary fuzzy ideals of a semiring R such 
that   G

iP  (i=1, 2 ,..., n) . Then 
n

i
iPP

1
 is G-primary and   GP  . 

(ii)   Let R and R′ be two semirings and /: RRT   is an onto homomorphism.  Let  be 
a G- invariant fuzzy ideal of R such that both  and  are subtractive and  K  
where  )()(, bTaTbaxRxK  .  If   is G-primary, then )(T ) is G-primary. 
Moreover, if range  is finite and )(T is G-primary, then   G-is primary. 
(iii)    Let R be a Noetherian semiring and P a G-primary fuzzy ideal of R. Then  GP is  
a G-prime fuzzy ideal of R. 
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Proof. A slight change in the proof of Theorem 3.4( (i) and (ii) ) and Theorem 3.8 
provide us the proof of the results (i)---(iii). 
Definition 4.7. Let   be a G-invariant fuzzy ideal of R.  Then   is called a G-maximal 
fuzzy ideal of R if   nonconstant and for any G-invariant fuzzy ideal   of R, if 

  then either    or R  . 
 
Finally, making necessary changes in Theorem 3.6, we get 
Theorem 4.8. Let R be a semiring.  Let P be a G-invariant fuzzy ideal of R.  Then P is a 
G-maximal fuzzy ideal of R if and only if there exists a G-maximal ideal   of R such 
that  RPr , , for all  1,0r . 
Corollary 4.9.  Let M be a G-maximal fuzzy ideal of R.  Then any positive power of M 
is G-primary and   MM Gn  . 
Proof.  Let M be a G-maximal fuzzy ideal of R.  Then by characterization of G-maximal 
fuzzy ideals, we have 



 mrR
mrM r .......................

......................     , where   is a G-maximal ideal of 
R.  Thus, by Lemma 3.7 for any positive power n of M, 
  



 mrR
mrM n

r
n

..................................
...................................   . Now  ⁿ is G-primary and   is the smallest 

G-prime ideal of R containing  ⁿ (c.f. [13], Corollary 3.8). Hence nM  is G-primary and 
M is the smallest G-prime fuzzy ideal R containing nM , that is   MM Gn  . 
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Abstract 

An unsteady MHD slip flow of incompressible electrically conducting viscoelastic fluid 
through an inclined vertical porous channel with thermal diffusion is studied. The plates 
of the channel are taken to be non-conducting, porous subjected to constant 
injection/suction velocity. A uniform magnetic field is applied perpendicular to plates of 
the channel. Taking Hall effect and heat source into account a closed form analytical 
solutions of the governing equations for velocity, temperature and the concentration 
fields are obtained. The effects of different parameters entering into the problem are 
shown graphically. 
 
Keywords: Slip boundary condition, Viscoelastic fluid, Inclined channel, Heat source, 
Soret effect. 

Introduction 
The science of magnetohydrodynamics (MHD) was concerned with geophysical and 
astrophysical problems for a number of years. In recent years, the possible use of MHD is 
to affect a flow stream of an electrically conducting fluid for the purpose of thermal 
protection, breaking, propulsion control etc. MHD plays an important role in many 
engineering and industrial problems such as liquid metal cooling, in nuclear reactors, 
plasma confinement, control of molten iron flow and many others. It continues to attract 
the attention of applied mathematical researchers owing to extensive applications in 
contest of ionized aerodynamics. During the past few decades, there has been a growing 
interest in non-Newtonian fluids. The flow of non-Newtonian fluids are found in a variety 
of applications: from drilling oil and gas well and well completion operations to 
industrial process involving waste fluid, synthetic fibres foodstuffs and extrusion of 
molten plastic as well as in same flows of some polymer solutions. The large variety of 
fluids and industrial applications has been a major motivation for research in non-
Newtonian flows. Moreover, the flows of non-Newtonian fluid in the absence as well as 
in the presence of magnetic field have applications in many areas such as the handling of 
biological fluids, alloys, plasma, mercury amalgams, blood and electromagnetic 
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propulsion. Sarpankaya [11] was the first who has studied the MHD flow of non-
Newtonian fluids. Walter [13] has studied the non-Newtonian effects in some elastic-
viscous liquid whose behaviour at small rate of shear is characterized by a general linear 
equation of state. Hayat et al. [5] worked on three dimensional flow over a stretching 
surface in a viscoelastic fluid. Attia [2] studied the Hall current effect on transient 
Hydromagnetic Couette-Poiseuillle flow of a viscoelastic fluid with heat transfer. Attia 
and Ewis [1] investigated unsteady MHD Couette flow with heat transfer of viscoelastic 
fluid under exponential decaying pressure gradient.  

Recently slip condition has become much more compelling and it now reasonably 
certain that the viscous fluid can slip against solid surfaces if the surface is very smooth. 
The slip boundary has significant applications in lubrication, extrusion, medical science 
and many others. Muhammad and Alam [7] have studied the slip effect on fractional 
viscoelastic fluid. Chand and Kumar [3] studied Hall effect on heat and mass transfer in 
the flow of oscillating viscoelastic fluid through porous medium with wall slip condition. 
Kumar and Chand [6] have investigated the effect of slip condition and hall currents on 
unsteady MHD flow of viscoelastic fluid past an infinite vertical porous plate through 
porous medium. Recently Kumar et al. [4] worked on oscillatory free convective flow of 
viscoelastic fluid through porous medium in rotating vertical channel. 

The process involving coupled heat and mass transfer occurs frequently in nature. 
In different geophysical cases, it occurs not only due to the temperature difference but 
also due to concentration difference or the combination of the two. Also natural, mixed 
and forced convection in inclined channels has been accumulated in previous works in 
literature because of its practical applications including electronic system, high 
performance heat exchangers, chemical process equipments, combustion chambers, 
environmental control system and so forth. 

Motivated by above researches and their applications, in the present problem an 
attempt has been made to extend the recent study of Manglesh et al. [9] to formulate and 
analyse the effect of slip condition on MHD flow of viscoelastic fluid through an inclined 
vertical channel. 

Formulation of the Problem 
The geometry of the system under consideration is shown schematically in Fig. 1. It 
consists of an inclined channel whose inclination is δ, (0 ≤ δ ≤ ஠

ଶ). A Cartesian co-
ordinate system is introduced such that x∗-axis lies vertically upward along the centreline 
of the channel and y∗-axis is perpendicular to the walls of the channel. The 
injection/suction velocity and permeability of the porous medium is considered to be 
constant. The vertical plates of the channel are situated at  y∗ = ିୢ

ଶ and y∗ = ୢ
ଶ. A constant 

magnetic field is applied perpendicular to the axis of the channel and the effect of 
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induced magnetic field is neglected, which is a valid assumption on laboratory scale 
under the assumption of small magnetic Reynolds number. Since the plates are infinite in 
extent in x∗ and z∗ directions, so all the physical quantities depend only on y∗and t∗. 
The velocity components in x∗, y∗ and z∗ direction are u∗, v∗ and w∗ respectively. The 
equation of continuity ∇. VሬሬԦ = 0, on integration gives v∗ = v଴. Also when the strength of 
magnetic field is strong one cannot neglect the effect of Hall current. The components of 
electric current density JԦ are given by (j୶,   ∗ j୷∗ ,  j୸∗), then equation of conservation of electric 
charge ∇. JԦ = 0, gives  j୷∗ = constant. Since the plates are electrically non-conducting,  
j୷∗ = 0  and is zero everywhere in the flow. When the magnetic field is large, the 
generalized Ohm’s law, in the absence of electric field, neglecting the ion slips and 
thermo electric effect (Meyer [10]) yields: 
j୶∗ − ωୣτୣj୸∗ = −σμୣH଴w∗                                                                                                (1) 
j୸∗ + ωୣτୣj୶∗ = σμୣH଴u∗                                                                                            (2) 
The solution of equations (1) and (2) are: 
j୶∗ = ஢μ౛ୌబ

ଵା୫మ (mu∗ − w∗)                                                                                            (3) 
j୸∗ = ஢μ౛ୌబ

ଵା୫మ (u∗ + mw∗)                                                                                            (4)                 
Following Skelland [12] the governing equations of viscoelastic flow are obtained as 
follow 
ப୳∗
ப୲∗ + v଴ ப୳∗

ப୷∗ = ϑ பమ୳∗
ப୷∗మ − k଴ பయ୳∗

ப୲∗ ப୷∗మ − ஢μ౛మୌబమ
஡(ଵା௠మ) (u∗ + mݓ∗) + gβT∗ cos δ +  gβ∗C∗ cos δ −

஬
୏౦∗ u∗                                                                                                                                   (5)              
ப୵∗
ப୲∗ + v଴ ப୵∗

ப୷∗ = ϑ பమ୵∗
ப୷∗మ −k଴ பయ୳∗

ப୲∗ ப୷∗మ + ஢μ౛మୌబమ
஡(ଵା୫మ) (mu∗ − w∗) − ஬

୏౦∗ w∗                                  (6)                                          
The heat conduction equation is      
ப୘∗
ப୲∗ + v଴ ப୘∗

ப୷∗ = ୩
஡େ౦

பమ୘∗
ப୷∗మ + Q଴                                                                                             (7)    

The mass diffusion equation is                                                   
பେ∗
ப୲∗ + v଴ பେ∗

ப୷∗ = D୫ பమେ∗
ப୷∗మ + D୘ பమ୘∗

ப୷∗మ                                                                                (8)    
where ‘*’ represents dimensional quantities, ϑ is kinematic viscosity,  t∗is time, ρ is 
density, H଴ is intensity of magnetic field, T∗ is temperature, C୮ is specific heat at constant 
pressure,  k is thermal conductivity, g is acceleration due to gravity, β is volumetric 
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coefficient of thermal expansion, C∗ is concentration, β∗ is volumetric coefficient of 
thermal expansion with concentration, D୫ is chemical molecular diffusivity, D୘ is 
thermal diffusivity. 
The initial boundary conditions are 

 
u∗ = L∗ ப୳∗

ப୷∗ , w∗ = L∗ ப୵∗
ப୷∗ , T∗ =  C∗ = 0, at  y∗ = − ୢ

ଶ

u∗ = 0 =  w∗, T∗ = T଴ cos ω∗t∗ , C∗  = C଴ cos ω∗ t∗ at  y∗ = ୢ
ଶۙۘ

ۗ
                                     (9)                                                                    

Introducing the following non-dimensional quantities 
u = ୳∗

୴బ  , w = ୵∗
୴బ ,   y = ୷∗

ୢ  , θ = ୘∗
୘బ ,   C = େ∗

େబ ,   t = ୲∗஬
ୢమ , ω = ன∗ୢమ

஬ , K୮ = ୏౦∗
ୢమ , 

λ = ୴బୢ
஬ ,   G୰ = ୥ஒ୘బୢమ 

୴బ஬ , G୫ = ୥ஒ∗େబୢమ
୴బ஬ ,   M = ஢μ౛మୌబమୢమ

μ ,   P୰ = μୡ౦
୩ , Sେ = ஬

ୈౣ, S଴ = ୈ౐୘బ
஬େబ  

h = ୐∗
ୢ ,  α = ୩బ

ୢమ, S = ୕బୢమ
஬  

where ω is frequency parameter, λ is suction parameter, G୰ is Grashoff number, G୫ is 
modified Grashoff number, M is Hartmann number, P୰ is Prandtl number, N is radiation 
parameter, Sୡ is Schmidt number, h is slip parameter, and α  is viscoelastic parameter, S଴ 
is Soret number and S is heat source parameter, equations (5)-(8) become 
ப୳
ப୲ + λ ப୳

ப୷ = பమ୳
ப୷మ − α பయ୳

ப୲ ப୷మ − ୑
ଵା୫మ (u + mw) + G୰ θcos δ + G୫C cos δ − ୳

୏౦                 (10)                                                                                    
ப୵
ப୲ + λ ப୵

ப୷ = பమ୵
ப୷మ − α பయ୵

ப୲ ப୷మ + ୑
ଵା୫మ (mu − w) − ୵

୏౦                                                        (11) 
ப஘
ப୲ + λ ப஘

ப୷ = ଵ
୔౨

பమ஘
ப୷మ + Sθ                                                                                          (12) 

பେ
ப୲ + λ பେ

ப୷ = ଵ
ୗౙ

பమେ
ப୷మ + S଴ பమ஘

ப୷మ                                                                                              (13)                           
The relevant boundary conditions in non-dimensional form are given by 
 
u = h ப୳

ப୷ , w = h ப୵
ப୷ , θ = C = 0  at  y = − ଵ

ଶ

u = w = 0, θ = cos ωt, C = cos ωt  at y = ଵ
ଶ
ൢ                                                      (14)                                                  

Introducing the complex velocity  F = u + iw, we find that equations (10) and (11) can 
be combined into a single equation of the form 
ப୊
ப୲ + λ ப୊

ப୷ = பమ୊
ப୷మ − α பయ୳

ப୲ ப୷మ − ୑
ଵା୫మ (1 − im)F + G୰θ cos δ + G୫C cos δ − ୊

୏౦                (15)                                
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The corresponding boundary conditions reduce to  

 
F = h ப୊

ப୷ , θ = C = 0, at y = − ଵ
ଶ

F = 0, θ = C = cos ωt at   y = ଵ
ଶ
ൢ                                                                                  (16)               

Solution of the Problem 
In order to solve Eqs. (12), (13) and (15), under the boundary condition (16), we assume 
the solution of these equations as follows  
 F(y, t) = F଴(y)e୧ன୲
θ(y, t) = θ଴(y)e୧ன୲
C(y, t) = C଴(y)e୧ன୲

ቑ                                                                                                       (17) 

Substituting these expressions in equations (12), (13), (15) and (16), we obtain 
(1 − iA)F଴ᇱᇱ − λF଴ᇱ − cF଴ = −G୰θ଴ cos δ − G୫C଴ cos δ                                                 (18)                                                                                           
θ଴ᇱᇱ − λP୰θ଴ᇱ − P୰(iω − S)θ଴ = 0                                                                                     (19)                                      
C଴ᇱᇱ − λSୡC଴ᇱ − iωSୡC଴ = −S଴Sୡθ଴ᇱᇱ                                                                                 (20)                    
Corresponding boundary condition becomes: 

 
F଴ = h ப୊బ

ப୷ , θ଴ = C଴ = 0, at y = − ଵ
ଶ

F଴ = 0, θ଴ = C଴ = 1  at   y = ଵ
ଶ

ൢ                                                                            (21)                                                                

The solution of equation (18), (19) and (20) under boundary condition (21) is 
F(y, t) = (Aଽe୰మ୷ + Aଵ଴eୱమ୷ − Aହe୰୷ − A଺eୱ୷ − A଻e୰భ୷ − A଼eୱభ୷)e୧ன୲                       (22)          
θ(y, t) = (A଴e୰୷ + B଴eୱ୷)e୧ன୲                                                                                        (23)                                                     
C(y, t) = (Aଷe୰భ୷ + Aସeୱభ୷ + Aଵe୰୷ + Aଶeୱ୷)e୧ன୲                                                        (24)                                               
Note: The validity and correctness of the present solution is verified by taking α = h =
δ = 0 and ப୮

ப୶ = 0, the above problem reduces to MHD flow in vertical channel and the 
result becomes the same as given by Manglesh et al.  [8]   
The shear stress, Nusselt number and Sherwood number can now be obtained easily from 
equations (22), (23) and (24). 
Skin friction coefficient τ୐ at the left plate in terms of its amplitude and phase is: 
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τ୐ = ቀப୊
ப୷ቁ୷ୀିభ

మ
= ቀப୊బ

ப୷ ቁ୷ୀିభ
మ

e୧ன୲ = |D| cos(ωt + αଵ)                                                    (25)   

with|D| = ඥD୰ଶ + D୧ଶ and αଵ = tanିଵ ቀୈ౟
ୈ౨ቁ 

whereD୰ + iD୧ = rଶAଽeି౨మమ + sଶAଵ଴eି౩మమ − rAହeି౨
మ − sA଺eି౩

మ−rଵA଻eି౨భమ −sଵA଼eି౩భమ  
Heat transfer coefficient Nu (Nusselt number) at the left plate in terms of its amplitude 
and phase is: 
Nu = ቀப஘

ப୷ቁ୷ୀିభ
మ

= ቀப஘బ
ப୷ ቁ୷ୀିభ

మ
e୧ன୲ = |H| cos(ωt + β)                                                    (26) 

with|H| = ඥH୰ଶ + H୧ଶand β = tanିଵ ቀୌ౟
ୌ౨ቁ 

whereH୰ + iH୧ = rA଴eି౨
మ + sB଴eି౩

మ 
Mass transfer coefficient Sh (Sherwood number) at the left plate in term of amplitude and 
phase is: 
Sh = ቀபେ

ப୷ቁ୷ୀିభ
మ

= ቀபେబ
ப୷ ቁ୷ୀିభ

మ
e୧ன୲ = |G| cos(ωt + γ)                                                     (27)  

with|G| = ඥG୰ଶ + G୧ଶ and γ = tanିଵ ቀୋ౟
ୋ౨ቁ 

whereG୰ + iG୧ = rଵAଷeି౨భమ + sଵAସeି౩భమ + rAଵeି౨
మ + sAଶeି౩

మ 
 
Results and Discussions 

The problem of MHD free convective flow of viscoelastic fluid under the effect of 
thermal diffusion and heat source through an inclined porous vertical channel in the 
presence of Hall current is analysed. The analytical expressions for velocity, temperature 
and concentration are obtained and evaluated numerically for different values of 
parameter appeared in the solution. To have better insight of the physical problem the 
variations of the physical quantities with flow parameters are shown graphically. 
Velocity Profile: Variation of velocity with different parameters is shown in Figs. 2 and 
3. From these figures it is observed that the velocity distribution is parabolic in nature. 
Fig.2 shows the variation of velocity with Grashoff number, suction parameter, 
permeability of porous medium, slip parameter, viscoelastic parameter and inclination 
angle. We find that Velocity increases with increasing Grashoff number and modified 
Grashoff number as increase in these two parameters significantly increases the buoyancy 
forces which resulted into rapid enhancement of fluid velocity and this is shown in Fig.2 
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and Fig.3. It is clear from Fig.2 that velocity decreases with increase of suction parameter 
indicating the usual fact that suction stabilize the boundary layer growth. Further it is 
observed that velocity increases with increasing permeability of porous medium as it act 
against the porosity of the porous medium. Also with the increase in slip parameter the 
frictional forces reduces and increase the fluid velocity. From the same figure we 
observed that with increase in viscoelastic parameter the velocity decreases. With the 
increase in inclination angle, the magnitude of driving forces decreases, hence velocity 
decreases. 
Fig.3 shows the variation of velocity profile with Hartmann number, Hall current 
parameter, Prandtl number and heat source parameter. From the figure we find that as 
Hartmann number increases the resistive type of force called Lorentz force increases 
which slows down the motion of fluid. Further we find that increasing Hall current 
parameter reduces the effective conductivity and which in turn reduces the magnetic 
damping force on velocity and consequently velocity increases. Fig. 3 also depict that by 
increasing Prandtl number viscosity of the fluid increases which makes the fluid thick 
and causes a decrease in velocity. Further it is noticed that with the increase in heat 
source parameter velocity increases. 
Temperature profile: The temperature profile is shown in Fig. 4 for various parameters 
involved in the solution. It is clear from Fig.4 that as Prandtl number increases, the 
temperature profile decreases. Also temperature profile decreases with increasing 
frequency of oscillation and suction parameter and shown in the same figure 
Concentration profile:Fig. 5 illustrates that fluid concentration increases with an 
increase in Soret number it is because of the reason that a rise in Soret number causes a 
greater chemical thermal diffusivity. It is also clear from the same figure that with an 
increase in Schmidt number concentration decreases. This is attributed to the fact that 
higher values of Sୡ amounts to  fall in the chemical molecular diffusivity i.e. less 
diffusion therefore takes place by species transfer causing a reduction in concentration.  
Variation of Skin friction with Grashoff number at left plate is shown in Fig.6. From the 
figure we observed that skin friction coefficient increases with increasing viscoelastic and 
Hall current parameter whereas it decreases with increasing inclination angle, slip 
parameter, Hartmann number and Schmidt number. Variation of heat transfer coefficient 
at left plate with suction parameter is shown in Fig.7. This figure clearly shows that the 
Nusselt number increases with increasing heat source parameter but it decreases with an 
increase in Prandtl number and frequency of oscillation. Variation of mass transfer 
coefficient at left plate with suction parameter is given in Fig.8. The figure depicts that 
Sherwood number increases with increasing Soret number and decreases with Schmidt 
number.  
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Conclusions 

1. It is concluded that in an inclined vertical channel velocity decreases as angle of 
inclination increases. 

2. Viscoelastic parameter reduces the velocity of the fluid. 
3. Slip parameter and heat source parameter increase the velocity of the fluid.  
4. Velocity and temperature both increases with an increase in heat source 

parameter. 
Appendix 

A = αω     c = ୑
ଵା୫మ (1 − im) + iω + ଵ

୏౦       r = ஛୔౨ାට஛మ୔౨మିସୗ୔౨ାସ୧ன୔౨
ଶ  

s = ஛୔౨ିට஛మ୔౨మିସୗ୔౨ାସ୧ன୔౨
ଶ      rଵ = ୗౙ஛ାටୗౙమ஛మାସ୧னୗౙ

ଶ  

  sଵ = ୗౙ஛ିටୗౙమ஛మାସ୧னୗౙ
ଶ      rଶ = ஛ାඥ஛మାସୡ(ଵି୧୅)

ଶ(ଵି୧୅)      sଶ = ஛ିඥ஛మାସୡ(ଵି୧୅)
ଶ(ଵି୧୅)

A଴ = −eష౩
మ

2 sin h ቀୱି୰
ଶ ቁ  B଴ = eష౨

మ

2 sin h ቀୱି୰
ଶ ቁ   Aଵ = −S଴SୡA଴rଶ

rଶ − Sୡλr − iωSେ
  Aଶ = −S଴SୡB଴sଶ

sଶ − Sୡλs − iωSେ
 

Aଷ = ିଵ
ୱ୧୬ ୦ቀ౩భష౨భమ ቁ ቊୣష౩భమ

ଶ + Aଵ sin h ቀୱభି୰
ଶ ቁ + Aଶ sin h ቀୱభିୱ

ଶ ቁቋ    Aହ = (ୋ౨୅బାୋౣ୅భ) ୡ୭ୱ ஔ
(ଵି୧୅)୰మି஛୰ିୡ  

Aସ = ଵ
ୱ୧୬ ୦ቀ౩భష౨భమ ቁ ቊୣష౨భమ

ଶ + Aଵ sin h ቀ୰భି୰
ଶ ቁ + Aଶ sin h ቀ୰భିୱ

ଶ ቁቋ       A଺ = (ୋ౨୆బାୋౣ୅మ) ୡ୭
(ଵି୧୅)ୱమି஛ୱିୡ

 A଻ = ୋౣ୅య ୡ୭ୱ ஔ
(ଵି୧୅)୰భమି஛୰భିୡ A଼ = ୋౣ୅ర ୡ୭ୱ ஔ

(ଵି୧୅)ୱభమି஛ୱభିୡ 

Aଽ = 1
൜(1 − hrଶ)e(౩మష౨మ)

మ − (1 − hsଶ)eష(౩మష౨మ)
మ ൠ

ێۏ
ێێ
ێێ
ۍێ Aହ ൜(1 − hr)e(౩మష౨)

మ − (1 − hsଶ)eష(౩మష౨)
మ ൠ

+A଺ ൜(1 − hs)e(౩మష౩)
మ − (1 − hsଶ)eష(౩మష౩)

మ ൠ
+A଻ ൜(1 − hrଵ)e(౩మష౨భ)

మ − (1 − hsଶ)eష(౩మష౨భ)
మ ൠ

+A଼ ൜(1 − hsଵ)e(౩మష౩భ)
మ − (1 − hsଶ)eష(౩మష౩భ)

మ ൠۑے
ۑۑ
ۑۑ
ېۑ
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Aଵ଴ = −1
൜(1 − hrଶ)e(౩మష౨మ)

మ − (1 − hsଶ)eష(౩మష౨మ)
మ ൠ

ێۏ
ێێ
ێێ
ۍێ Aହ ൜(1 − hr)e(౨మష౨)

మ − (1 − hrଶ)eష(౨మష౨)
మ ൠ

+A଺ ൜(1 − hs)e(౨మష౩)
మ − (1 − hrଶ)eష(౨మష౩)

మ ൠ
+A଻ ൜(1 − hrଵ)e(౨మష౨భ)

మ − (1 − hrଶ)eష(౨మష౨భ)
మ ൠ

+A଼ ൜(1 − hsଵ)e(౨మష౩భ)
మ − (1 − hrଶ)eష(౨మష౩భ)

మ ൠۑے
ۑۑ
ۑۑ
ېۑ
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                                     Fig. 1: Schematic presentation of the physical problem. 
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Fig.2 Variation of velocity profile with G୰, λ, K୮, h, α and δ. 

 
Fig.3 Variation of velocity profile with G୫, M, m, P୰ and S.



58 

Fig.4 Variation of temperature profile. 

Fig.5 Variation of concentration profile. 

 

Fig.7 Variation of Nusselt number . 

Fig.8  Variation of Sherwood number

Fig.6 Variation of Skin friction  
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Abstract 
In the present paper, the effects of finite Larmor radius and suspended particles on the onset of 

Jeans instability of a self-gravitating viscoelastic medium permeated with uniform magnetic field is studied 
mathematically using Generalized Hydrodynamic model. A general dispersion relation for the problem is 
derived using the normal mode analysis method and particular dispersion relations for the transverse and 
longitudinal modes of wave propagation under both strongly and weakly coupling limits are deduced, 
which describe the growth rate of instability in terms of various parameters of the problem. The effects of 
coupling parameter (viscoelasticity), magnetic viscosity (finite Larmor radius), shear viscosity and number 
density of particle on the growth rate of the gravitational instability are studied numerically and the 
obtained results are depicted graphically. It is found that the coupling parameter modifies the Jeans 
Instability criterion, whereas the magnetic viscosity and suspended particles have no effect on this criterion. 
Further, the coupling parameter, magnetic viscosity and shear viscosity decreases the growth rate and hence 
have the stabilizing effect on the gravitational instability.  
Keywords: Jeans instability; viscoelastic medium; Generalized Hydrodynamic model; 
magnetic field; finite Larmor radius; suspended particles; strongly/weakly coupling limits.  

1. Introduction 
In astrophysical scenarios, the simplest theory that describes the aggregation of masses in 

space is the Jeans instability. The system comprises of particles that can aggregate together 
depending on the relative magnitude of the gravitational force to pressure force. Whenever 
the internal pressure of a gas is too weak to balance the self-gravitational force of a mass 
density perturbation, a collapse occurs. Such a mechanism was first studied by Jeans (1929). 
In terms of the wavelengths of a fluctuation, the Jeans criterion says that instability follows 
for all perturbations of wave number less than a critical value ݇௖, where ݇௖=ටସగீ

௖ೞమ ,where ρ is 
the density, ܿ௦ is the velocity of sound in the gas and G is the gravitational constant. This 
criterion is now known as the Jeans criterion of gravitational instability. Chandrasekhar 
(1961) studied the Jeans instability problem of a self - gravitating homogeneous medium to 
investigate the effects of rotation and magnetic field on the onset of gravitational instability 
in a comprehensive manner and concluded that the Jeans criterion remains unaffected by the 
individual or simultaneous presence of uniform rotation and magnetic field. 

In recent years, the researchers have shown keen interest in the matter present in the 
cosmological objects like white dwarf, interior of heavy planets, atmosphere of neutron star 
and ultra cold neutral plasma. Studies have shown that these objects are composed of 
strongly coupled plasma (SCP) or viscoelasticfluid which shows both viscous and elastic 
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behavior. This behavior of viscoelastic fluid have been discussed by Kaw and Sen (1998) 
using the Generalized Hydrodynamic (GH) model. The GH model describes the effects of 
strong correlations through the introduction of viscoelastic coefficients. These viscoelastic 
coefficients are the functions of coupling parameter ߁௝, which characterizes the ratio of the 
electrostatic Coulomb interaction between neighboring plasma particles to the thermal 
(kinetic) energy of the particles and is given by ߁௝ = ௭ೕమ௘మ

௔்ೕ  ; where the subscripts ݆( =  ݁, ݅) 
denotes respectively, electrons and ions; ܽ = ൬3 4 ௝݊ൗ ൰ଵ ଷ⁄ is the average spacing between 
particles with density ௝݊ and ݖ௝ is the charge state of species j. They used the GH model, to 
study the dynamics of strongly coupled plasma (SCP) and suggested that the viscoelastic 
properties of the medium are characterized by the relaxation time ߬ which provides a 
characteristic timescale to distinguish two classes of low frequency modes; one when the 
frequency ߪ ≪1/߬ (known as hydrodynamic limit) and the other for frequencies ߪ ≫1/߬ 
(known as kinetic limit); where,ߪ is the wave frequency and ߬ is the viscoelastic relaxation 
time. For more details and recent views on the subject, one may refer to Janaki and 
Chakrabarti (2010), Banerjee et al (2010 a,b), Rosenberg and Shukla (2011), Janaki et al 
(2011) and Prajapati and Chhajlani (2013). 

Sharma and Chhajlani (2013) reported that the presence of magnetic field in plasma 
introduces some additional scales both spatially and temporarily, such as Larmor radius and 
Larmor frequency. In this connection, the MHD set of equations is derived from two fluid 
theories with electron and ions with some limitations to describe low frequency phenomena. 
For the description of plasma along with two fluid theories, the single MHD set of equations 
is also used to describe the magnetized plasma system. These MHD works are derived by 
considering the zero Larmor radius of electron and ion and the frequency is generally 
assumed much smaller than the electron-ion gyration frequency. However, there are a 
number of interesting situations both in laboratory, space and astrophysical plasmas where 
the above spatial and temporal ordering does not hold. Sharma and Chhajlani (2013) also 
reported that in this type of situations, the behavior of considered plasma system is described 
by assuming finite Larmor radius (FLR) of ion and the correction in this regard is called as 
FLR corrections. 

The effect of FLR on the Jeans instability of self-gravitating classical plasma is reported 
by many investigators. Rosenbluth et al (1962) and Roberts and Taylor (1962) have pointed 
out the importance of finite ion Larmor radius effects on the various plasma instabilities. 
They showed that FLR effect works as a type of viscosity called magnetic viscosity, in which 
the Larmor radius takes the place of the usual mean free path. Hans (1966) has studied the 
gravitational instability with Hall current and FLR effects. Bhatia (1969) has discussed the 
Jeans instability, including Larmor radius corrections and collisional effects. Herrnegger 
(1972) has studied the effects of collision and gyro viscosity on gravitational instability in 
two-component plasma. Bhatia and Gupta (1973) have investigated the FLR effects on the 
gravitational instability of composite plasma. Sharma (1974) has studied the gravitational 
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instability of rotating plasma with FLR effects. Bhatia and Chhonkar (1985) investigated the 
stabilizing effect of FLR on the instability of rotating layer of self-gravitating plasma. Thus, 
using MHD set of equations with modification of FLR, various instability problems have 
been investigated by many authors using magnetic viscosity. Sharma and Chhajlani (2013) 
studied the effect of finite Larmor radius corrections on the Jeans instability of quantum 
plasma and concluded that in the transverse mode of wave propagation the instability 
criterion gets modified due to the presence of both FLR and quantum corrections.  

The problem of fluid dynamics by considering the effect of suspended particles on the 
onset of Bénard convection, gravitational and magneto gravitational instabilities of an infinite 
homogeneous medium has been studied many authors including Scanlon and Segel (1973). 
They studied the effects of suspended particles on the onset of Bénard convection and 
concluded that the particles decrease the critical temperature difference for the onset of 
convection by increasing the heat capacity of the fluid. In astrophysical context, the problem 
of gravitational instability of a gas in the presence of suspended particles is more realistic and 
important. Sharma (1975) studied the effect of suspended particle on the Jeans instability and 
concluded that Jean’s criterion is a sufficient condition for the instability of an infinite, 
homogeneous magnetized self-gravitational gas particle medium. Raghavachar (1979) and 
Chhajlani and Sanghvi (1985) also studied the problem in the presence of suspended particle 
and rotation and found that the Jeans criterion determines the instability criterion. Chhajlani 
and vyas (1988) studied the effect of thermal conductivity on the gravitational instability 
of magnetized rotating plasma through a porous medium in the presence of suspended 
particles and found that the concentration of the suspended particles reduces the rotational 
effect. Pensia et al. (2012) also studied the role of Coriolis force and suspended particle in the 
fragmentation of matter in the central region of galaxy.  

Motivated by the above discussed importance of the finite Larmor radius corrections and 
suspended particle in certain astrophysical situations and the effect on the Jeans instability 
problems, we in the present paper have studied the onset of gravitational instability of a self-
gravitating infinitely electrically conducting strongly coupled plasma permeated with 
uniform magnetic field in the presence of finite Larmor radius and suspended particles. Our 
objective here is to study the effects of finite Larmor radius and suspended particles on the 
onset of gravitational instability in a self-gravitating strongly coupled viscoelastic medium, 
mathematically. The present paper thus extends the analysis of Dhiman and Sharma (2014) to 
include the effects of finite Larmor radius corrections and suspended particles on the 
gravitational instability of a viscoelastic medium.  
2. Mathematical Formulation of the Problem 

Consider an infinite homogeneous, finitely electrically conducting, self-gravitating 
viscoelastic fluid permeated with a uniform magnetic field ܪ଴ሬሬሬሬԦ = (0, 0,  ௭) in the presence ofܪ
suspended particles and finite Larmor radius. We have used the GH model to describe the 
viscoelastic properties of the medium. Following the analysis of Janaki et al (2011), under 
these assumptions, the generalized basic hydrodynamical equations of continuity, motion, 
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magnetic induction and Poisson equation governing this physical problem (cf. Janaki et al 
2011, and Prajapati and Chhajlani 2013) are given by; 
డఘ
డ௧ + .ߘ (ሬԦݑߩ) = 0 (1)                  
ቀ1 + ߬ డ

డ௧ቁ ቂߩ ቀడ௩ሬԦ
డ௧ + .Ԧݒ) Ԧቁݒ(ߘ − ଵ

ସగ ቀ൫ߘ × ଴ሬሬሬሬԦ൯ܪ × ଴ሬሬሬሬԦቁܪ − ߶ߘߩ + ܿ௦ଶߩߘ − ሬԦݑ)ܰܭ − (Ԧݒ + ിܲቃߘ =
Ԧݒଶߘߤ + ቀߦ + ఓ

ଷቁ .ߘ)ߘ  Ԧ)   (2)ݒ
డுబሬሬሬሬሬԦ
డ௧ = ߘ × ൫ݒԦ ×  ଴ሬሬሬሬԦ൯ (3)ܪ

.ߘ ଴ሬሬሬሬԦܪ = 0  (4)  
߶ଶߘ =  (5) ߩܩߨ4−
௦ߩ డ௨ሬሬԦ

డ௧ + ሬሬሬԦ.ݑ) ሬԦݑ(ߘ = Ԧݒ)ܰܭ −  ሬԦ) (6)ݑ
డே
డ௧ = .ߘ−  (7) (ሬԦݑܰ)
In the above equations;ݒԦ, ሬሬሬԦ,ݑ ,଴ሬሬሬሬԦܪ  ,Ԧ ܽ݊݀ ിܲ are respectively represents the medium velocityݎ
the particle velocity, magnetic field, position vectors and pressure tensor; ߬, ,ߩ ,ܭ ܰ,  ,௦ ܽ݊݀ ߶,  respectively denotes the viscoelastic relaxation time, density of fluidߩ
the constant in the Stokes drag formula, the number density of particle, suspended particle 
density and gravitational potential;ߤ,  ,௦ respectively denote the coefficient of viscosityܿ݀݊ܽ ܩ
the universal gravitational constant and the speed of sound in isothermal medium. 
Further,ߦ(= ߣ + ଶ

ଷ  .is coefficient of bulk viscosity (ߤ
The components of pressure tensor, considering the finite ion gyration radius, as given by 
Roberts and Taylor (1962) with magnetic field, in the z direction are given by 

௫ܲ௫ = ଴߭ߩ− ቀడ௩೤
డ௫ + డ௩ೣ

డ௬ ቁ , ௬ܲ௬ = ଴߭ߩ ቀడ௩೤
డ௫ + డ௩ೣ

డ௬ ቁ , ௭ܲ௭ = 0, ௫ܲ௬ = ௬ܲ௫ = ଴߭ߩ ቀడ௩ೣ
డ௫ −

డ௩೤
డ௬ ቁ , ௫ܲ௭ = ௭ܲ௫ = ଴߭ߩ2− ቀడ௩೤

డ௭ + డ௩೥
డ௬ ቁ , ௬ܲ௭ = ௭ܲ௬ = ଴߭ߩ2 ቀడ௩೥

డ௫ + డ௩ೣ
డ௭ ቁ  (8) 

߭଴ = ఆಽோಽమ
ସ  is the magnetic viscosity. Here ܴ௅ is the ion Larmor radius and ߗ௅ is the ion 

gyration frequency. 
3. Linearized perturbation equations and dispersion relation  

To investigate the instability of the self-gravitating system governed by basic 
equations (1)-(8), let the initial stationary (steady) solution be slightly perturbed by giving 
infinitesimal small perturbations 
,ߩߜ ,߶ߜ ℎሬԦ൫ℎ௫ , ℎ௬, ℎ௭൯, ߜ ിܲ, ሬܸԦ൫ݒ௫ , ,௬ݒ ௫ݑ௭൯ ܽ݊݀ ሬܷሬԦ൫ݒ , ,௬ݑ  ଴, gravitationalߩ ௭൯ in the densityݑ
potential ߶଴, magnetic field ܪ଴ሬሬሬሬԦ, pressure tensor ിܲ, fluid velocity ݒԦ and  particle velocity ݑሬԦ 
respectively.  
Thus, the perturbations are represented by  
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ߩ = ଴ߩ + ,ߩߜ ߶ = ߶଴ + ,߶ߜ ിܲ = ଴ܲശሬሬԦ  + ߜ ിܲ, ሬሬԦܪ = ଴ሬሬሬሬԦܪ + ℎሬԦ, ൫0 + ℎ௫ , 0 + ℎ௬, ௭ܪ + ℎ௭൯, Ԧݒ =
ሬܸԦ൫0 + ௫ݒ , 0 + ,௬ݒ 0 + ,௭൯ݒ ሬԦݑ =  ሬܷሬԦ൫0 + ௫ݑ , 0 + ,௬ݑ 0 +  ௭൯. (9)ݑ
Using these perturbed quantities given in (9) in equations (1)-(8) and then linearizing the 
resulting equations by neglecting the second and higher order perturbed quantities, we get the 
following linearized perturbed equations of continuity, motion, magnetic induction and 
Poisson equation for viscoelastic medium respectively;  
డఋఘ
డ௧ + .ߘ ൫ߩ଴ ሬܸԦ൯ = 0 (10) 

ቀ1 + ߬ డ
డ௧ቁ ቂߩ଴ డ௏ሬሬԦ

డ௧ − ߶ߜߘ଴ߩ − ଵ
ସగ ൫ߘ × ℎሬԦ൯ × ଴ሬሬሬሬԦܪ + ܿ௦ଶߩߜߘ + .ߘ ߜ ിܲ − ൫ሬܸԦܰܭ − ሬܷሬԦ൯ቃ = ଶߘߤ ሬܸԦ +

ቀߦ + ఓ
ଷቁ .ߘ൫ߘ ሬܸԦ൯  (11) 

డ௛ሬሬԦ
డ௧ = ߘ × ൫ሬܸԦ ×  ሬሬԦ଴൯  (12)ܪ
߶ߜଶߘ =  (13)  ߩߜܩߨ4−
ቀ߬ଵ డ

డ௧ + 1ቁ ሬܷሬԦ = ሬܸԦ (14) 
.ߘ ℎሬԦ = 0 (15) 
To solve equations (10)-(15), which are linear and homogeneous equations, let us assume the 
solution of the perturbed quantities of the form; 
eங(௞ೣ௫ା௞೥௭)ା஢୲ (16)  
where, ߪ is the wave frequency and ݇௫ , ݇௭ are the wave numbers in transverse and 
longitudinal directions. Using this exponential solution in equations (10)-(15) and 
simplifying the resulting equations, we get the following equations in the velocity 
components as; 
(1 + τσ) ቊቆσଶ+cୱଶk୶ଶ+kଶVୟଶ − ୵ౠమ୩౮మ

୩మ − Aσ ቀ ஢தభ
஢தభାଵቁቇ v୶ + συ଴൫k୶ଶ + 2k୸ଶ൯v୷ቋ + σ ቆቀஞାరμ

య ቁ୩౮మ
஡బ +

νk୸ଶ൰ v୶ = 0  (17) 
(1 + τσ) ቊቆσଶ−k୸ଶVୟଶ − Aσ ቀ ஢தభ

஢தభାଵቁቇ v୷ − 2συ଴k୶k୸v୸ − συ଴൫k୶ଶ + 2k୸ଶ൯v୶ቋ + σνkଶv୷ = 0
 (18)   
(1 + (ߪ߬ ൬൜ߪଶ + ܿ௦ଶ݇௭ଶ − ௪ೕమ௞೥మ

௞మ − ߪܣ ቀ ఙఛభ
ఙఛభାଵቁൠ ௭ݒ + ௬൰ݒ଴݇௫݇௭߭ߪ2 + ߪ ቊቀకାరഋ

య ቁ௞೥మ
ఘబ + ௭ଶቋ݇ߥ ௭ݒ = 0

 (19) 
Equations (17)-(19) can be put in the following matrix notations;  
ሾBሿሾCሿ = 0  (20)  
where, ሾBሿ is the coefficient matrix and ሾCሿ is the velocity components matrix.  
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 The necessary condition for the non-trivial solution of system (20) is that the determinant 
of the coefficient matrix ሾBሿmust vanish, which yields the following characteristic equation  
 (1 + τσ) ቆσଶ+cୱଶk୶ଶ+kଶVୟଶ − ୵ౠమ୩౮మ

୩మ − Aσ ቀ ஢தభ
஢தభାଵቁቇ + σ ቆቀஞାరμ

య ቁ୩౮మ
஡బ + νk୸ଶቇ ቈቊ(1 +

τσ) ቆσଶ−k୸ଶVୟଶ − Aσ ቀ ஢தభ
஢தభାଵቁቇ + σνkଶቋ ቊ(1 + τσ) ቆσଶ + cୱଶk୸ଶ − ୵ౠమ୩౰మ

୩మ − Aσ ቀ ஢தభ
஢தభାଵቁቇ +

σ ቆቀஞାరμ
య ቁ୩౰మ

஡బ + νk୸ଶቇቋ + (1 + τσ)ଶ4σଶυ଴ଶk୶ଶk୸ଶ቉ + (1 + τσ)ଶσଶυ଴ଶ൫k୶ଶ + 2k୸ଶ൯ଶ ൭(1 +

τσ) ൜σଶ + cୱଶk୸ଶ − ୵ౠమ୩౰మ
୩మ − Aσ ቀ ஢தభ

஢தభାଵቁൠ + σ ቊቀஞାరμ
య ቁ୩౰మ

஡బ + νk୸ଶቋ൱ = 0 (21) 
where, ω୨ = ඥ4πGρ଴ is the Jeans frequency, ݇ଶ = ݇௫ଶ + ݇௭ଶ is the wave number and 

௔ܸଶ = ୌ౰మ
ସ஠஡బ is the Alfvén velocity.  

4. Jeans Criterion of Instability  
We shall now obtain the dispersion relations for each transverse and longitudinal modes 

of wave propagation from the characteristic equation (21) and investigate the instability 
criterion for the onset of gravitational instability in viscoelastic fluid for the strongly and 
weakly coupled plasmas, individually. 

4a. Transverse mode of wave propagation  
In the case of transverse mode of wave propagation, let us take ݇௫ = ݇and ݇௭ = 0. In 

view of this, equation (21) yields the following dispersion relation 
ቊ(1 + τσ) ቆσ − A ቀ ஢தభ

஢தభାଵቁቇ + νkଶቋ × ቈቊ(1 + τσ) ቆσଶ+cୱଶkଶ+kଶVୟଶ − w୨ଶ − Aσ ቀ ஢தభ
஢தభାଵቁቇ +

σ ቀஞାరμ
య ቁ୩మ

஡బ ቋ × ቊ(1 + τσ) ቆσ − A ቀ ஢தభ
஢தభାଵቁቇ + νkଶቋ + (1 + τσ)ଶσυ଴ଶkସ቉ = 0 

 (22) 
Further, equation (22) above clearly yields the following pair of equations 
(1 + τσ) ቆσ − A ቀ ஢தభ

஢தభାଵቁቇ + νkଶ = 0  (23) 
(1 + τσ)ଶ ቄσଷ+cୱଶkଶσ+kଶVୟଶσ − w୨ଶσ − 2σଶA ቀ ஢தభ

஢தభାଵቁ + A ቀ ஢தభ
஢தభାଵቁ ቄ−cୱଶkଶ+kଶVୟଶ + w୨ଶ +

Aσ ቀ ஢தభ
஢தభାଵቁቅ + συ଴ଶkସቅ + (1 + τσ) ቈ஢ቀஞାరμ

య ቁ୩మ
஡బ ቆσ − A ቀ ஢தభ

஢தభାଵቁቇ + ቄσଶ+cୱଶkଶ+kଶVୟଶ − w୨ଶ −
Aσ ቀ ஢தభ

஢தభାଵቁቅ νkଶ቉ + ஢ቀஞାరμ
య ቁ୩మ

஡బ νkଶ = 0 (24) 
Now, we shall derive the instability criteria for both SCP and WCP.  
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(i). Criterion for strongly coupled plasma (SCP) 
For SCP case, in view of kinetic limit (στ ≫ 1), equation (23) yields the non-

gravitating mode. Also under this limit, equation (24) reduces to the following dispersion 
relation  
଺ߪ + ହߪ ቀ ଶ

ఛభ − ቁܣ2 + ସߪ ቄ ଵ
ఛభమ − ଶ஺

ఛభ +ܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ݇ଶߥ௖ଶ + ν୩మ
τ + υ଴ଶkସ + Aଶቅ +

σଷ ቊ ଶ
ఛభ ቄܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ݇ଶߥ௖ଶ + ν୩మ

τ + υ଴ଶkସቅ + A ቄܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ݇ଶߥ௖ଶ + ν୩మ
τ ቅቋ +

σଶ ቊ ଵ
ఛభమ ቄܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ݇ଶߥ௖ଶ + ν୩మ

τ + υ଴ଶkସቅ + ஺
ఛభ ൛ܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ݇ଶߥ௖ଶൟ +

ν୩మ
τ ቄܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ஺

ఛభ + ௞మఔ೎మ
தభ ቅቋ + σ ν୩మ

தభτ ൛ܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ݇ଶߥ௖ଶൟ +
ν୩మ
தభτ ൛ܿ௦ଶkଶ+kଶ ௔ܸଶ − ௝ଶݓ + ݇ଶߥ௖ଶൟ = 0  (25) 

The constant term of (25) yields the following instability criterion; 
݇ଶ < ௝߱ଶ (ܿ௦ଶ + +௖ଶߥ ௔ܸଶ)⁄   (26) 
(ii). Criterion for weakly coupled plasma (WCP) 
For WCP case, in view of hydrodynamic limit(στ ≪ 1), equation (24) reduces to the 

following dispersion relation  
ହߪ + ସߪ ቄ ଶ

ఛభ − ܣ2 + ଶቅ݇ߥ + ଷߪ ቊܿ௦ଶ݇ଶ+݇ଶ ௔ܸଶ − ௝ଶݓ + ݇ସߥ଴ଶ + ଵ
ఛభమ − ଶ஺

ఛభ + ଶ݇ߥ ቄ ଵ
ఛభఘబ ቀߦ +

ସఓ
ଷ ቁ + ଶ

ఛభ + ௞మ
ఘబ ቀߦ + ସఓ

ଷ ቁቅቋ + ଶߪ ቊ ଶ
ఛభ ൛ܿ௦ଶ݇ଶ+݇ଶ ௔ܸଶ − ௝ଶݓ + ݇ସߥ଴ଶൟ + ൛ܿ௦ଶ݇ଶ+݇ଶܣ ௔ܸଶ − ௝ଶൟݓ + ஺

ఛభ +
௞మ
ఘబ ቀߦ + ସఓ

ଷ ቁ − ܣ + ଶ݇ߥ ቄܿ௦ଶ݇ଶ+݇ଶ ௔ܸଶ − ௝ଶݓ + ଵ
ఛభమ − ஺

ఛభ + ଶ௞మ
ఘబ ቀߦ + ସఓ

ଷ ቁቅቋ +
ߪ ቊఔ௞మ

ఛభ ቄ2൫ܿ௦ଶ݇ଶ+݇ଶ ௔ܸଶ − ௝ଶ൯ݓ + ௞మ
ఘబ ቀߦ + ସఓ

ଷ ቁቅ + ஺
ఛభ ൛−ܿ௦ଶ݇ଶ+݇ଶ ௔ܸଶ + ௝ଶൟݓ + ଵ

ఛభమ ൛ܿ௦ଶ݇ଶ+݇ଶ ௔ܸଶ −
௝ଶݓ + ݇ସߥ଴ଶൟቋ + ఔ௞మ

ఛభమ ൛ܿ௦ଶ݇ଶ+݇ଶ ௔ܸଶ − ௝ଶൟݓ = 0  (27) 
The constant term of (27) yields the following instability criterion; 

݇ଶ < ௝߱ଶ (ܿ௦ଶ+ ௔ܸଶ)⁄   (28) 
 If the effects of suspended particle and viscoelastic fluid are ignored, then the dispersion 

relation (24) reduces to 
ଶ+ܿ௦ଶ݇ଶ+݇ଶߪ ௔ܸଶ − ௝ଶݓ + ߭଴ଶ݇ସ = 0  (29) 

and the constant term of (29) yields the following instability criterion; 
݇ଶ < ௝߱ଶ (ܿ௦ଶ+ ௔ܸଶ + ߭଴ଶ݇ଶ)⁄   (30) 
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Thus, from inequality (28) and (30) it is clear that the finite Larmor radius modifies the 
Jeans criterion of instability, if the medium is non viscous and the effect of suspended 
particles is ignored. 

4b. Longitudinal mode of wave propagation  
In the case longitudinal mode; let ݇௭=݇ and ݇௫ = 0. In view of this equation (21) yields 

the following dispersion relation 
ቂ(1 + (ߪ߬ ቄߪଶ+ܿ௦ଶkଶ − ௝ଶݓ − σA ቀ ஢தభ

஢தభାଵቁቅ + ௞మ஢
ఘబ ቀߦ + ସఓ

ଷ ቁቃ × ቂ(1 + (ߪ߬ ቄߪଶ+kଶ ௔ܸଶ −
σA ቀ ஢தభ

஢தభାଵቁቅ + ݇ଶߪߥቃଶ + 4(1 + ଶσଶυ଴ଶkସ(ߪ߬ = 0 (31) 
From (31) it is clear that either  
(1 + (ߪ߬ ቄߪଶ+ܿ௦ଶkଶ − ௝ଶݓ − σA ቀ ஢தభ

஢தభାଵቁቅ + ௞మ஢
ఘబ ቀߦ + ସఓ

ଷ ቁ = 0 (32) 
ቂ(1 + (ߪ߬ ቄߪଶ+kଶ ௔ܸଶ − σA ቀ ஢தభ

஢தభାଵቁቅ + ݇ଶߪߥቃଶ + 4(1 + ଶσଶυ଴ଶkସ(ߪ߬ = 0  (33) 
Now, we shall derive the instability criteria for both SCP and WCP.  

(i). Criterion for strongly coupled plasma (SCP) 
For SCP case, in view of kinetic limit(στ ≫ 1), equation (32) reduces to the 

following equation  
ଷߪ + ଶߪ ቄ ଵ

ఛభ − ቅܣ + ൛ܿ௦ଶ݇ଶߪ − ௝ଶݓ + ݇ଶߥ௖ଶൟ + ଵ
ఛభ ൛ܿ௦ଶ݇ଶ − ௝ଶݓ + ݇ଶߥ௖ଶൟ = 0  (34) 

The constant term of (34) yields the following instability criterion; 
݇ଶ < ௝߱ଶ (ܿ௦ଶ + ⁄(௖ଶߥ  (35) 
(ii). Criterion for weakly coupled plasma (WCP) 
For WCP case, in view of hydrodynamic limit(στ ≪ 1), equation (32) reduces to the 

following dispersion relation  
ଷߪ + ଶߪ ቄ ଵ

ఛభ − ܣ + ௞మ
ఘబ ቀߦ + ସఓ

ଷ ቁቅ + ߪ ቄܿ௦ଶ݇ଶ − ௝ଶݓ + ௞మ
ఛభఘబ ቀߦ + ସఓ

ଷ ቁቅ + ଵ
ఛభ ൛ܿ௦ଶ݇ଶ − ௝ଶൟݓ = 0  

 (36) 
The constant term of (36) yields the following instability criterion; 
݇ଶ < ௝߱ଶ ܿ௦ଶ⁄  (37) 

5. Growth rate of instability  
We shall now analyze the effects of various physical parameters viz; viscoelastic 

parameter, magnetic viscosity, number density of particle and shear viscosity on the growth 
rate of magneto-gravitational instability of viscoelastic medium for the case of transverse and 
longitudinal mode of propagation under both the strongly and weakly coupling limits.  
In order to study the effect of growth rate on SCP and WCP, writing equations (25), (27), 
(34) and (36) respectively in the following dimensionless forms; 
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଺ߛ + ହߛ2 ቄ ଵ
ఛభ∗

− ቅ∗ܣ + ସߛ ቆ ଵ
ఛభ∗ మ − ଶ஺∗

ఛభ∗
+ ௦∗ଶ݇∗ଶ+݇∗ଶܥ − 1 + ଶ∗݇∗ߦ + ఔ∗௞∗మ

ఛ∗ + ݇∗ଶߥ଴∗ସ + ଶቇ∗ܣ +
ଷߛ ቊ ଶ

ఛభ∗ ൜ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ଶ∗݇∗ߦ + ఔ∗௞∗మ
ఛ∗ + ݇∗ଶߥ଴∗ସൠ + ∗ܣ ൜ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ଶ∗݇∗ߦ +

ఔ∗௞∗మ
ఛ∗ ቅቋ + ଶߛ ቊ ଵ

ఛభ∗ మ ൜ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ଶ∗݇∗ߦ + ఔ∗௞∗మ
ఛ∗ + ݇∗ଶߥ଴∗ସൠ + ஺∗

ఛభ∗ ൛ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 +
ଶൟ∗݇∗ߦ + ఔ∗௞∗మ

ఛ∗ ൜ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ஺∗
ఛభ∗

+ క∗௞∗మ
ఛభ∗ ൠቋ + ߛ ఔ∗௞∗మ

ఛభ∗ ఛ∗ ൛ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ଶൟ∗݇∗ߦ +
ఔ∗௞∗మ
ఛభ∗ ఛ∗ ൛ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ଶൟ∗݇∗ߦ = 0 (38) 

ହߛ + ⁴ߛ ቄ ଶ
ఛభ∗

− ∗ܣ2 + ଶቅ∗݇∗ߥ + ³ߛ ൬ ଵ
ఛభ∗ మ − ଶ஺∗

ఛభ∗
+ ௦∗ଶ݇∗ଶܥ + ݇∗ଶ − 1 + ݇∗ଶߥ଴∗ସ൰ + ଶ∗݇∗ߥ ቄ ଵ

ఛభ∗
߫ +

ଶ
ఛభ∗

+ ݇∗ଶ߫ቅ + ²ߛ ቊ ଶ
ఛభ∗ ൛ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ݇∗ଶߥ଴∗ସൟ + ௦∗ଶ݇∗ଶܥ൛∗ܣ + ݇∗ଶ − 1ൟ + ஺∗

ఛభ∗
− ∗ܣ + ݇∗ଶ߫ +

ଶ∗݇∗ߥ ൜ ଵ
ఛభ∗ మ − ஺∗

ఛభ∗
+ ௦∗ଶ݇∗ଶܥ + ݇∗ଶ − 1 + 2݇∗ଶ߫ൠቋ + ߛ ቊఔ∗௞∗మ

ఛభ∗ ൛2൫ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1൯ + ݇∗ଶ߫ൟ +
஺∗
ఛభ∗ ൛ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1ൟ + ଵ

ఛభ∗ మ ൛ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1 + ݇∗ଶߥ଴∗ସൟቋ + ఔ∗௞∗మ
ఛభ∗ మ ൛ܥ௦∗ଶ݇∗ଶ + ݇∗ଶ − 1ൟ =  0  

 (39) 
ଷߛ + ଶߛ ቀ ଵ

ఛభ∗ + ቁ∗ܣ + ൫݇∗ଶߛ + ݇∗ଶߦ∗ − 1൯ + ௞∗మ
ఛభ∗ (1 + (∗ߦ − ଵ

ఛభ∗ = 0 (40) 
ଷߛ + ଶߛ ቀ ଵ

ఛభ∗ − ଶ∗ܣ + ݇∗ଶ߫ቁ + ߛ ൬݇∗ଶ + ௞∗మచ
ఛభ∗ − 1൰ + ൫௞∗మିଵ൯

ఛభ∗ = 0  (41) 
where the dimensionless parameters used are 

݇∗ = ݇Vୟ
௝߱

, ߭∗ = ߭ ௝߱
௔ܸଶ , ∗ߦ = ௖ଶߥ

௔ܸଶ , ∗௦ܥ = ௦ܥ
௔ܸ

, ଴∗ଶߥ = ଴ଶߥ
௔ܸ

 

ߛ = ߪ
௝߱

, ݇∗ = ݇ܿ௦
௝߱

, ߭∗ = ߭ ௝߱
ܿ௦ଶ , ∗ߦ = ௖ଶߥ

ܿ௦ଶ , ∗ܣ = ܣ
௝߱

, ߫ = ௝߱
ܿ௦ଶߩ଴

൬ߦ + 4
3 ൰ߤ , ߬∗   = ߬ ௝߱,߬ଵ∗   = ߬ଵ ௝߱ 

The values of growth rate of magnetogravitational instability for different values of wave 
numbers have been calculated from equations (38), (39), (40) and (41) in the transverse 
and longitudinal mode of wave propagation under the strongly and weakly coupled 
plasma limits. The obtained values and the variation in the growth rate with wave 
numbers is depicted graphically in Figures 1and 2, respectively.  

Further the effect of magnetic viscosity on the growth rate of 
magnetogravitational instability has been observed from the non-dimensional equation 
(38).The obtained values and the variation in the growth rate with wave numbers is 
depicted graphically in Figure 3 for some constant values of magnetic viscosity ߥ଴∗ =0.5, 1.5. 



256  

 
Figure 1.Variation of normalized growth rate 
against the normalized wave number (݇∗) under 
the strongly and weakly coupling limits in the 
longitudinal mode of wave propagation. 

 
 

Figure 2.Variation of normalized growth rate 
against the normalized wave number (݇∗) under 
the strongly and weakly coupling limits in the 
transverse mode of wave propagation. 

 

Figure 3.Variation of normalized growth rate 
against the normalized wave number (݇∗) under 
the strongly coupling limit in the transverse 
mode of wave propagation for some fixed values 
of magnetic viscosity ߥ଴∗  =  0.5, 1.5. 

 

Figure 4.Variation of normalized growth rate 
against the normalized wave number (݇∗) under 
the strongly in the transverse mode of wave 
propagation for some fixed values of number 
density of particle ܣ∗  =  0.0, 0.3. 
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Figure 5.Variation of normalized growth rate 
against the normalized wave number (݇∗) under 
weakly coupling limits in the transverse mode of wave 
propagation for some fixed values of number density 
of particleܣ∗  = 0.0, 0.3 

 

Figure 6.Variation of normalized growth rate 
against the normalized wave number (݇∗)underthe strongly coupling limits in the 
longitudinal mode of wave propagation for 
various values of shear viscosity0.5,1.0=∗ߦ. 

 

The effect of number density of particles ܣ∗ has been calculated in the transverse mode of 
wave propagation under the strongly and weakly coupling limits from the non-dimensional 
equations (38) and (39). The different values of the number density of particle 0.3 ,0=∗ܣ have 
been chosen to investigate the effect on the growth rate of magnetogravitational instability. 
The obtained values and the variation in the growth rate with wave numbers are depicted 
graphically in Figures 4 and 5, respectively for the strongly and weakly plasma. The shear 
viscosity effect on the growth rate of magnetogravitational instability has been studied in the 
longitudinal mode of wave propagation under the strongly coupling limit for the different 
values of shear viscosity;ߦ∗ = 0.5, 1.0 from the non-dimensional equation (40). The obtained 
values and the variation in the growth rate with wave numbers for the different values of 
shear viscosity ߦ∗ = 0.5, 1.0 are depicted graphically in Figure 6.
6. Results and Discussions 

In the present paper, we have studied the effects of finite Larmor radius and suspended 
particles on the onset of gravitational instability of a self-gravitating viscoelastic medium 
permeated with uniform magnetic field, mathematically using Generalized Hydrodynamic 
model. A general dispersion relation for the problem is derived using the normal mode 
analysis method and particular dispersion relations for the transverse and longitudinal modes 



91  

of wave propagation under both strongly and weakly coupling limits are obtained, which 
describe the growth rate of instability in terms of various parameters of the problem. The 
effects of finite Larmor radius and suspended particles have been investigated on both the 
longitudinal and transverse mode of wave propagation under the strongly and weakly 
coupling limits.  

Form the above analysis, we found that the coupling parameter modifies the Jeans 
instability criterion, whereas the magnetic viscosity and suspended particles have no effect on 
this criterion. The effects of coupling parameter (viscoelasticity), magnetic viscosity (finite 
Larmor radius), shear viscosity and number density of particle on the growth rate of the 
gravitational instability are studied numerically and the results are depicted graphically. The 
variation of the growth rate under both the strongly and weakly coupled limits (coupling 
parameter) with normalized wave number has been calculated and the results have been 
depicted graphically in Figures 1 and 2. From the obtained results, it is observed that the 
growth rate is higher in the weakly coupled plasma to that of the strongly coupled plasma in 
both the transverse and longitudinal modes of wave propagation. It may be due to the fact 
that the decay of growth rate of unstable Jeans modes is faster in the case of strongly rather 
than the weakly coupling limits (Sharma 2014). Also, the effect of magnetic viscosity on the 
growth rate of magnetogravitational instability under the strongly coupling limit in the 
transverse mode of wave propagation for some fixed values of magnetic viscosity ߥ଴∗(= 0.5, 1.5) has been investigated and the variation has been depicted in Figure 3. It is observed 
that as the values of magnetic viscosity increases the growth rate of instability decreases and 
hence has a stabilizing effect on the growth rate of gravitational instability. The effect of 
number density of particle for some fixed values of ܣ∗(=  0.0, 0.3) in the transverse mode of 
wave propagation has been studied and the results are depicted in Figures 4 and 5, 
respectively under the strongly and weakly coupling limits. It is observed that for the 
increasing values of the number density of particle, the growth rate decreases and hence have 
stabilizing effect on the gravitational instability. In Figure 6, the variation of normalized 
growth rate against the normalized wave number (݇∗) under the strongly coupling limit in the 
longitudinal mode of wave propagation for various values of shear viscosity (1.0 ,0.5= ) ∗ߦ 
has been depicted. It is observed that the shear viscosity have same effect on the growth rate 
as that of the number density of the particle.  
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